1
|
Liang D, Zeng G, Lei X, Sun D. Advancements and Challenges in Nanoscale Zero-Valent Iron-Activated Persulfate Technology for the Removal of Endocrine-Disrupting Chemicals. TOXICS 2024; 12:814. [PMID: 39590993 PMCID: PMC11598129 DOI: 10.3390/toxics12110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
Endocrine-disrupting chemicals are a new class of pollutants that can affect hormonal metabolic processes in animals and humans. They can enter the aquatic environment through various pathways and gradually become enriched, thus posing a serious threat to the endocrine and physiological systems of both animals and humans. Nano zero-valent iron has promising applications in endocrine disruptor removal due to its excellent reducing properties and high specific surface area. However, given the dispersed focus and fragmented results of current studies, a comprehensive review is still lacking. In this paper, it was analyzed that the types of endocrine disruptors and their emission pathways reveal the sources of these compounds. Then, the main technologies currently used for endocrine disruptor treatment are introduced, covering physical, chemical, and biological treatment methods, with a special focus on persulfate oxidation among advanced oxidation technologies. Also, the paper summarizes the various activation methods of persulfate oxidation technology and proposes the nZVI-activated persulfate technology as the most promising means of treatment. In addition, this paper reviews the research progress of different modification methods of nZVI in activating persulfate for the removal of EDCs. Finally, the discussion includes recycling studies of nZVI/PS technology and emphasizes the urgency and importance of endocrine disruptor treatment. The review of this paper provides further scientific basis and technical support for nZVI/PS technology in the field of endocrine disruptor management.
Collapse
Affiliation(s)
- Dong Liang
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Guoming Zeng
- Chongqing Academy of Science and Technology, Chongqing 401123, China
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xiaoling Lei
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
2
|
Katibi KK, Shitu IG, Yunos KFM, Azis RS, Iwar RT, Adamu SB, Umar AM, Adebayo KR. Unlocking the potential of magnetic biochar in wastewater purification: a review on the removal of bisphenol A from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:492. [PMID: 38691228 DOI: 10.1007/s10661-024-12574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024]
Abstract
Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete, Ilorin, 23431, Nigeria.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Ibrahim Garba Shitu
- Department of Physics, Faculty of Natural and Applied Sciences, Sule Lamido University, Kafin Hausa, Jigawa, Nigeria
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Khairul Faezah Md Yunos
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rabaah Syahidah Azis
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Raphael Terungwa Iwar
- Department of Agricultural and Environmental Engineering, College of Engineering, Joseph Sarwuan Tarka University, Makurdi, Nigeria
| | - Suleiman Bashir Adamu
- Department of Physics, Faculty of Natural and Applied Sciences, Sule Lamido University, Kafin Hausa, Jigawa, Nigeria
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abba Mohammed Umar
- Department of Agricultural and Bioenvironmental Engineering, Federal Polytechnic Mubi, Mubi, 650221, Nigeria
| | - Kehinde Raheef Adebayo
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete, Ilorin, 23431, Nigeria
| |
Collapse
|
3
|
Narindri Rara Winayu B, Chu FJ, Sutopo CCY, Chu H. Bioprospecting photosynthetic microorganisms for the removal of endocrine disruptor compounds. World J Microbiol Biotechnol 2024; 40:120. [PMID: 38433170 DOI: 10.1007/s11274-024-03910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Endocrine disruption compounds can be found in various daily products, like pesticides, along with cosmetic and pharmaceutical commodities. Moreover, occurrence of EDCs in the wastewater alarms the urgency for their removal before discharge owing to the harmful effect for the environment and human health. Compared to implementation of physical and chemical strategies, cultivation of photosynthetic microorganisms has been acknowledged for their high efficiency and eco-friendly process in EDCs removal along with accumulation of valuable byproducts. During the process, photosynthetic microorganisms remove EDCs via photodegradation, bio-adsorption, -accumulation, and -degradation. Regarding their high tolerance in extreme environment, photosynthetic microorganisms have high feasibility for implementation in wastewater treatment plant. However, several considerations are critical for their scaling up process. This review discussed the potency of EDCs removal by photosynthetic microorganisms and focused on the efficiency, mechanism, challenge, along with the prospect. Details on the mechanism's pathway, accumulation of valuable byproducts, and recent progress in scaling up and application in real wastewater were also projected in this review.
Collapse
Affiliation(s)
| | - Feng-Jen Chu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, Anhui, China
| | - Christoper Caesar Yudho Sutopo
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
4
|
Gopalakrishnan A, Janardhanan DV, Sasi S, Aravindakumar CT, Aravind UK. Organic micropollutant removal and phosphate recovery by polyelectrolyte multilayer membranes: Impact of buildup interactions. CHEMOSPHERE 2024; 350:141078. [PMID: 38160944 DOI: 10.1016/j.chemosphere.2023.141078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/02/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Polyelectrolyte multilayer (PEM) deposition conditions can favorably or adversely affect the membrane filtration performance of various pollutants. Although pH and ionic strength have been proven to alter the characteristics of PEM, their role in determining the buildup interactions that control filtration efficacy has not yet been conclusively proved. A PEM constructed using electrostatic or non-electrostatic interactions from controlled deposition of a weak polyelectrolyte could retain both charged and uncharged pollutants from water. The fundamental relationship between polyelectrolyte charge density, PEM buildup interaction, and filtration performance was explored using a weak-strong electrolyte pair consisting of branching poly (ethyleneimine) and poly (styrene sulfonate) (PSS) across pH ranges of 4-10 and NaCl concentrations of 0 M-0.5 M. PEI/PSS multilayers at acidic pH were dominated by electrostatic interactions, which favored the selective removal of a charged solute, phosphate over chloride, while at alkaline pH, non-electrostatic interactions dominated, which favored the removal of oxybenzone (OXY), a neutral hydrophobic solute. The key factor determining these interactions was the charge density of PEI, which is controlled by pH and ionic strength of the deposition solutions. These findings indicate that the control of buildup interactions can largely influence the physico-chemical and transport characteristics of PEM membranes.
Collapse
Affiliation(s)
- Akhil Gopalakrishnan
- Advanced Centre of Environment Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, India
| | - Disha V Janardhanan
- Advanced Centre of Environment Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, India
| | - Subha Sasi
- Advanced Centre of Environment Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, India; Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, India
| | - Usha K Aravind
- Advanced Centre of Environment Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, India; School of Environmental Studies, Cochin University of Science and Technology, Kochi-682022, Kerala, India.
| |
Collapse
|
5
|
Kundu D, Dutta D, Joseph A, Jana A, Samanta P, Bhakta JN, Alreshidi MA. Safeguarding drinking water: A brief insight on characteristics, treatments and risk assessment of contamination. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:180. [PMID: 38244090 DOI: 10.1007/s10661-024-12311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Water pollution stands as a critical worldwide concern, bearing extensive repercussions that extend to human health and the natural ecosystem. The sources of water pollution can be diverse, arising from natural processes and human activities and the pollutants may range from chemical and biological agents to physical and radiological contaminants. The contamination of water disrupts the natural functioning of the system, leading to both immediate and prolonged health problems. Various technologies and procedures, ranging from conventional to advanced, have been developed to eliminate water impurities, with the choice depending on the type and level of contamination. Assessing risks is a crucial element in guaranteeing the safety of drinking water. Till now, research is continuing the removal of contaminates for the sake of supplying safe drinking water. The study examined physical, inorganic, organic, biological and radiological contaminants in drinking water. It looked at where these contaminants come from, their characteristics, the impact they have and successful methods used in real-world situations to clean the contaminated water. Risk assessment methodologies associated with the use of unsafe drinking water as future directives are also taken into consideration in the present study for the benefit of public concern. The manuscript introduces a comprehensive study on water pollution, focusing on assessing and mitigating risks associated with physical, inorganic, organic, biological and radiological contaminants in drinking water, with a novel emphasis on future directives and sustainable solutions for public safety.
Collapse
Affiliation(s)
- Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India.
| | - Deblina Dutta
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India.
| | - Anuja Joseph
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Ankan Jana
- Malaviya National Institute of Technology, Jaipur, Rajasthan, 302 017, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, Jalpaiguri, 735 210, India
| | - Jatindra Nath Bhakta
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal, 741 235, India
| | | |
Collapse
|
6
|
Katibi KK, Mohd Nor MZ, Yunos KFM, Jaafar J, Show PL. Strategies to Enhance the Membrane-Based Processing Performance for Fruit Juice Production: A Review. MEMBRANES 2023; 13:679. [PMID: 37505045 PMCID: PMC10383906 DOI: 10.3390/membranes13070679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Fruit juice is an essential food product that has received significant acceptance among consumers. Harmonized concentration, preservation of nutritional constituents, and heat-responsive sensorial of fruit juices are demanding topics in food processing. Membrane separation is a promising technology to concentrate juice at minimal pressure and temperatures with excellent potential application in food industries from an economical, stable, and standard operation view. Microfiltration (MF) and ultrafiltration (UF) have also interested fruit industries owing to the increasing demand for reduced pressure-driven membranes. UF and MF membranes are widely applied in concentrating, clarifying, and purifying various edible products. However, the rising challenge in membrane technology is the fouling propensity which undermines the membrane's performance and lifespan. This review succinctly provides a clear and innovative view of the various controlling factors that could undermine the membrane performance during fruit juice clarification and concentration regarding its selectivity and permeance. In this article, various strategies for mitigating fouling anomalies during fruit juice processing using membranes, along with research opportunities, have been discussed. This concise review is anticipated to inspire a new research platform for developing an integrated approach for the next-generation membrane processes for efficient fruit juice clarification.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria
| | - Mohd Zuhair Mohd Nor
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, UPM, Serdang 43400, Selangor, Malaysia
| | - Khairul Faezah Md. Yunos
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Juhana Jaafar
- N29a, Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM Skudai, Johor Bahru 81310, Johor, Malaysia;
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| |
Collapse
|
7
|
Khairul Hasni NA, Anual ZF, Rashid SA, Syed Abu Thahir S, Veloo Y, Fang KS, Mazeli MI. Occurrence of endocrine disruptors in Malaysia's water systems: A scoping review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121095. [PMID: 36682614 DOI: 10.1016/j.envpol.2023.121095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Contamination of water systems with endocrine disrupting chemicals (EDCs) is becoming a major public health concern due to their toxicity and ubiquity. The intrusion of EDCs into water sources and drinking water has been associated with various adverse health effects on humans. However, there is no comprehensive overview of the occurrence of EDCs in Malaysia's water systems. This report aims to describe the occurrence of EDCs and their locations. Literature search was conducted electronically in two databases (PubMed and Scopus). A total of 41 peer-reviewed articles published between January 2000 and May 2021 were selected. Most of the articles dealt with pharmaceuticals (16), followed by pesticides (7), hormones (7), mixed compounds (7), and plasticisers (4). Most studies (40/41) were conducted in Peninsular Malaysia, with 60.9% in the central region and almost half (48.8%) in the Selangor State. Only one study was conducted in the northern region and East Malaysia. The Langat River, the Klang River, and the Selangor River were among the most frequently studied EDC-contaminated surface waters, while the Pahang River and the Skudai River had the highest concentrations of some of the listed compounds. Most of the risk assessments resulted in a hazard quotient (HQ) and a risk quotient (RQ) < 1, indicating negligible health risk, except for ciprofloxacin and dexamethasone, which had a potential human health risk (HQHH) > 1 in the Selangor River. An RQ > 1 for combined pharmaceuticals was found in Putrajaya tap water. Overall, this work provides a comprehensive overview of the occurrence of EDCs in Malaysia's water systems. The findings from this review can be used to mitigate risks and strengthen legislation and policies for safer drinking water.
Collapse
Affiliation(s)
- Nurul Amalina Khairul Hasni
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia.
| | - Zurahanim Fasha Anual
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Siti Aishah Rashid
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Syahidiah Syed Abu Thahir
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Yuvaneswary Veloo
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Khor Sok Fang
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Mohamad Iqbal Mazeli
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| |
Collapse
|
8
|
Georgin J, Franco DSP, Netto MS, Manzar MS, Zubair M, Meili L, Piccilli DGA, Silva LFO. Adsorption of the First-Line Covid Treatment Analgesic onto Activated Carbon from Residual Pods of Erythrina Speciosa. ENVIRONMENTAL MANAGEMENT 2023; 71:795-808. [PMID: 36087146 PMCID: PMC9463666 DOI: 10.1007/s00267-022-01716-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
In this study, the residual pods of the forest species Erythrina speciosa were carbonized with ZnCl2 to obtain porous activated carbon and investigated for the adsorptive removal of the drug paracetamol (PCM) from water. The PCM adsorption onto activated carbon is favored at acidic solution pH. The isothermal studies confirmed that increasing the temperature from 298 to 328 K decreased the adsorption capacity from 65 mg g-1 to 50.4 mg g-1 (C0 = 175 mg L-1). The Freundlich model showed a better fit of the equilibrium isotherms. Thermodynamic studies confirmed the exothermic nature (ΔH0 = -39.1066 kJ mol-1). Kinetic data indicates that the external mass transfer occurs in the first minutes followed by the surface diffusion, considering that the linear driving force model described the experimental data. The application of the material in the treatment of a simulated effluent with natural conditions was promising, presenting a removal of 76.45%. Therefore, it can be concluded that the application of residual pods of the forest species Erythrina speciosa carbonized with ZnCl2 is highly efficient in the removal of the drug paracetamol and also in mixtures containing other pharmaceutical substances.
Collapse
Affiliation(s)
- Jordana Georgin
- Department of Civil and Environmental Engineering, Federal University of Santa Maria, UFSM, Santa Maria, Brasil
| | - Dison S P Franco
- Department of Civil and Environmental Engineering, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Matias S Netto
- Department Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria, Brazil
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31451, Saudi Arabia
| | - Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31451, Saudi Arabia
| | - Lucas Meili
- Laboratory of Process, Center of Technology, Federal University of Alagoas, Maceió, AL, Brazil.
| | - Daniel G A Piccilli
- Department of Civil and Environmental Engineering, Federal University of Santa Maria, UFSM, Santa Maria, Brasil
| | - Luis F O Silva
- Department of Civil and Environmental Engineering, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| |
Collapse
|
9
|
Ag2CO3-Based Photocatalyst with Enhanced Photocatalytic Activity for Endocrine-Disrupting Chemicals Degradation: A Review. Catalysts 2023. [DOI: 10.3390/catal13030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) in the aquatic environment have garnered a lot of attention during the past few years. Due to their toxic behavior, which interferes with endocrine functions in both humans and aquatic species, these types of compounds have been recognized as major polluting agents in wastewater effluents. Therefore, the development of efficient and sustainable removal methods for these emerging contaminants is essential. Photocatalytic removal of emerging contaminants using silver carbonate (Ag2CO3)-based photocatalyst is a promising process due to the unique characteristics of this catalyst, such as absorption of a larger fraction of the solar spectrum, wide band gap, non-toxicity, and low cost. The photocatalytic performance of Ag2CO3 has recently been improved through the doping of elements and optimization variation of operational parameters resulting in decreasing the rate of electron–hole pair recombination and an increase in the semiconductor’s excitation state efficiency, which enables the degradation of contaminants under UV or visible light exposure. This review summarized some of the relevant investigations related to Ag2CO3-based photocatalytic materials for EDC removal from water. The inclusion of Ag2CO3-based photocatalytic materials in the water recovery procedure suggests that the creation of a cutting-edge protocol is essential for successfully eliminating EDCs from the ecosystem.
Collapse
|
10
|
Samavati Z, Samavati A, Goh PS, Ismail AF, Abdullah MS. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
11
|
Antony S, Antony S, Rebello S, George S, Biju DT, R R, Madhavan A, Binod P, Pandey A, Sindhu R, Awasthi MK. Bioremediation of Endocrine Disrupting Chemicals- Advancements and Challenges. ENVIRONMENTAL RESEARCH 2022; 213:113509. [PMID: 35660566 DOI: 10.1016/j.envres.2022.113509] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Endocrine Disrupting Chemicals (EDCs), major group of recalcitrant compounds, poses a serious threat to the health and future of millions of human beings, and other flora and fauna for years to come. A close analysis of various xenobiotics undermines the fact that EDC is structurally diverse chemical compounds generated as a part of anthropogenic advancements as well as part of their degradation. Regardless of such structural diversity, EDC is common in their ultimate drastic effect of impeding the proper functioning of the endocrinal system, basic physiologic systems, resulting in deregulated growth, malformations, and cancerous outcomes in animals as well as humans. The current review outlines an overview of various EDCs, their toxic effects on the ecosystem and its inhabitants. Conventional remediation methods such as physico-chemical methods and enzymatic approaches have been put into action as some form of mitigation measures. However, the last decade has seen the hunt for newer technologies and methodologies at an accelerated pace. Genetically engineered microbial degradation, gene editing strategies, metabolic and protein engineering, and in-silico predictive approaches - modern day's additions to our armamentarium in combating the EDCs are addressed. These additions have greater acceptance socially with lesser dissonance owing to reduced toxic by-products, lower health trepidations, better degradation, and ultimately the prevention of bioaccumulation. The positive impact of such new approaches on controlling the menace of EDCs has been outlaid. This review will shed light on sources of EDCs, their impact, significance, and the different remediation and bioremediation approaches, with a special emphasis on the recent trends and perspectives in using sustainable approaches for bioremediation of EDCs. Strict regulations to prevent the release of estrogenic chemicals to the ecosystem, adoption of combinatorial methods to remove EDC and prevalent use of bioremediation techniques should be followed in all future endeavors to combat EDC pollution. Moreover, the proper development, growth and functioning of future living forms relies on their non-exposure to EDCs, thus remediation of such chemicals present even in nano-concentrations should be addressed gravely.
Collapse
Affiliation(s)
- Sherly Antony
- Department of Microbiology, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, 689 101, Kerala, India
| | - Sham Antony
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla, 689 101, Kerala, India
| | - Sharrel Rebello
- School of Food Science & Technology, Mahatma Gandhi University, Kottayam, India
| | - Sandhra George
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla, 689 101, Kerala, India
| | - Devika T Biju
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla, 689 101, Kerala, India
| | - Reshmy R
- Department of Science and Humanities, Providence College of Engineering, Chengannur, 689 122, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum, 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, Kerala, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691 505, Kerala, India.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
12
|
Khoo YS, Goh PS, Lau WJ, Ismail AF, Abdullah MS, Mohd Ghazali NH, Yahaya NKEM, Hashim N, Othman AR, Mohammed A, Kerisnan NDA, Mohamed Yusoff MA, Fazlin Hashim NH, Karim J, Abdullah NS. Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: A review. CHEMOSPHERE 2022; 305:135151. [PMID: 35654232 DOI: 10.1016/j.chemosphere.2022.135151] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Hazardous micropollutants (MPs) such as pharmaceutically active compounds (PhACs), pesticides and personal care products (PCPs) have emerged as a critical concern nowadays for acquiring clean and safe water resources. In the last few decades, innumerable water treatment methods involving biodegradation, adsorption and advanced oxidation process have been utilized for the removal of MPs. Of these methods, membrane technology has proven to be a promising technique for the removal of MPs due to its sustainability, high efficiency and cost-effectiveness. Herein, the aim of this article is to provide a comprehensive review regarding the MPs rejection mechanisms of reverse osmosis (RO) and nanofiltration (NF) membranes after incorporation of nanomaterials and also surface modification atop the PA layer. Size exclusion, adsorption and electrostatic charge interaction mechanisms play important roles in governing the MP removal rate. In addition, this review also discusses the state-of-the-art research on the surface modification of thin film composite (TFC) membrane and nanomaterials-incorporated thin film nanocomposite (TFN) membrane in enhancing MPs removal performance. It is hoped that this review can provide insights in modifying the physicochemical properties of NF and RO membranes to achieve better performance in water treatment process, particularly for the removal of emerging hazardous substances.
Collapse
Affiliation(s)
- Ying Siew Khoo
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nor Hisham Mohd Ghazali
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nasehir Khan E M Yahaya
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Norbaya Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Ahmad Rozian Othman
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Alias Mohammed
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Nirmala Devi A/P Kerisnan
- Sewerage Service Department (JPP), Block B, Level 2 & 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory, Putrajaya, Malaysia
| | - Muhammad Azroie Mohamed Yusoff
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Noor Haza Fazlin Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Jamilah Karim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nor Salmi Abdullah
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, Rizab Melayu Sungai Kuyoh, 43300, Seri Kembangan, Selangor, Malaysia
| |
Collapse
|
13
|
Caglak A, Chormey DS, Bakirdere S, Onkal Engin G. Performance evaluation of ceramic membrane bioreactor: effect of operational parameters on micropollutant removal and membrane fouling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68306-68319. [PMID: 35538336 DOI: 10.1007/s11356-022-20612-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
This paper presents the removal of nine potential endocrine disruptors including pesticides, pharmaceuticals and industrial chemicals using a submerged membrane bioreactor (MBR) system. Two lab-scale submerged MBRs having ceramic membranes were operated at three different sludge retention times (SRT: 15, 45, 90 days) and two hydraulic retention times (HRT: 12, 6 h) and the effects of SRT and HRT on both micropollutant removal and membrane fouling were investigated. While the effect of SRT and HRT change was observed on the removal of atrazine, fluoxetine, penconazole, no significant change was detected for the other micropollutants studied. It was determined that physicochemical properties such as distribution coefficient (LogD) and hydrophobicity of micropollutants are also effective on the removal efficiency of micropollutants. High removal efficiencies ([Formula: see text] 97.5%) were observed for hydrophobic pollutants (logD > 3.2) except for penconazole (72.1%) and for hydrophilic pollutants (logD < 3.2) except for atrazine (42.5%). Membrane fouling was significantly affected by different operational parameters applied, with the slowest fouling occurring at 45 days of SRT and 12 h of HRT. However, micropollutant addition did not have a significant effect on membrane fouling. It has been shown that the simultaneous and effective treatment performance for micropollutants makes the membrane bioreactor system a promising wastewater treatment process.
Collapse
Affiliation(s)
- Abdulkadir Caglak
- Environmental Engineering Department, Civil Engineering Faculty, Yildiz Technical University, 34220, Istanbul, Turkey
| | | | - Sezgin Bakirdere
- Department of Chemistry, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Guleda Onkal Engin
- Environmental Engineering Department, Civil Engineering Faculty, Yildiz Technical University, 34220, Istanbul, Turkey.
| |
Collapse
|
14
|
Bilal M, Rizwan K, Adeel M, Barceló D, Awad YA, Iqbal HMN. Robust strategies to eliminate endocrine disruptive estrogens in water resources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119373. [PMID: 35500715 DOI: 10.1016/j.envpol.2022.119373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023]
Abstract
The widespread occurrence and ubiquitous distribution of estrogens, i.e., estrone (E1), estradiol (E2), and estriol (E3) in our water matrices, is an issue of global concern. Public and regulatory authorities are concerned and placing joint efforts to eliminate estrogens and related environmentally hazardous compounds, due to their toxic influences on the environmental matrices, ecology, and human health, even at low concentrations. However, most of the available literature is focused on the occurrence of estrogens in different water environments with limited treatment options. Thus, a detailed review to fully cover the several treatment processes is needed. This review comprehensively and comparatively discusses many physical, chemical, and biological-based treatments to eliminate natural estrogens, i.e., estrone (E1), estradiol (E2), and estriol (E3) and related synthetic estrogens, e.g., 17α-ethinylestradiol (EE2) and other related hazardous compounds. The covered techniques include adsorption, nanofiltration, ultrafiltration, ultrasonication, photocatalysis of estrogenic compounds, Fenton, Fenton-like and photo-Fenton degradation of estrogenic compounds, electro-Fenton degradation of estrogenic compounds, ozonation, and biological methods for the removal of estrogenic compounds are thoroughly discussed with suitable examples. The studies revealed that treatment plants based on chemical and biological approaches are cost-friendly for removing estrogenic pollutants. Further, there is a need to properly monitor and disposal of the usage of estrogenic drugs in humans and animals. Additional studies are required to explore a robust and more advanced oxidation treatment strategy that can contribute effectively to industrial-scale applications. This review may assist future investigations, monitoring, and removing estrogenic compounds from various environmental matrices. In concluding remarks, a way forward and future perspectives focusing on bridging knowledge gaps in estrogenic compounds removal are also proposed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Muhammad Adeel
- Faculty of Applied Engineering, iPRACS, University of Antwerp, 2020, Antwerp, Belgium
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H(2)O, 17003, Girona, Spain; Sustainability Cluster, School of Engineering, UPES, Dehradun, India
| | - Youssef Ahmed Awad
- Structural Engineering, Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
15
|
Surana D, Gupta J, Sharma S, Kumar S, Ghosh P. A review on advances in removal of endocrine disrupting compounds from aquatic matrices: Future perspectives on utilization of agri-waste based adsorbents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154129. [PMID: 35219657 DOI: 10.1016/j.scitotenv.2022.154129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In the recent past, a class of emerging contaminants particularly endocrine disrupting compounds (EDCs) in the aquatic environment have gained a lot of attention. This is due to their toxic behaviour, affecting endocrine activities in humans as well as among aquatic animals. Presently, there are no regulations and discharge limits for EDCs to preclude their negative impact. Furthermore, the conventional treatment processes fail to remove EDCs efficiently. This necessitates the need for more research aimed at development of advanced alternative treatment methods which are economical, efficient, and sustainable. This paper focusses on the occurrence, fate, toxicity, and various treatment processes for removal of EDCs. The treatment processes (physical, chemical, biological and hybrid) have been comprehensively studied highlighting their advantages and disadvantages. Additionally, the use of agri-waste based adsorption technologies has been reviewed. The aim of this review article is to understand the prospect of application of agri-waste based adsorbents for efficient removal of EDCs. Interestingly, research findings have indicated that the use of these low-cost and abundantly available agri-waste based adsorbents can efficiently remove the EDCs. Furthermore, the challenges and future perspectives on the use of agri-waste based adsorbents have been discussed.
Collapse
Affiliation(s)
- Deepti Surana
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India; Applied Biology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Satyawati Sharma
- Applied Biology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Pooja Ghosh
- Environmental Risk Assessment and Management (EnRAM) Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
16
|
Ahmad S, Egilmez M, Iqbal M, Ibrahim T, Khamis M, Alnaser AS. Pulsed Laser Deposited Zeolite Coatings on Femtosecond Laser-Nanostructured Steel Meshes for Durable Superhydrophilic/Oleophobic Functionalities. Front Chem 2021; 9:792641. [PMID: 34926409 PMCID: PMC8677653 DOI: 10.3389/fchem.2021.792641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Ultrafast laser structuring has proven to alter the wettability performance of surfaces drastically due to controlled modification of the surface roughness and energy. Surface alteration can be achieved also by coating the surfaces with functional materials with enhanced durability. On this line, robust and tunable surface wettability performance can be achieved by the synergic effects of ultrafast laser structuring and coating. In this work, femtosecond laser-structured stainless steel (SS-100) meshes were used to host the growth of NaAlSi2O6-H2O zeolite films. Contact angle measurements were carried on pristine SS-100 meshes, zeolite-coated SS-100 meshes, laser-structured SS-100 meshes, and zeolite-coated laser-structured SS-100 meshes. Enhanced hydrophilic behavior was observed in the zeolite-coated SS-100 meshes (contact angle 72°) and in laser-structured SS-100 meshes (contact angle 41°). On the other hand, superior durable hydrophilic behavior was observed for the zeolite-coated laser-structured SS-100 meshes (contact angle 14°) over an extended period and reusability. In addition, the zeolite-coated laser-structured SS-100 meshes were subjected to oil-water separation tests and revealed augmented effectuation for oil-water separation.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- Department of Physics, American University of Sharjah, Sharjah, United Arab Emirates
| | - M Egilmez
- Department of Physics, American University of Sharjah, Sharjah, United Arab Emirates
| | - M Iqbal
- Department of Physics, American University of Sharjah, Sharjah, United Arab Emirates
| | - T Ibrahim
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - M Khamis
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ali S Alnaser
- Department of Physics, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
17
|
Sulaiman S, Azis RS, Ismail I, Man HC, Yusof KFM, Abba MU, Katibi KK. Adsorptive Removal of Copper (II) Ions from Aqueous Solution Using a Magnetite Nano-Adsorbent from Mill Scale Waste: Synthesis, Characterization, Adsorption and Kinetic Modelling Studies. NANOSCALE RESEARCH LETTERS 2021; 16:168. [PMID: 34837537 PMCID: PMC8627547 DOI: 10.1186/s11671-021-03622-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/07/2021] [Indexed: 05/12/2023]
Abstract
In this study, magnetite nano-adsorbent (MNA) was extracted from mill scale waste products, synthesized and applied to eliminate Cu2+ from an aqueous solution. Mill scale waste product was ground using conventional milling and impacted using high-energy ball milling (HEBM) for varying 3, 5, and 7 milling hours. In this regard, the prepared MNA was investigated using X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), field emission scanning electron microscopy-energy-dispersive X-ray spectroscopy (FESEM-EDS), UV-Vis spectroscopy, Fourier-transform infrared (FTIR), Brunauer-Emmett-Teller (BET) and zeta potential. The resultant MNA-7 h milling time displayed a crystalline structure with irregular shapes of 11.23 nm, specific surface area of 5.98 m2g-1, saturation magnetization, Ms of 8.35 emug-1, and isoelectric point charge at pH 5.4. The optimum adsorption capacity, qe of 4.42 mg.g-1 for the removal of Cu2+ ions was attained at 120 min of contact time. The experimental data were best fitted to the Temkin isotherm model. A comparison between experimental kinetic studies and the theoretical aspects showed that the pseudo-second-order matched the experimental trends with a correlation coefficient of (R2 > 0.99). Besides, regeneration efficiency of 70.87% was achieved after three cycles of reusability studies. The MNA offers a practical, efficient, low-cost approach to reutilize mill scale waste products and provide ultra-fast separation to remove Cu2+ from water.
Collapse
Affiliation(s)
- Syazana Sulaiman
- Material Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Raba’ah Syahidah Azis
- Material Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Department of Physics, Faculty of Science, UPM, 43400 Serdang, Selangor, Malaysia
| | - Ismayadi Ismail
- Material Synthesis and Characterization Laboratory, Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, UPM, 43400 Serdang, Selangor, Malaysia
| | - Khairul Faezah Muhammad Yusof
- Department of Process and Food Engineering Faculty of Engineering, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Muhammad Umar Abba
- Department of Biological and Agricultural Engineering, Faculty of Engineering, UPM, 43400 Serdang, Selangor, Malaysia
- Department of Agricultural and Bioenvironmental Engineering, Federal Polytechnic Mubi, Mubi, 650221 Nigeria
| | - Kamil Kayode Katibi
- Department of Biological and Agricultural Engineering, Faculty of Engineering, UPM, 43400 Serdang, Selangor, Malaysia
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete, 23431 Nigeria
| |
Collapse
|
18
|
A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. WATER 2021. [DOI: 10.3390/w13223258] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Emerging pollutants (EPs), also known as micropollutants, have been a major issue for the global population in recent years as a result of the potential threats they bring to the environment and human health. Pharmaceuticals and personal care products (PPCPs), antibiotics, and hormones that are used in great demand for health and cosmetic purposes have rapidly culminated in the emergence of environmental pollutants. EPs impact the environment in a variety of ways. EPs originate from animal or human sources, either directly discharged into waterbodies or slowly leached via soils. As a result, water quality will deteriorate, drinking water sources will be contaminated, and health issues will arise. Since drinking water treatment plants rely on water resources, the prevalence of this contamination in aquatic environments, particularly surface water, is a severe problem. The review looks into several related issues on EPs in water environment, including methods in removing EPs. Despite its benefits and downsides, the EPs treatment processes comprise several approaches such as physico-chemical, biological, and advanced oxidation processes. Nonetheless, one of the membrane-based filtration methods, ultrafiltration, is considered as one of the technologies that promises the best micropollutant removal in water. With interesting properties including a moderate operating manner and great selectivity, this treatment approach is more popular than conventional ones. This study presents a comprehensive summary of EP’s existence in the environment, its toxicological consequences on health, and potential removal and treatment strategies.
Collapse
|
19
|
Katibi KK, Yunos KF, Man HC, Aris AZ, Mohd Nor MZ, Azis RS. An Insight into a Sustainable Removal of Bisphenol A from Aqueous Solution by Novel Palm Kernel Shell Magnetically Induced Biochar: Synthesis, Characterization, Kinetic, and Thermodynamic Studies. Polymers (Basel) 2021; 13:3781. [PMID: 34771339 PMCID: PMC8588331 DOI: 10.3390/polym13213781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/07/2022] Open
Abstract
Recently Bisphenol A (BPA) is one of the persistent trace hazardous estrogenic contaminants in the environment, that can trigger a severe threat to humans and environment even at minuscule concentrations. Thus, this work focused on the synthesis of neat and magnetic biochar (BC) as a sustainable and inexpensive adsorbent to remove BPA from aqueous environment. Novel magnetic biochar was efficiently synthesized by utilizing palm kernel shell, using ferric chloride and ferrous chloride as magnetic medium via chemical co-precipitation technique. In this experimental study, the influence of operating factors comprising contact time (20-240 min), pH (3.0-12.0), adsorbent dose (0.2-0.8 g), and starting concentrations of BPA (8.0-150 ppm) were studied in removing BPA during batch adsorption system using neat biochar and magnetic biochar. It was observed that the magnetically loaded BC demonstrates superior maximum removal efficiency of BPA with 94.2%, over the neat biochar. The functional groups (FTIR), Zeta potential, vibrating sample magnetometer (VSM), surface and textural properties (BET), surface morphology, and mineral constituents (FESEM/EDX), and chemical composition (XRD) of the adsorbents were examined. The experimental results demonstrated that the sorption isotherm and kinetics were suitably described by pseudo-second-order model and Freundlich model, respectively. By studying the adsorption mechanism, it was concluded that π-π electron acceptor-donor interaction (EAD), hydrophobic interaction, and hydrogen bond were the principal drives for the adsorption of BPA onto the neat BC and magnetic BC.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria;
- Department of Biological and Agricultural Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Khairul Faezah Yunos
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Material Processing and Technology Laboratory (MPTL), Institute of Advance Technology (ITMA), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Zuhair Mohd Nor
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Rabaah Syahidah Azis
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
20
|
Katibi KK, Yunos KF, Che Man H, Aris AZ, Mohd Nor MZ, Azis RS, Umar AM. Contemporary Techniques for Remediating Endocrine-Disrupting Compounds in Various Water Sources: Advances in Treatment Methods and Their Limitations. Polymers (Basel) 2021; 13:polym13193229. [PMID: 34641045 PMCID: PMC8512899 DOI: 10.3390/polym13193229] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Over the years, the persistent occurrence of superfluous endocrine-disrupting compounds (EDCs) (sub µg L−1) in water has led to serious health disorders in human and aquatic lives, as well as undermined the water quality. At present, there are no generally accepted regulatory discharge limits for the EDCs to avert their possible negative impacts. Moreover, the conventional treatment processes have reportedly failed to remove the persistent EDC pollutants, and this has led researchers to develop alternative treatment methods. Comprehensive information on the recent advances in the existing novel treatment processes and their peculiar limitations is still lacking. In this regard, the various treatment methods for the removal of EDCs are critically studied and reported in this paper. Initially, the occurrences of the EDCs and their attributed effects on humans, aquatic life, and wildlife are systematically reviewed, as well as the applied treatments. The most noticeable advances in the treatment methods include adsorption, catalytic degradation, ozonation, membrane separation, and advanced oxidation processes (AOP), as well as hybrid processes. The recent advances in the treatment technologies available for the elimination of EDCs from various water resources alongside with their associated drawbacks are discussed critically. Besides, the application of hybrid adsorption–membrane treatment using several novel nano-precursors is carefully reviewed. The operating factors influencing the EDCs’ remediations via adsorption is also briefly examined. Interestingly, research findings have indicated that some of the contemporary techniques could achieve more than 99% EDCs removal.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.K.K.); (M.Z.M.N.)
- Department of Food, Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria
| | - Khairul Faezah Yunos
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.K.K.); (M.Z.M.N.)
- Correspondence: ; Tel.: +60-1-82314746
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Material Processing and Technology Laboratory (MPTL), Institute of Advance Technology (ITMA), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Zuhair Mohd Nor
- Department of Food and Process Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.K.K.); (M.Z.M.N.)
| | - Rabaah Syahidah Azis
- Department of Physics, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Abba Mohammed Umar
- Department of Agricultural and Bioenvironmental Engineering, Federal Polytechnic Mubi, Mubi 650221, Nigeria;
| |
Collapse
|
21
|
Abba MU, Man HC, Azis RS, Isma Idris A, Hazwan Hamzah M, Yunos KF, Katibi KK. Novel PVDF-PVP Hollow Fiber Membrane Augmented with TiO 2 Nanoparticles: Preparation, Characterization and Application for Copper Removal from Leachate. NANOMATERIALS 2021; 11:nano11020399. [PMID: 33557323 PMCID: PMC7915492 DOI: 10.3390/nano11020399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
High proportion of copper has become a global challenge owing to its negative impact on the environment and public health complications. The present study focuses on the fabrication of a polyvinylidene fluoride (PVDF)-polyvinyl pyrrolidone (PVP) fiber membrane incorporated with varying loading (0, 0.5, 1.0, 1.5, and 2.0 wt%) of titanium dioxide (TiO2) nanoparticles via phase inversion technique to achieve hydrophilicity along with high selectivity for copper removal. The developed fibers were characterized based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), permeability, porosity, zeta potential, and contact angle. The improved membrane (with 1.0 wt% TiO2) concentration recorded the maximum flux (223 L/m2·h) and copper rejection (98.18%). Similarly, 1.0 wt% concentration of TiO2 nanoparticles made the membrane matrix more hydrophilic with the least contact angle of 50.01°. The maximum copper adsorption capacity of 69.68 mg/g was attained at 1.0 wt% TiO2 concentration. The experimental data of adsorption capacity were best fitted to the Freundlich isotherm model with R2 value of 0.99573. The hybrid membrane developed in this study has considerably eliminated copper from leachate and the concentration of copper in the permeate was substantially reduced to 0.044 mg/L, which is below standard discharge threshold.
Collapse
Affiliation(s)
- Mohammed Umar Abba
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.U.A.); (M.H.H.); (K.K.K.)
- Department of Agricultural and Bioenvironmental Engineering, Federal Polytechnic Mubi, Mubi 650221, Nigeria
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.U.A.); (M.H.H.); (K.K.K.)
- Smart Farming Technology Research Centre, Level 6, Blok Menara, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-3-97694340
| | - Raba’ah Syahidah Azis
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Aida Isma Idris
- Department of Chemical Engineering, Faculty of Engineering, Segi Universiti Malaysia, Petaling Jaya 47810, Selangor, Malaysia;
| | - Muhammad Hazwan Hamzah
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.U.A.); (M.H.H.); (K.K.K.)
- Smart Farming Technology Research Centre, Level 6, Blok Menara, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Khairul Faezah Yunos
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Kamil Kayode Katibi
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.U.A.); (M.H.H.); (K.K.K.)
- Department of Agricultural and Biological Engineering, Faculty of Engineering & Technology, Kwara State University, Malete, Ilorin 23431, Nigeria
| |
Collapse
|