1
|
Yang J, Yang Y, Zhang J, Xu Y, Liu J. Synergistic enhancement of hydrophobicity and mechanical properties of cellulose paper by (3-glycidoxypropyl) trimethoxy and rosin. Int J Biol Macromol 2025; 295:139661. [PMID: 39793788 DOI: 10.1016/j.ijbiomac.2025.139661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Cellulose-based paper is inherently poor in hydrophobicity and mechanical strength, limiting its practical applications in daily life such as packaging materials, water-resistant labels, and disposable tableware. This study aimed to develop an effective and eco-friendly strategy to address these limitations by enhancing the hydrophobicity and mechanical properties of cellulose paper. To achieve this, an internal sizing agent was prepared by combining (3-glycidoxypropyl) trimethoxy (GPS) with natural rosin. This sizing agent was applied to cellulose paper, and its effectiveness was evaluated. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the successful introduction of rosin and GPS into the cellulose fiber network, forming covalent bonds. The variation in the microstructure and surface elemental distribution of the sizing cellulose paper was further analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Thermogravimetric analysis (TGA) was conducted to evaluate the improved thermostability of the sizing cellulose paper. These structural improvements, including covalent bond formation and gap filling, contributed to the enhanced hydrophobicity and mechanical properties of the paper. This study provides a convenient and cost-effective approach to enhancing the functional properties of cellulose paper, offering new possibilities for its practical applications in eco-friendly packaging materials, disposable paper products, and high-performance paper-based packaging.
Collapse
Affiliation(s)
- Jia Yang
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, China
| | - Yongbin Yang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China.
| | - Jun Zhang
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, China
| | - Yang Xu
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, China.
| | - Jianrong Liu
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, China.
| |
Collapse
|
2
|
Hu Y, Bao Z, Li Z, Wei R, Yang G, Qing Y, Li X, Wu Y. Develop a novel and multifunctional soy protein adhesive constructed by rosin acid emulsion and TiO 2 organic-inorganic hybrid structure. Int J Biol Macromol 2024; 277:134177. [PMID: 39067730 DOI: 10.1016/j.ijbiomac.2024.134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Soy protein adhesives (SPI) exhibit broad prospects in substituting aldehyde-based resin due to the economic and environmental-friendly characteristics, but still face a challenge because of the dissatisfied bonding strength and terrible water resistance. Herein, prompted by organic-inorganic hierarchy, a multifunctional and novel soy protein adhesive (SPI-RAE-TiO2) consisting of rosin acid emulsion (RAE) and TiO2 nanoparticles (TiO2) were proposed. In comparison with original SPI, the dry and wet shear strengths of modified adhesive reached 2.01 and 1.21 MPa, respectively, which were increased by 130 % and 200 %. Furthermore, SPI-6RAE-0.5TiO2 was selected as the best proportion via the method of response surface methodology (RSM). What's more, SPI-6RAE-0.5TiO2 adhesive demonstrated prominent coating performance in both dry and wet surface conditions. Meanwhile, SPI-6RAE-0.5TiO2 adhesive possessed excellent mildew resistance and antibacterial ability with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), reflecting the antibacterial rates 97.71 % and 98.16 %, respectively. In addition, SPI-6RAE-0.5TiO2 adhesive also exhibited the outstanding green features such as the reduction of formaldehyde pollution and greenhouse effect through Life Cycle Assessment (LCA). Thus, this work provided a novel and functional approach to design multifunctional, superior-property and low-carbon footprint soy protein adhesive.
Collapse
Affiliation(s)
- Yinchun Hu
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Zhenyang Bao
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Zhaoshuang Li
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China.
| | - Renzhong Wei
- Treezo New Material Science & Technology Group Co., Ltd., Hangzhou 311107, China
| | - Guoen Yang
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Yan Qing
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China.
| |
Collapse
|
3
|
Ke Z, Yu J, Liao L, Rao X. Application progress of rosin in food packaging: A review. Int J Biol Macromol 2024; 280:135900. [PMID: 39313057 DOI: 10.1016/j.ijbiomac.2024.135900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Foodborne illness caused by Gram bacteria is the most important food safety issue worldwide. Food packaging film is a very important means to extend the shelf life of food. It reduces microbial contamination and provides food safety assurance during the sales process. However, the food packaging material is derived from plastic. Most plastics are not only non-degradable but also harmful to human health. Biodegradable natural polymers are an ideal substitute, but their poor mechanical properties, hydrophilicity and weak antibacterial properties limit their applications. Rosin is an oily pine ester in the pine family, which is a natural renewable resource with a wide range of sources. It is widely used in various fields, such as surfactants, adhesives, drug loading, antibacterial, etc. However, there are only a few reports on the application of rosin in food packaging. It is worth noting that the unique hydrogenated phenanthrene ring structure of rosin can enhance the thermal stability, hydrophobicity and antibacterial properties of food packaging. More importantly, rosin has a wide range of sources, good biocompatibility, and can be degraded in nature. These advantages are conducive to the application of rosin in food packaging. However, previous reviews focused on resins, silicone rubbers and surfactants. In this review we will focus on the application of rosin in food packaging.
Collapse
Affiliation(s)
- Zhijun Ke
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Jinxuan Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Lirong Liao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China.
| |
Collapse
|
4
|
Pu M, Fang C, Zhou X, Wang D, Lin Y, Lei W, Li L. Recent Advances in Environment-Friendly Polyurethanes from Polyols Recovered from the Recycling and Renewable Resources: A Review. Polymers (Basel) 2024; 16:1889. [PMID: 39000744 PMCID: PMC11244063 DOI: 10.3390/polym16131889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Polyurethane (PU) is among the most universal polymers and has been extensively applied in many fields, such as construction, machinery, furniture, clothing, textile, packaging and biomedicine. Traditionally, as the main starting materials for PU, polyols deeply depend on petroleum stock. From the perspective of recycling and environmental friendliness, advanced PU synthesis, using diversified resources as feedstocks, aims to develop versatile products with excellent properties to achieve the transformation from a fossil fuel-driven energy economy to renewable and sustainable ones. This review focuses on the recent development in the synthesis and modification of PU by extracting value-added monomers for polyols from waste polymers and natural bio-based polymers, such as the recycled waste polymers: polyethylene terephthalate (PET), PU and polycarbonate (PC); the biomaterials: vegetable oil, lignin, cashew nut shell liquid and plant straw; and biomacromolecules: polysaccharides and protein. To design these advanced polyurethane formulations, it is essential to understand the structure-property relationships of PU from recycling polyols. In a word, this bottom-up path provides a material recycling approach to PU design for printing and packaging, as well as biomedical, building and wearable electronics applications.
Collapse
Affiliation(s)
- Mengyuan Pu
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; (M.P.); (D.W.)
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Changqing Fang
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; (M.P.); (D.W.)
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Xing Zhou
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; (M.P.); (D.W.)
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Dong Wang
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China; (M.P.); (D.W.)
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Yangyang Lin
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Wanqing Lei
- School of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.L.); (W.L.)
| | - Lu Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
5
|
Ivdre A, Kirpluks M, Abolins A, Vevere L, Sture B, Paze A, Godina D, Rizikovs J, Cabulis U. Rigid Polyurethane Foams' Development and Optimization from Polyols Based on Depolymerized Suberin and Tall Oil Fatty Acids. Polymers (Basel) 2024; 16:942. [PMID: 38611200 PMCID: PMC11013755 DOI: 10.3390/polym16070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
The utilization of polyols derived from renewable sources presents an opportunity to enhance the sustainability of rigid polyurethane (PUR) foams, thereby contributing to the advancement of a circular bioeconomy. This study explores the development of PUR rigid foams exclusively using polyols sourced from second-generation renewable biomass feedstocks, specifically depolymerized birch bark suberin (suberinic acids) and tall oil fatty acids. The polyols achieved a total renewable material content as high as 74%, with a suberinic acid content of 37%. Response surface modeling was employed to determine the optimal bio-polyol, blowing agents, and catalyst content, hence, optimizing the bio-based foam formulations. In addition, response surface modeling was applied to rigid PUR foam formulations based on commercially available petroleum-based polyols for comparison. The results, including apparent density (~40-44 kg/m3), closed cell content (~95%), compression strength (>0.2 MPa, parallel to the foaming direction), and thermal conductivity (~0.019 W/(m·K)), demonstrated that the suberinic acids-based rigid PUR foam exhibited competitive qualities in comparison to petroleum-based polyols. Remarkably, the bio-based rigid PUR foams comprised up to 29% renewable materials. These findings highlight the potential of suberinic acid-tall oil polyols as effective candidates for developing rigid PUR foams, offering promising solutions for sustainable insulation applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ugis Cabulis
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006 Riga, Latvia; (A.I.); (M.K.); (A.A.); (L.V.); (B.S.); (A.P.); (D.G.); (J.R.)
| |
Collapse
|
6
|
Ebrahimnezhad-Khaljiri H, Ghadi A. Recent advancement in synthesizing bio-epoxy nanocomposites using lignin, plant oils, saccharides, polyphenols, and natural rubbers: A review. Int J Biol Macromol 2024; 256:128041. [PMID: 37979768 DOI: 10.1016/j.ijbiomac.2023.128041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/10/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Due to environmental issues, production costs, and the low recycling capability of conventional epoxy polymers and their composites, many science groups have tried to develop a new type of epoxy polymers, which are compatible with the environment. Considering the precursors, these polymers can be produced from plant oils, saccharides, lignin, polyphenol, and natural resins. The appearance of these bio-polymers caused to introduce a new type of composites, namely bio-epoxy nanocomposites, which can be classified according to the synthesized bio-epoxy, the used nanomaterials, or both. Hence, in this work, various bio-epoxy resins, which have the proper potential for application as a matrix, are completely introduced with the synthesis viewpoint, and their characterized chemical structures are drawn. In the next steps, the bio-epoxy nanocomposites are classified based on the used nanomaterials, which are carbon nanoparticles (carbon nanotubes, graphene nanoplatelets, graphene oxide, reduced graphene oxide, etc.), nano-silica (mesoporous and spherical), cellulose (nanofibers and whiskers), nanoclay and so on. Also, the features of these bio-nanocomposites and their applications are introduced. This review study can be a proper guide for developing a new type of green nanocomposites in the near future.
Collapse
Affiliation(s)
- Hossein Ebrahimnezhad-Khaljiri
- Department of Materials Science and Engineering, Faculty of Engineering, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran.
| | - Aliakbar Ghadi
- Department of Materials Science and Engineering, Faculty of Engineering, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran
| |
Collapse
|
7
|
Ivdre A, Abolins A, Volkovs N, Vevere L, Paze A, Makars R, Godina D, Rizikovs J. Rigid Polyurethane Foams as Thermal Insulation Material from Novel Suberinic Acid-Based Polyols. Polymers (Basel) 2023; 15:3124. [PMID: 37514513 PMCID: PMC10383278 DOI: 10.3390/polym15143124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Developing polyols from biomass sources contributes to a more circular economy by replacing petroleum-based polyols in the vast production of polyurethanes (PUR). One such potential biomass source could be leftover birch bark from which suberinic acids (SA) can be obtained. The purpose of this study was to identify the best synthesis routes for novel SA-based polyols, obtain rigid PUR foams, and evaluate their competitiveness and potential suitability as thermal insulation material. Novel polyols were synthesized from depolymerized SA by esterification with various functionality and molecular weight alcohols in several molar ratios. The moisture content, hydroxyl and acid values, and apparent viscosity were tested. Free-rise rigid PUR foams from the most suitable SA-based polyol and tall oil-based polyol were successfully prepared, reaching ~20 wt.% total renewable material content in the foam. The obtained rigid PUR foams' morphological, mechanical, and thermal properties were investigated and compared to present foam materials, including commercial foams. The apparent density (~33 kg/m3), as well as the closed cell content (~94%), compression strength (0.25 MPa, parallel to the foaming direction), and thermal conductivity (~0.019 W/(m·K)), approved the competitiveness and potential ability of SA-based rigid PUR foam production as thermal insulation material.
Collapse
Affiliation(s)
- Aiga Ivdre
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes St., LV-1006 Riga, Latvia
| | - Arnis Abolins
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes St., LV-1006 Riga, Latvia
| | | | - Laima Vevere
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes St., LV-1006 Riga, Latvia
| | - Aigars Paze
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes St., LV-1006 Riga, Latvia
| | | | - Daniela Godina
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes St., LV-1006 Riga, Latvia
| | - Janis Rizikovs
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes St., LV-1006 Riga, Latvia
| |
Collapse
|
8
|
Ye S, Zhai Z, Song Z, Shang S, Song B. Cellulose nanocrystals enhanced viscoelasticity and temperature-resistance of rosin-based wormlike micelles: Inducing the formation of hydrogels. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Mouren A, Avérous L. Sustainable cycloaliphatic polyurethanes: from synthesis to applications. Chem Soc Rev 2023; 52:277-317. [PMID: 36520183 DOI: 10.1039/d2cs00509c] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyurethanes (PUs) are a versatile and major polymer family, mainly produced via polyaddition between polyols and polyisocyanates. A large variety of fossil-based building blocks is commonly used to develop a wide range of macromolecular architectures with specific properties. Due to environmental concerns, legislation, rarefaction of some petrol fractions and price fluctuation, sustainable feedstocks are attracting significant attention, e.g., plastic waste and biobased resources from biomass. Consequently, various sustainable building blocks are available to develop new renewable macromolecular architectures such as aromatics, linear aliphatics and cycloaliphatics. Meanwhile, the relationship between the chemical structures of these building blocks and properties of the final PUs can be determined. For instance, aromatic building blocks are remarkable to endow materials with rigidity, hydrophobicity, fire resistance, chemical and thermal stability, whereas acyclic aliphatics endow them with oxidation and UV light resistance, flexibility and transparency. Cycloaliphatics are very interesting as they combine most of the advantages of linear aliphatic and aromatic compounds. This original and unique review presents a comprehensive overview of the synthesis of sustainable cycloaliphatic PUs using various renewable products such as biobased terpenes, carbohydrates, fatty acids and cholesterol and/or plastic waste. Herein, we summarize the chemical modification of the main sustainable cycloaliphatic feedstocks, synthesis of PUs using these building blocks and their corresponding properties and subsequently present their major applications in hot-topic fields, including building, transportation, packaging and biomedicine.
Collapse
Affiliation(s)
- Agathe Mouren
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| |
Collapse
|
10
|
Polaczek K, Kurańska M. Hemp Seed Oil and Oilseed Radish Oil as New Sources of Raw Materials for the Synthesis of Bio-Polyols for Open-Cell Polyurethane Foams. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8891. [PMID: 36556696 PMCID: PMC9785633 DOI: 10.3390/ma15248891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
We report on the development of open-cell polyurethane foams based on bio-polyols from vegetable oils: hemp seed oil, oilseed radish oil, rapeseed oil and used rapeseed cooking oil. The crude oils were pressed from seeds and subjected to an optimal solvent-free epoxidation process. Bio-polyols were obtained by a ring-opening reaction using diethylene glycol and tetrafluoroboric acid as catalysts. The resultant foams were analysed in terms of their apparent density, thermal conductivity coefficient, mechanical strength, closed cell content, short-term water absorption and water vapour permeability, while their morphology was examined using scanning electron microscopy. It was found that regardless of the properties of the oils, especially the content of unsaturated bonds, it was possible to obtain bio-polyols with very similar properties. The foams were characterized by apparent densities ranging from 11.2 to 12.1 kg/m3, thermal conductivity of <39 mW/m∙K, open cell contents of >97% and high water vapour permeability.
Collapse
|
11
|
He C, Guo Z, Deng Z, Li S, Zhang X. Enzyme-catalyzed preparation of polyol ester lubricants and performance research-based on pelargonic acid, oleic acid and trimethylolpropane. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Necolau MI, Damian CM, Olaret E, Iovu H, Balanuca B. Comparative Thermo-Mechanical Properties of Sustainable Epoxy Polymer Networks Derived from Linseed Oil. Polymers (Basel) 2022; 14:polym14194212. [PMID: 36236160 PMCID: PMC9570653 DOI: 10.3390/polym14194212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Considering its great industrial potential, epoxidized linseed oil (ELO) was crosslinked with different agents, both natural and synthetic: citric acid (CA, in the presence of water-W, or tetrahydrofuran-THF, as activator molecules) and Jeffamine D230, respectively, resulting bio-based polymeric matrices, studied further, comparatively, in terms of their properties, through different methods. Thermal curing parameters were established by means of Differential Scanning Calorimetry (DSC). Fourier transform Infrared Spectroscopy (FTIR) and DSC were used to identify the reactivity of each ELO-based formulation, discussing the influence of the employed curing systems under the conversion of the epoxy rings. Then, the obtained bio-based materials were characterized by different methods, establishing the structure-properties relation. Thermogravimetric analysis revealed higher thermal stability for the ELO_CA material when THF was used as an activator. Moreover, a higher glass transition temperature (Tg) with ~12 °C was registered for this material when compared with the one that resulted through the crosslinking of ELO with D230 conventional amine. Other important features, such as crosslink density, storage modulus, mechanical features, and water affinity, were discussed. Under the loop of a comprehensive approach, a set of remarkable properties were obtained for ELO_CA_THF material when compared with the one resulting from the crosslinking of ELO with the synthetic Jeffamine.
Collapse
Affiliation(s)
- Madalina Ioana Necolau
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Celina Maria Damian
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Elena Olaret
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| | - Brindusa Balanuca
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Department of Organic Chemistry “C. Nenitescu”, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Correspondence:
| |
Collapse
|
13
|
Pomilovskis R, Mierina I, Beneš H, Trhlíková O, Abolins A, Fridrihsone A, Kirpluks M. The Synthesis of Bio-Based Michael Donors from Tall Oil Fatty Acids for Polymer Development. Polymers (Basel) 2022; 14:polym14194107. [PMID: 36236055 PMCID: PMC9572469 DOI: 10.3390/polym14194107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, the synthesis of a Michael donor compound from cellulose production by-products—tall oil fatty acids—was developed. The developed Michael donor compounds can be further used to obtain polymeric materials after nucleophilic polymerization through the Michael reaction. It can be a promising alternative method for conventional polyurethane materials, and the Michael addition polymerization reaction takes place under milder conditions than non-isocyanate polyurethane production technology, which requires high pressure, high temperature and a long reaction time. Different polyols, the precursors for Michael donor components, were synthesized from epoxidized tall oil fatty acids by an oxirane ring-opening and esterification reaction with different alcohols (trimethylolpropane and 1,4-butanediol). The addition of functional groups necessary for the Michael reaction was carried out by a transesterification reaction of polyol hydroxyl groups with tert-butyl acetoacetate ester. The following properties of the developed polyols and their acetoacetates were analyzed: hydroxyl value, acid value, moisture content and viscosity. The chemical structure was analyzed using Fourier transform infrared spectroscopy, gel permeation chromatography, size-exclusion chromatography and nuclear magnetic resonance. Matrix-assisted laser desorption/ionization analysis was used for structure identification for this type of acetoacetate for the first time.
Collapse
Affiliation(s)
- Ralfs Pomilovskis
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena St. 3/7, LV-1048 Riga, Latvia
- Correspondence:
| | - Inese Mierina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena St. 3/7, LV-1048 Riga, Latvia
| | - Hynek Beneš
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Olga Trhlíková
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Arnis Abolins
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia
| | - Anda Fridrihsone
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia
| | - Mikelis Kirpluks
- Polymer Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes St. 27, LV-1006 Riga, Latvia
| |
Collapse
|
14
|
Sinha A, Banerjee S, Gangopadhyay J. An account of chronological computational investigations to ascertain the role of pπ-pπ bonding in influencing the Lewis acidity of BX3 (X = F, Cl, Br and I): Evolution of novel parameters and relegation of π-type back bonding concept. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Li Y, Chen X, Wang L, Wei X, Nong M, Nong W, Liang J. Measurement and Prediction of Isothermal Vapor-Liquid Equilibrium and Thermodynamic Properties of a Turpentine + Rosin System Using the COSMO-RS Model. ACS OMEGA 2022; 7:16270-16277. [PMID: 35601293 PMCID: PMC9118406 DOI: 10.1021/acsomega.1c05167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
The vapor-liquid equilibrium (VLE) of components of a turpentine + rosin system were measured at 313.2 and 333.2 K using headspace gas chromatography. The thermodynamic properties of the turpentine + rosin system such as activity coefficients, total pressure, partial pressure, excess Gibbs energies, and excess enthalpies were calculated using the COSMO-RS model. The results showed that the activity coefficients were greater than 1 for all components of turpentine except for longifolene, indicating a positive deviation from Raoult's law for all components of turpentine except for longifolene. The total pressures were about 1 kPa at 313.2 K and about 3 kPa at 333.2 K. Meanwhile, the excess Gibbs energies G E and excess enthalpies H E of the system were positive, indicating that the mixing of the components of turpentine and rosin was endothermic. Moreover, the hydrogen bonding interaction energy H E(hydrogen bonding) contributed the most for the excess enthalpies H E.
Collapse
Affiliation(s)
- Youqi Li
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaopeng Chen
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Linlin Wang
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaojie Wei
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Minting Nong
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Weijian Nong
- China
Academy of Science and Technology Development Guangxi Branch, Nanning 530022, China
- Guangxi
Sci-Tech Development Forest-like Technology Co. LTD, Nanning 530022, China
| | - Jiezhen Liang
- Guangxi
Key Laboratory of Petrochemical Resource Processing and Process Intensification
Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
16
|
Proximate composition and lipid nutritional indices of larvae and pupae of the edible Huhu beetle (Prionoplus reticularis) endemic to New Zealand. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Ma Y, Xiao Y, Zhao Y, Bei Y, Hu L, Zhou Y, Jia P. Biomass based polyols and biomass based polyurethane materials as a route towards sustainability. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zhai Z, Ye S, Song Z, Shang S, Song J. Novel Temperature-Responsive Rosin-Derived Supramolecular Hydrogels Constructed by New Semicircular Aggregates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2280-2289. [PMID: 35142497 DOI: 10.1021/acs.jafc.1c07397] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A highly water-soluble rosin-based surfactant (C14-MPA-Na) was synthesized. Novel temperature-responsive supramolecular hydrogels were further prepared using C14-MPA-Na. The microstructure and the mechanical properties of the hydrogels were investigated. Unexpectedly, instead of the long one-dimensional structure, a new kind of twisted semicircular aggregate was formed in the hydrogels, which was rarely reported. Besides, the hydrogels possessed excellent shear-recovery properties. Upon heating to 40 °C, the hydrogels transformed into viscoelastic solutions, which were constructed by worm-like micelles. By adjusting the temperature, the hydrogels and the viscoelastic solutions could be freely transformed. Nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy were used to further explore the possible self-assembly mechanism of C14-MPA-Na. The curved alkane chain which partially overlapped with rosin's rigid skeleton became stretched when heated to 40 °C. The introduction of the rosin rigid skeleton endowed the supramolecular hydrogels with a novel microstructure and contributed to the development of strategies for the utilization of forest resources.
Collapse
Affiliation(s)
- Zhaolan Zhai
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Shengfeng Ye
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Jie Song
- Department of Natural Sciences, University of Michigan-Flint, Flint, Michigan 48502, United States
| |
Collapse
|
19
|
Gao S, Ren F, Xie W, He L, Li H. Heterogeneous esterification of ricinoleic acid with polyol for the synthesis of polyol ricinoleates as biomass‐based lubricant base oil. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Song Gao
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin China
| | - Fang‐Yu Ren
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin China
| | - Wei‐Hang Xie
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin China
| | - Liang‐Nian He
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin China
| | - Hong‐Ru Li
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin China
- College of Pharmacy Nankai University Tianjin China
| |
Collapse
|
20
|
The Lord of the Chemical Rings: Catalytic Synthesis of Important Industrial Epoxide Compounds. Catalysts 2021. [DOI: 10.3390/catal11070765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epoxidized group, also known as the oxirane group, can be considered as one of the most crucial rings in chemistry. Due to the high ring strain and the polarization of the C–O bond in this three-membered ring, several reactions can be carried out. One can see such a functional group as a crucial intermediate in fuels, polymers, materials, fine chemistry, etc. Literature covering the topic of epoxidation, including the catalytic aspect, is vast. No review articles have been written on the catalytic synthesis of short size, intermediate and macro-molecules to the best of our knowledge. To fill this gap, this manuscript reviews the main catalytic findings for the production of ethylene and propylene oxides, epichlorohydrin and epoxidized vegetable oil. We have selected these three epoxidized molecules because they are the most studied and produced. The following catalytic systems will be considered: homogeneous, heterogeneous and enzymatic catalysis.
Collapse
|
21
|
Zhou X, Zhang X, Mengyuan P, He X, Zhang C. Bio-based polyurethane aqueous dispersions. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
With the advances of green chemistry and nanoscience, the synthesis of green, homogenous bio-based waterborne polyurethane (WPU) dispersions with high performance have gained great attention. The presented chapter deals with the recent synthesis of waterborne polyurethane with the biomass, especially the vegetable oils including castor oil, soybean oil, sunflower oil, linseed oil, jatropha oil, and palm oil, etc. Meanwhile, the other biomasses, such as cellulose, starch, lignin, chitosan, etc., have also been illustrated with the significant application in preparing polyurethane dispersions. The idea was to highlight the main vegetable oil-based polyols, and the isocyanate, diols as chain extenders, which have supplied a class of raw materials in WPU. The conversion of biomasses into active chemical agents, which can be used in synthesis of WPU, has been discussed in detail. The main mechanisms and methods are also presented. It is suggested that the epoxide ring opening method is still the main route to transform vegetable oils to polyols. Furthermore, the nonisocyanate WPU may be one of the main trends for development of WPU using biomasses, especially the abundant vegetable oils.
Collapse
Affiliation(s)
- Xing Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology , Xi’an University of Technology , Xi’an 710048 , P. R. China
- School of Materials Science and Engineering , Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xin Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology , Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Pu Mengyuan
- Faculty of Printing, Packaging Engineering and Digital Media Technology , Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Xinyu He
- Faculty of Printing, Packaging Engineering and Digital Media Technology , Xi’an University of Technology , Xi’an 710048 , P. R. China
| | - Chaoqun Zhang
- College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , P. R. China
| |
Collapse
|