1
|
Najafi Z, Altay F, Şahin-Yeşilçubuk N. In vitro transdermal release of crocin from electrospun saffron and its comparison with in vitro digestion. Food Res Int 2025; 199:115279. [PMID: 39658144 DOI: 10.1016/j.foodres.2024.115279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Saffron extract (SE) was electrospun into pullulan-pectin (Pl-Pc), pullulan-pea protein-pectin (Pl-Pp-Pc), or zein nanofibers (NFs) for transdermal food supplement. The in vitro transdermal permeation mechanism and kinetics of SE from NFs were studied and compared with those of in vitro digestion. The ATR-FTIR spectra of NFs provided information on the interactions between SE and wall biopolymers. The release of SE from NFs was investigated in stimulated gastrointestinal media (SGF and SIF) using a dialysis bag, and transdermal permeation studies were performed via a membrane in a Franz diffusion cell. The wettability and swelling ratio of the NFs were determined. The Pl-Pc-SE sample, which has the lowest contact angle and the highest swelling index, resulted in the highest release of SE during digestion. The Ritger-Peppas and Higuchi models best represented the experimental release data from digestion and transdermal permeation. The release profile of SE from zein NFs in SGF was described using a non-Fickian mechanism. In contrast, the release mechanism for Pl-based NFs in SGF and all NFs during both release experiments was Fickian-controlled diffusion transport. The results indicate that NFs can be successfully used for the controlled delivery of SE and have the potential for transdermal applications as a dietary supplement.
Collapse
Affiliation(s)
- Zahra Najafi
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey
| | - Filiz Altay
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey.
| | - Neşe Şahin-Yeşilçubuk
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey
| |
Collapse
|
2
|
Cho CJ, Chung PY, Tsai YW, Yang YT, Lin SY, Huang PS. Stretchable Sensors: Novel Human Motion Monitoring Wearables. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2375. [PMID: 37630960 PMCID: PMC10459719 DOI: 10.3390/nano13162375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
A human body monitoring system remains a significant focus, and to address the challenges in wearable sensors, a nanotechnology-enhanced strategy is proposed for designing stretchable metal-organic polymer nanocomposites. The nanocomposite comprises reduced graphene oxide (rGO) and in-situ generated silver nanoparticles (AgNPs) within elastic electrospun polystyrene-butadiene-polystyrene (SBS) fibers. The resulting Sandwich Structure Piezoresistive Woven Nanofabric (SSPWN) is a tactile-sensitive wearable sensor with remarkable performance. It exhibits a rapid response time (less than three milliseconds) and high reproducible stability over 5500 cycles. The nanocomposite also demonstrates exceptional thermal stability due to effective connections between rGO and AgNPs, making it suitable for wearable electronic applications. Furthermore, the SSPWN is successfully applied to human motion monitoring, including various areas of the hand and RGB sensing shoes for foot motion monitoring. This nanotechnology-enhanced strategy shows promising potential for intelligent healthcare, health monitoring, gait detection, and analysis, offering exciting prospects for future wearable electronic products.
Collapse
Affiliation(s)
- Chia-Jung Cho
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan (Y.-T.Y.); (S.-Y.L.)
| | | | | | | | | | | |
Collapse
|
3
|
Balachandran A, Siyumbwa SN, Froemming GRA, Beata MM, Małgorzata J, Lavilla CA, Billacura MP, Okechukwu PN. In Vitro Antioxidant and Fibroblast Migration Activities of Fractions Eluded from Dichloromethane Leaf Extract of Marantodes pumilum. Life (Basel) 2023; 13:1409. [PMID: 37374190 DOI: 10.3390/life13061409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/03/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
(1) The complexity of diabetes and diabetic wound healing remains a therapeutic challenge because proper and systematic wound care and management are essential to prevent chronic microbial infection and mechanical damage to the skin. Marantodes pumilum, locally known as 'Kacip Fatimah', is an herb that has been previously reported to possess anti-inflammatory, analgesic, antinociceptive and antipyretic properties. The current study aims to assess the antioxidant and fibroblast cell migration activities of the fractions eluded from the dichloromethane extract of M. pumilum leaves. (2) The total antioxidant capacity of M. pumilum was assessed using the total proanthocyanidins and phosphomolybdenum assays, while DPPH, nitric oxide, hydrogen peroxide and superoxide free radical scavenging assays were tested to determine the antioxidant potential of M. pumilum. An in vitro scratch wound assay was performed to measure the fibroblast cell migration rate using normal and insulin-resistant human dermal fibroblast cells. (3) All M. pumilum fractions exhibited good antioxidant and fibroblast cell migration activity, among which fractions A and E displayed the greatest effect. (4) M. pumilum's fibroblast migration activity could be attributed to its strong antioxidant properties along with its previously reported properties.
Collapse
Affiliation(s)
- Abbirami Balachandran
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Selangor, Malaysia
| | - Stepfanie N Siyumbwa
- Department of Pathology and Microbiology, School of Medicine, Lusaka P.O. Box 50110, Zambia
| | - Gabriele R A Froemming
- Basic Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan 94300, Sarawak, Malaysia
| | - Morak-Młodawska Beata
- Faculty of Pharmaceutical Sciences, Department of Organic Chemistry, Medical University of Sílesia, Jagiellonska, Str. 4, 41-200 Sosnowiec, Poland
| | - Jeleń Małgorzata
- Faculty of Pharmaceutical Sciences, Department of Organic Chemistry, Medical University of Sílesia, Jagiellonska, Str. 4, 41-200 Sosnowiec, Poland
| | - Charlie A Lavilla
- Chemistry Department, College of Science & Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Lanao del Norte, Philippines
| | - Merell P Billacura
- Department of Chemistry, College of Natural Sciences & Mathematics, Mindanao State University-Main Campus, Marawi City 9700, Lanao del Sur, Philippines
| | - Patrick N Okechukwu
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Selangor, Malaysia
| |
Collapse
|
4
|
Feng Z, Zhao W, Jin L, Zhang J, Xue B, Ni Y. Environmentally friendly strategy to access self-healable, reprocessable and recyclable chitin, chitosan, and sodium alginate based polysaccharide-vitrimer hybrid materials. Int J Biol Macromol 2023; 240:124531. [PMID: 37085067 DOI: 10.1016/j.ijbiomac.2023.124531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Abstract
Natural polysaccharides show enviable advantages for preparation of sustainable hybrid materials. However, in most cases, complex chemical modifications of natural polysaccharides are required, which not only causes changes of the inherent properties of polysaccharides, but also increases the manufacturing costs of the final materials. Therefore, it is highly desired to develop efficient and low-cost ways to access polysaccharides-containing hybrid materials. In this work, we report the environmentally friendly preparation of a new kind of polysaccharide-based materials, called polysaccharide-vitrimer hybrid materials, for the first time. The vitrimer synthesis and hybridization with polysaccharides can be achieved via a convenient one-pot method in absence of solvent and catalyst. In addition, time-consuming and labor-intensive physical/chemical modifications of natural polysaccharides are completely avoided. The resultant hybrid materials show good mechanical performance (tensile toughness is up to 13.7 MJ/m3), high thermal stability (Td,max is up to 457 °C), fast self-healing ability (self-healing efficiency is up to 99 % within 20s at 80 °C) and excellent reprocessability and recyclability (at least three cycles). Especially, conductive polysaccharide-vitrimer hybrid materials could be readily prepared from the resultant materials, exhibiting novel applications as flexible sensors and electromagnetic shielding materials (the EMI SE is up to 24.93 dB).
Collapse
Affiliation(s)
- Zihao Feng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Key Laboratory of Paper Based Functional Materials, China National Light Industry, Xi'an 710021, PR China; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an 710021, PR China
| | - Wei Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Key Laboratory of Paper Based Functional Materials, China National Light Industry, Xi'an 710021, PR China; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an 710021, PR China.
| | - Liuping Jin
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Key Laboratory of Paper Based Functional Materials, China National Light Industry, Xi'an 710021, PR China; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an 710021, PR China
| | - Jiarong Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Bailiang Xue
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Key Laboratory of Paper Based Functional Materials, China National Light Industry, Xi'an 710021, PR China; Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Xi'an 710021, PR China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, New Brunswick, Canada; Department of Chemical and biomedical Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
5
|
Koohzad F, Asoodeh A. Cross-Linked Electrospun pH-Sensitive Nanofibers Adsorbed with Temporin-Ra for Promoting Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15172-15184. [PMID: 36939098 DOI: 10.1021/acsami.2c23268] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bioresponsive nanodrug delivery systems have excellent potential in tissue engineering applications. Poly-anionic and poly-cationic biopolymers have provided a superior platform for designing pH-sensitive drug delivery systems. In this regard, hyaluronic acid-chitosan-polyvinyl alcohol complex nanofibers with high quality and reproducibility were produced by optimizing the solution preparation process. In addition, the synthesized composite nanofiber, with 66.82 kN/mm toughness, 200% swelling ratio, and 60% porosity, exhibited excellent properties to meet the requirements of the ideal wound dressing. Green cross-linking with citric acid prevented the destruction of the nanofiber even after prolonged immersion in biological solutions. ζ potential studies demonstrated that the synthesized nanofiber has a negative surface charge (∼-30) at physiological pH. The pKa of the temporin-Ra peptide is about 10, and as a result the peptide molecules have a net positive charge in physiological conditions. Therefore, peptide molecules immobilized on the synthesized scaffold based on surface adsorption. In vivo evaluation has proven that the wound bed has an alkaline environment, facilitating peptide release from the nanofiber scaffold. Electrospun nanofibers can imitate the architecture of the extracellular matrix for accelerating wound healing. In vitro investigation showed better adhesion, proliferation, migration, and fibroblast cell growth on peptide-loaded nanofiber samples than other groups. In vivo studies on full-thickness wounds in the mouse model indicated that the designed nanofiber was gradually absorbed without causing dryness or infection. On day 6, the peptide-loaded nanofiber revealed 60% wound closure compared to the control group (17%). In addition, based on histological studies, the composite nanofiber demonstrated excellent tissue repair ability, hence these active nanofiber mats can be a good alternative to existing wound dressings. Gene expression studies show that the antimicrobial peptide promotes the inflammatory phase of wound healing in a shorter time frame by accelerating the tumor necrosis factor-α cytokine response.
Collapse
Affiliation(s)
- Fatemeh Koohzad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| |
Collapse
|
6
|
Chang CJ, Chandrasekar J, Cho CJ, Venkatesan M, Huang PS, Yang CW, Wang HT, Wong CM, Kuo CC. Reinforcing a Thermoplastic Starch/Poly(butylene adipate-co-terephthalate) Composite Foam with Polyethylene Glycol under Supercritical Carbon Dioxide. Polymers (Basel) 2022; 15:polym15010129. [PMID: 36616479 PMCID: PMC9824321 DOI: 10.3390/polym15010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Biodegradable foams are a potential substitute for most fossil-fuel-derived polymer foams currently used in the cushion furniture-making industry. Thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (PBAT) are biodegradable polymers, although their poor compatibility does not support the foam-forming process. In this study, we investigated the effect of polyethylene glycol (PEG) with or without silane A (SA) on the foam density, cell structure and tensile properties of TPS/PBAT blends. The challenges in foam forming were explored through various temperature and pressure values under supercritical carbon dioxide (CO2) conditions. The obtained experimental results indicate that PEG and SA act as a plasticizer and compatibilizer, respectively. The 50% (TPS with SA + PEG)/50% PBAT blends generally produce foams that have a lower foam density and better cell structure than those of 50% (TPS with PEG)/50% PBAT blends. The tensile property of each 50% (TPS with SA + PEG)/50% PBAT foam is generally better than that of each 50% (TPS with PEG)/50% PBAT foam.
Collapse
Affiliation(s)
- Chih-Jen Chang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Jayashree Chandrasekar
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chia-Jung Cho
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
- Correspondence: (C.-J.C.); (C.-C.K.)
| | - Manikandan Venkatesan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Pin-Shu Huang
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - Ching-Wei Yang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hsin-Ta Wang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | | | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
- Correspondence: (C.-J.C.); (C.-C.K.)
| |
Collapse
|
7
|
Yang Y, Pan G, Li X, Xu W, Chen N, Xie Q. Preparation and properties of environmentally benign waterborne polyurethane composites from sodium-alginate-modified nano calcium carbonate. NANOTECHNOLOGY 2022; 34:095601. [PMID: 36541488 DOI: 10.1088/1361-6528/aca616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Well-dispersed inorganic nanoparticles in organic polymers are critical in the preparation of high-performance nanocomposites. This study prepared a series of waterborne polyurethane (WPU)/calcium carbonate nanocomposites using the solution blending method. Next, FT-IR, TG-DTG and XRD tests were carried out to confirm that the biopolymer sodium alginate (SA) was successfully encapsulated on the surface of the calcium carbonate nanoparticles, and that SA achieved satisfactory surface modification of the calcium carbonate nanoparticles. The Zeta and ultraviolet (UV) absorbance test results reveal that SA-modified nano calcium carbonate (MCC) had good dispersion stability in water. The effects of the MCC dosage on the composite mechanical properties, thermal stability, and cross-sectional morphology observed by scanning electron microscopy, and the water resistance of the nanocomposite were investigated. The results reveal that the incorporation of 3wt% of MCC in WPU had stable distribution, which led to a 54% increase in the tensile strength of the nanocomposite, while maintaining excellent elongation at break (2187%) and increasing the maximum decomposition temperature to 419.6 °C. Importantly, the improved water resistance facilitates the application of this environmentally benign composite material in humid environments.
Collapse
Affiliation(s)
- Yuhang Yang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Guanghua Pan
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Xing Li
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Wenqin Xu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Nanchun Chen
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - QingLin Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, People's Republic of China
| |
Collapse
|
8
|
Ju DB, Lee JC, Hwang SK, Cho CS, Kim HJ. Progress of Polysaccharide-Contained Polyurethanes for Biomedical Applications. Tissue Eng Regen Med 2022; 19:891-912. [PMID: 35819712 PMCID: PMC9478012 DOI: 10.1007/s13770-022-00464-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/10/2022] [Accepted: 05/01/2022] [Indexed: 11/26/2022] Open
Abstract
Polyurethane (PU) has been widely examined and used for biomedical applications, such as catheters, blood oxygenators, stents, cardiac valves, drug delivery carriers, dialysis devices, wound dressings, adhesives, pacemaker, tissue engineering, and coatings for breast implants due to its mechanical flexibility, high tear strength, biocompatibility, and tailorable foams although bio-acceptability, biodegradability and controlled drug delivery to achieve the desired properties should be considered. Especially, during the last decade, the development of bio-based PUs has raised public awareness because of the concern with global plastic waste for creating more environmentally friended materials. Therefore, it is desirable to discuss polysaccharide (PS)-contained PU for the wound dressing and bone tissue engineering among bio-based PUs because PS has several advantages, such as biocompatibility, reproducibility from the natural resources, degradability, ease of incorporation of bioactive agents, ease of availability and cost-effectiveness, and structural feature of chemical modification to meet the desired needs to overcome the disadvantages of PU itself by containing the PS into the PU.
Collapse
Affiliation(s)
- Do-Bin Ju
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08824, Korea
| | - Jeong-Cheol Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08824, Korea
| | - Soo-Kyung Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08824, Korea
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08824, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08824, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08824, Korea.
| | - Hyun-Joong Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08824, Korea.
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08824, Korea.
| |
Collapse
|
9
|
Liu S, Wu D, Hu J, Zhao L, Zhao L, Yang M, Feng Q. Electrospun flexible core-sheath PAN/PU/β-CD@Ag nanofiber membrane decorated with ZnO: enhance the practical ability of semiconductor photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39638-39648. [PMID: 35107732 DOI: 10.1007/s11356-022-18928-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
It is necessary to effectively separate photocatalytic materials from water bodies and reuse catalysts for industrial wastewater treatment. Herein, a novel nanofiber membrane with enhanced light absorption and reusability of photocatalytic materials was prepared. The three-dimensional porous structure of the nanofibers helps the photocatalyst efficiently degrade pollutants. Specifically, a high-efficiency photocatalyst carrier with a nanofiber structure (PAN/PU/β-CD@Ag nanofiber membrane) was prepared by electrospinning and a simple silver plating process, and then ZnO NPs were synthesized in situ on the nanofiber membrane during the hydrothermal process. Under visible-light irradiation, the ZnO-loaded PAN/PU/β-CD@Ag nanofiber membranes exhibited excellent photocatalytic performance for the degradation of methylene blue (MB, 71.5%) and tetracycline hydrochloride (TCH, 70.5%). Additionally, a possible pathway of charge migration in this system was proposed. This design may provide a new idea for the preparation of visible-light photocatalytic nanofiber membranes and their treatments of wastewater containing dyes and hormones.
Collapse
Affiliation(s)
- Suo Liu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Dingsheng Wu
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Lingling Zhao
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Lei Zhao
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Maohuan Yang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Quan Feng
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| |
Collapse
|
10
|
Thermoplastic Starch with Poly(butylene adipate- co-terephthalate) Blends Foamed by Supercritical Carbon Dioxide. Polymers (Basel) 2022; 14:polym14101952. [PMID: 35631835 PMCID: PMC9145724 DOI: 10.3390/polym14101952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/23/2023] Open
Abstract
Starch-based biodegradable foams with a high starch content are developed using industrial starch as the base material and supercritical CO2 as blowing or foaming agents. The superior cushioning properties of these foams can lead to competitiveness in the market. Despite this, a weak melting strength property of starch is not sufficient to hold the foaming agents within it. Due to the rapid diffusion of foaming gas into the environment, it is difficult for starch to maintain pore structure in starch foams. Therefore, producing starch foam by using supercritical CO2 foaming gas faces severe challenges. To overcome this, we have synthesized thermoplastic starch (TPS) by dispersing starch into water or glycerin. Consecutively, the TPS surface was modified by compatibilizer silane A (SA) to improve the dispersion with poly(butylene adipate-co-terephthalate) (PBAT) to become (TPS with SA)/PBAT composite foam. Furthermore, the foam-forming process was optimized by varying the ratios of TPS and PBAT under different forming temperatures of 85 °C to 105 °C, and two different pressures, 17 Mpa and 23 Mpa were studied in detail. The obtained results indicate that the SA surface modification on TPS can influence the great compatibility with PBAT blended foams (foam density: 0.16 g/cm3); whereas unmodified TPS and PBAT (foam density: 0.349 g/cm3) exhibit high foam density, rigid foam structure, and poor tensile properties. In addition, we have found that the 80% TPS/20% PBAT foam can be achieved with good flexible properties. Because of this flexibility, lightweight and environment-friendly nature, we have the opportunity to resolve the strong demands from the packing market.
Collapse
|
11
|
Effect of surfactants addition on physical, structure and antimicrobial activity of (Na-CMC/Na–Alg) biofilms. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Batool JA, Rehman K, Qader A, Akash MSH. Biomedical applications of carbohydrate-based polyurethane: From biosynthesis to degradation. Curr Pharm Des 2022; 28:1669-1687. [PMID: 35040410 DOI: 10.2174/1573412918666220118113546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
The foremost common natural polymers are carbohydrate-based polymers or polysaccharides, having a long chain of monosaccharide or disaccharide units linked together via a glycosidic linkage to form a complex structure. There are several uses of carbohydrate-based polymers in biomedical sector due to its attractive features including less toxicity, biocompatibility, biodegradability, high reactivity, availability, and relatively inexpensive. The aim of our study was to explore the synthetic approaches for the preparation of numerous carbohydrate-based polyurethanes (PUs) and their wide range of pharmaceutical and biomedical applications. The data summarized in this study shows that the addition of carbohydrates in the structural skeleton of PUs not only improve their suitability but also effect the applicability for employing them in biological applications. Carbohydrate-based units are incorporated into the PUs, which is the most convenient method for the synthesis of novel biocompatible and biodegradable carbohydrate-based PUs to use in various biomedical applications.
Collapse
Affiliation(s)
- Jahan Ara Batool
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Qader
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
13
|
Veeramuthu L, Venkatesan M, Benas JS, Cho CJ, Lee CC, Lieu FK, Lin JH, Lee RH, Kuo CC. Recent Progress in Conducting Polymer Composite/Nanofiber-Based Strain and Pressure Sensors. Polymers (Basel) 2021; 13:4281. [PMID: 34960831 PMCID: PMC8705576 DOI: 10.3390/polym13244281] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
The Conducting of polymers belongs to the class of polymers exhibiting excellence in electrical performances because of their intrinsic delocalized π- electrons and their tunability ranges from semi-conductive to metallic conductive regime. Conducting polymers and their composites serve greater functionality in the application of strain and pressure sensors, especially in yielding a better figure of merits, such as improved sensitivity, sensing range, durability, and mechanical robustness. The electrospinning process allows the formation of micro to nano-dimensional fibers with solution-processing attributes and offers an exciting aspect ratio by forming ultra-long fibrous structures. This review comprehensively covers the fundamentals of conducting polymers, sensor fabrication, working modes, and recent trends in achieving the sensitivity, wide-sensing range, reduced hysteresis, and durability of thin film, porous, and nanofibrous sensors. Furthermore, nanofiber and textile-based sensory device importance and its growth towards futuristic wearable electronics in a technological era was systematically reviewed to overcome the existing challenges.
Collapse
Affiliation(s)
- Loganathan Veeramuthu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Manikandan Venkatesan
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Jean-Sebastien Benas
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Chia-Jung Cho
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| | - Chia-Chin Lee
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
| | - Fu-Kong Lieu
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
- Department of Physical Medicine and Rehabilitation, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ja-Hon Lin
- Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan; (L.V.); (M.V.); (J.-S.B.)
| |
Collapse
|
14
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
15
|
Preparation and Properties of Self-Healing Waterborne Polyurethane Based on Dynamic Disulfide Bond. Polymers (Basel) 2021; 13:polym13172936. [PMID: 34502976 PMCID: PMC8434390 DOI: 10.3390/polym13172936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
A self-healing waterborne polyurethane (WPU) materials containing dynamic disulfide (SS) bond was prepared by introducing SS bond into polymer materials. The zeta potential revealed that all the synthesized WPU emulsions displayed excellent stability, and the particle size of them was about 100 nm. The characteristic peaks of N-H and S-S in urethane were verified by FTIR, and the chemical environment of all elements were confirmed by the XPS test. Furthermore, the tensile strength, self-healing process and self-healing efficiency of the materials were quantitatively evaluated by tensile measurements. The results showed that the self-healing efficiency could reach 96.14% when the sample was heat treated at 70 °C for 4 h. In addition, the material also showed a good reprocessing performance, and the tensile strength of the reprocessed film was 3.39 MPa.
Collapse
|
16
|
Lu WC, Chen CY, Cho CJ, Venkatesan M, Chiang WH, Yu YY, Lee CH, Lee RH, Rwei SP, Kuo CC. Antibacterial Activity and Protection Efficiency of Polyvinyl Butyral Nanofibrous Membrane Containing Thymol Prepared through Vertical Electrospinning. Polymers (Basel) 2021; 13:1122. [PMID: 33916011 PMCID: PMC8036783 DOI: 10.3390/polym13071122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Human safety, health management, and disease transmission prevention have become crucial tasks in the present COVID-19 pandemic situation. Masks are widely available and create a safer and disease transmission-free environment. This study presents a facile method of fabricating masks through electrospinning nontoxic polyvinyl butyral (PVB) polymeric matrix with the antibacterial component Thymol, a natural phenol monoterpene. Based on the results of Japanese Industrial Standards and American Association of Textile Chemists and Colorists methods, the maximum antibacterial value of the mask against Gram-positive and Gram-negative bacteria was 5.6 and 6.4, respectively. Moreover, vertical electrospinning was performed to prepare Thymol/PVB nanofiber masks, and the effects of parameters on the submicron particulate filtration efficiency (PFE), differential pressure, and bacterial filtration efficiency (BFE) were determined. Thorough optimization of the small-diameter nanofiber-based antibacterial mask led to denser accumulation and improved PFE and pressure difference; the mask was thus noted to meet the present pandemic requirements. The as-developed nanofibrous masks have the antibacterial activity suggested by the National Standard of the Republic of China (CNS 14774) for general medical masks. Their BFE reaches 99.4%, with a pressure difference of <5 mmH2O/cm2. The mask can safeguard human health and promote a healthy environment.
Collapse
Affiliation(s)
- Wen-Chi Lu
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (C.-Y.C.); (M.V.); (S.-P.R.)
- Department of Applied Cosmetology, Lee-Ming Institute of Technology, New Taipei City 243083, Taiwan
| | - Ching-Yi Chen
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (C.-Y.C.); (M.V.); (S.-P.R.)
| | - Chia-Jung Cho
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (C.-Y.C.); (M.V.); (S.-P.R.)
| | - Manikandan Venkatesan
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (C.-Y.C.); (M.V.); (S.-P.R.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Yang-Yen Yu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan;
| | - Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Tao-Yuan 333, Taiwan
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Syang-Peng Rwei
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (C.-Y.C.); (M.V.); (S.-P.R.)
| | - Chi-Ching Kuo
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (C.-Y.C.); (M.V.); (S.-P.R.)
| |
Collapse
|