1
|
Amini MA, Khodadadi I, Tavilani H, Abbasalipourkabir R, Azizi M, Rashidi K, Samadian H, Karimi J. Fabrication, characterization, and application of gelatin/alginate-based hydrogels incorporating selenium-doped deferoxamine-derived carbon quantum dots: In vitro and in vivo studies. Int J Biol Macromol 2025; 303:140569. [PMID: 39909275 DOI: 10.1016/j.ijbiomac.2025.140569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
This study developed a gelatin/alginate-based nanocomposite hydrogel (NC gel), incorporating selenium-doped deferoxamine-derived carbon quantum dots (Se.DFO-CQDs). Initially, Se.DFO-CQDs were synthesized and characterized through several tests, and subsequently, NC gels were created using an dual crosslinking method and analyzed through characterization tests such as SEM, EDX, FT-IR, XRD, tensile strength, water uptake, water vapor transmission rate, weight loss, porosity, blood compatibility, microbial penetration, and DPPH. In vivo studies revealed that NC gels containing Se.DFO-CQDs at 50 % and 0 % exhibited higher wound closure percentages than the control group. The highest wound closure percentage was observed in NC gels with Se.DFO-CQDs at 50 %, reaching 85.7 ± 3.98 % on the 7th day and 98.1 ± 3.95 % on the 14th day. Histological examinations demonstrated that NC gels with Se.DFO-CQDs at 50 % promoted more significant neovascularization, re-epithelialization, and collagen synthesis. Additionally, RT-qPCR results indicated that NC gels with Se.DFO-CQDs at 50 % significantly upregulated the mRNA expression of VEGF-A, bFGF, PDGF-b, and lncRNA GAS5 on the 7th day and COL1A1 on the 14th day. In conclusion, our findings suggest that the NC gels with Se.DFO-CQDs at 50 % show promise for enhancing wound healing and skin regeneration, potentially offering clinical applications.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Azizi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Khajavi M, Raoufi Z, Abdollahi S. Investigating the potential of collagen/carrageenan trilayer sponges with optimal therapeutic and physical properties for the treatment of pressure ulcers. Int J Biol Macromol 2025; 306:141743. [PMID: 40049486 DOI: 10.1016/j.ijbiomac.2025.141743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Pressure ulcers are a major healthcare challenge, particularly for the elderly. A multilayer wound dressing is recommended to mimic the structure of the skin tissue better. In this study, a new three-layer dressing was designed for the first time, specifically for pressure ulcers. Collagen/carrageenan sponge as a porous absorbent in the upper layer, reduces pressure and repairs the wound. Stearic acid was used in the middle layer to minimize adhesion, and gelatin and levofloxacin were electrospun to the middle layer to improve cell behavior and create bacteriostatic properties. Comparative evaluations showed that three-layer EI dressing achieved the highest wound closure and healing rate within 10 days and outperformed two-layer dressings. The three-layer dressing showed antibacterial activity, cell viability, and fluid retention. In addition, it showed excellent cell compatibility and homeostatic properties in a rat liver injury model. The presence of stearic acid in the three-layer dressing effectively prevents wound adhesion under pressure. The comprehensive findings of this study show that three-layer dressings act as a biological factor in bed wound management strategies and bring us closer to the fact that the healing of these wounds will have a smoother path and help countless people.
Collapse
Affiliation(s)
- Mahshid Khajavi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
3
|
Abdelgader A, Govender M, Kumar P, Choonara YE. A Novel Intrauterine Device for the Extended Tissue-Specific Release of Estradiol and Norethindrone to Treat the Genitourinary Syndrome of Menopause. Polymers (Basel) 2025; 17:665. [PMID: 40076154 PMCID: PMC11902457 DOI: 10.3390/polym17050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The genitourinary syndrome of menopause (GSM) is a prevalent condition impacting a substantial number of women globally. Presently, the management of GSM typically entails the administration of estrogen via oral, dermal, or vaginal routes for a prolonged period of time. This study involves the development of a polymer-based hollow cylindrical delivery system loaded with estradiol hemihydrate (E2) for prolonged delivery to the uterine cavity (EPHCD) combined with a norethindrone acetate (NETA)-loaded polymeric matrix (NLPM), with both units placed onto an intra-uterine device to form a multi-component drug delivery system for the management of GSM (MCDDS). In developing EPHCD, a central composite design (CCD) was employed to evaluate and optimize the impact of formulation factors on EPHCD release and unit weight loss. The optimized EPHCD was further assessed for its chemical integrity, surface morphology, hydration characteristics, release behavior, ex vivo permeation and cytocompatibility. The optimized EPHCD, which featured a high drug load (10%) and low ethyl cellulose-to-polycaprolactone ratio (EC-to-PCL, 10%), demonstrated favorable attributes with a cumulative drug release and weight loss of 23.78 ± 0.84% and 2.09 ± 0.21%, respectively, over a 4-week testing period. The release kinetics were further noted to obey the Peppas-Sahlin model. Evaluation of MCDDS revealed an in vitro drug release comparable to the individual units, with permeation studies displaying an initial increase in the rate of flux for both drugs during the first 2 h, followed by a subsequent decrease. Moreover, the MCDDS components showed good cytocompatibility against NIH/3T3 cells, with cell viability of more than 70%. Upon evaluation of the MCDDS system, the results of this study highlight its potential as a viable sustained-release intrauterine platform for the treatment of GSM.
Collapse
Affiliation(s)
| | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa (P.K.)
| |
Collapse
|
4
|
Afzali M, Esfandiaribayat N, Boateng J. Medicated and multifunctional composite alginate-collagen-hyaluronate based scaffolds prepared using two different crosslinking approaches show potential for healing of chronic wounds. Drug Deliv Transl Res 2024:10.1007/s13346-024-01745-0. [PMID: 39661314 DOI: 10.1007/s13346-024-01745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
Chronic wounds present significant challenges with high morbidity and mortality. A cost-effective dressing that can absorb large exudate volumes, is hemostatic and therapeutically active is of current interest. This study compares two crosslinking approaches on composite scaffolds comprising fish collagen (FCOL), hyaluronic acid (HA) and sodium alginate (SA) by respectively targeting HA and SA. Crosslinking involved reacting HA with polyethylene glycol diglycidyl ether (PEGDE)/itaconic acid (IT) (IPC scaffolds) or SA with calcium chloride (CC scaffolds) and the crosslinked gels (with/without BSA) freeze-dried. Selected optimized formulations were loaded with basic fibroblast growth factor (b-FGF) as medicated scaffold dressings. NMR and FTIR spectroscopies (crosslinking/component interactions), SEM (morphology), texture analysis (mechanical strength/adhesion), and exudate handling were used to characterize the physico-chemical properties of the scaffolds. Protein (BSA) release profiles, hemostasis, biocompatibility and wound closure were assessed using HPLC, whole blood and methyl thiazolyl tetrazolium (MTT) and scratch assays respectively. The CC SA:FCOL:HA scaffolds showed improved mechanical strength, porosity, water vapor transmission rate, retained structural integrity after absorbing 50% exudate and promoted cell proliferation. The IPC scaffolds showed enhanced structural integrity, excellent hemostasis, retained three times more exudate than non-crosslinked scaffolds and provided acceptable pore size for cell adhesion and proliferation. The results show potential of CC and IPC SA:FCOL:HA scaffolds as medicated dressings for delivering proteins to chronic wounds. The study's significance lies in their potential use as multifunctional, multi-targeted and therapeutic dressings to overcome challenges with chronic wounds and use as delivery platforms for other therapeutic agents for chronic wound healing.
Collapse
Affiliation(s)
- Meena Afzali
- School of Science, Faculty of Engineering and Science, University of Greenwich at Medway, Chatham Maritime, Kent, ME4 4TB, UK
| | - Nessa Esfandiaribayat
- School of Science, Faculty of Engineering and Science, University of Greenwich at Medway, Chatham Maritime, Kent, ME4 4TB, UK
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich at Medway, Chatham Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
5
|
Abdelgader A, Govender M, Kumar P, Choonara YE. A Novel Intrauterine Device for the Spatio-Temporal Release of Norethindrone Acetate as a Counter-Estrogenic Intervention in the Genitourinary Syndrome of Menopause. Pharmaceutics 2024; 16:587. [PMID: 38794250 PMCID: PMC11124343 DOI: 10.3390/pharmaceutics16050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
The genitourinary syndrome of menopause (GSM) is a widely occurring condition affecting millions of women worldwide. The current treatment of GSM involves the use of orally or vaginally administered estrogens, often with the risk of endometrial hyperplasia. The utilization of progestogens offers a means to counteract the effects of estrogen on the endometrial tissue, decreasing unwanted side effects and improving therapeutic outcomes. In this study, a norethindrone acetate (NETA)-loaded, hollow, cylindrical, and sustained release platform has been designed, fabricated, and optimized for implantation in the uterine cavity as a counter-estrogenic intervention in the treatment of GSM. The developed system, which comprises ethyl cellulose (EC) and polycaprolactone (PCL), has been statistically optimized using a two-factor, two-level factorial design, with the mechanical properties, degradation, swelling, and in vitro drug release of NETA from the device evaluated. The morphological characteristics of the platform were further investigated through scanning electron microscopy in addition to cytocompatibility studies using NIH/3T3 cells. Results from the statistical design highlighted the platform with the highest NETA load and the EC-to-PCL ratio that exhibited favorable release and weight loss profiles. The drug release data for the optimal formulation were best fitted with the Peppas-Sahlin model, implicating both diffusion and polymer relaxation in the release mechanism, with cell viability results noting that the prepared platform demonstrated favorable cytocompatibility. The significant findings of this study firmly establish the developed platform as a promising candidate for the sustained release of NETA within the uterine cavity. This functionality serves as a counter-estrogenic intervention in the treatment of GSM, with the platform holding potential for further advanced biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| |
Collapse
|
6
|
Guo X, Wang A, Sheng N, He Y, Liu W, Li Z, Luo F, Li J, Tan H. Janus Polyurethane Adhesive Patch with Antibacterial Properties for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15970-15980. [PMID: 38501704 DOI: 10.1021/acsami.4c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Despite the rapid development of tissue adhesives, flaws including allergies, poor stability, and indiscriminate double-sided adhesive properties limit their application in the medical field. In this work, Janus polyurethane patches were spontaneously prepared by adjusting the difference in the functional group distribution between the top and bottom sides of the patch during emulsion drying. Consequently, poor adhesion was exhibited on the bottom surface, while the top surface can easily adhere to metals, polymers, glasses, and tissues. The difference in adhesive strength to pork skin between the two surfaces is more than 5 times. The quaternary ammonium salt and hydrophilic components on the surface of the polyurethane patch enable the rapid removal and absorption of water from the tissue surface to achieve wet adhesion. Animal experiments have demonstrated that this multifunctional Janus polyurethane patch can promote skin wound closure and healing of infected wounds. This facile and effective strategy to construct Janus polyurethane patch provides a promising method for the development of functional tissue-adhesives.
Collapse
Affiliation(s)
- Xiaolei Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Ao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Nan Sheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Yuanyuan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Wenkai Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Grizzo A, Dos Santos DM, da Costa VPV, Lopes RG, Inada NM, Correa DS, Campana-Filho SP. Multifunctional bilayer membranes composed of poly(lactic acid), beta-chitin whiskers and silver nanoparticles for wound dressing applications. Int J Biol Macromol 2023; 251:126314. [PMID: 37586628 DOI: 10.1016/j.ijbiomac.2023.126314] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Nanomaterial-based wound dressings have been extensively studied for the treatment of both minor and life-threatening tissue injuries. These wound dressings must possess several crucial characteristics, such as tissue compatibility, non-toxicity, appropriate biodegradability to facilitate wound healing, effective antibacterial activity to prevent infection, and adequate physical and mechanical strength to withstand repetitive dynamic forces that could potentially disrupt the healing process. Nevertheless, the development of nanostructured wound dressings that incorporate various functional micro- and nanomaterials in distinct architectures, each serving specific purposes, presents significant challenges. In this study, we successfully developed a novel multifunctional wound dressing based on poly(lactic acid) (PLA) fibrous membranes produced by solution-blow spinning (SBS) and electrospinning. The PLA-based membranes underwent surface modifications aimed at tailoring their properties for utilization as effective wound dressing platforms. Initially, beta-chitin whiskers were deposited onto the membrane surface through filtration, imparting hydrophilic character. Afterward, silver nanoparticles (AgNPs) were incorporated onto the beta-chitin layer using a spray deposition method, resulting in platforms with antimicrobial properties against both Staphylococcus aureus and Escherichia coli. Cytotoxicity studies demonstrated the biocompatibility of the membranes with the neonatal human dermal fibroblast (HDFn) cell line. Moreover, bilayer membranes exhibited a high surface area and porosity (> 80%), remarkable stability in aqueous media, and favorable mechanical properties, making them promising candidates for application as multifunctional wound dressings.
Collapse
Affiliation(s)
- Amanda Grizzo
- Sao Carlos Institute of Chemistry/University of Sao Paulo, 13566-590 Sao Carlos, Sao Paulo, Brazil; Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, Sao Paulo, Brazil
| | - Danilo M Dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, Sao Paulo, Brazil
| | - Víttor P V da Costa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, Sao Paulo, Brazil; PPGBiotec, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905 Sao Carlos, Sao Paulo, Brazil
| | - Raphael G Lopes
- Sao Carlos Institute of Physics/University of Sao Paulo, PO Box 369, 13560-970 Sao Carlos, Sao Paulo, Brazil
| | - Natalia M Inada
- Sao Carlos Institute of Physics/University of Sao Paulo, PO Box 369, 13560-970 Sao Carlos, Sao Paulo, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, Sao Paulo, Brazil; PPGBiotec, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905 Sao Carlos, Sao Paulo, Brazil.
| | | |
Collapse
|
8
|
Jabbari F, Babaeipour V. Bacterial cellulose as a potential biopolymer for wound care. A review. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2167080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
9
|
Glinka M, Filatova K, Kucińska-Lipka J, Šopík T, Domincová Bergerová E, Mikulcová V, Wasik A, Sedlařík V. Antibacterial Porous Systems Based on Polylactide Loaded with Amikacin. Molecules 2022; 27:molecules27207045. [PMID: 36296639 PMCID: PMC9609933 DOI: 10.3390/molecules27207045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Three porous matrices based on poly(lactic acid) are proposed herein for the controlled release of amikacin. The materials were fabricated by the method of spraying a surface liquid. Description is given as to the possibility of employing a modifier, such as a silica nanocarrier, for prolonging the release of amikacin, in addition to using chitosan to improve the properties of the materials, e.g., stability and sorption capacity. Depending on their actual composition, the materials exhibited varied efficacy for drug loading, as follows: 25.4 ± 2.2 μg/mg (matrices with 0.05% w/v of chitosan), 93 ± 13 μg/mg (with 0.08% w/v SiO2 amikacin modified nanoparticles), and 96 ± 34 μg/mg (matrices without functional additives). An in vitro study confirmed extended release of the drug (amikacin, over 60 days), carried out in accordance with the mathematical Kosmyer–Pepas model for all the materials tested. The matrices were also evaluated for their effectiveness in inhibiting the growth of bacteria such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Concurrent research was conducted on the transdermal absorption, morphology, elemental composition, and thermogravimetric properties of the released drug.
Collapse
Affiliation(s)
- Marta Glinka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Katerina Filatova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
| | - Tomáš Šopík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Eva Domincová Bergerová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Veronika Mikulcová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| | - Andrzej Wasik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
- Correspondence:
| | - Vladimir Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Tomáše Bati 5678 Street, 760 01 Zlín, Czech Republic
| |
Collapse
|
10
|
Prema D, Balashanmugam P, Kumar J, Venkatasubbu GD. Fabrication of GO/ZnO nanocomposite incorporated patch for enhanced wound healing in streptozotocin (STZ) induced diabetic rats. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Dissolvable zinc oxide nanoparticle-loaded wound dressing with preferential exudate absorption and hemostatic features. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Darie-Niță RN, Râpă M, Frąckowiak S. Special Features of Polyester-Based Materials for Medical Applications. Polymers (Basel) 2022; 14:951. [PMID: 35267774 PMCID: PMC8912343 DOI: 10.3390/polym14050951] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
This article presents current possibilities of using polyester-based materials in hard and soft tissue engineering, wound dressings, surgical implants, vascular reconstructive surgery, ophthalmology, and other medical applications. The review summarizes the recent literature on the key features of processing methods and potential suitable combinations of polyester-based materials with improved physicochemical and biological properties that meet the specific requirements for selected medical fields. The polyester materials used in multiresistant infection prevention, including during the COVID-19 pandemic, as well as aspects covering environmental concerns, current risks and limitations, and potential future directions are also addressed. Depending on the different features of polyester types, as well as their specific medical applications, it can be generally estimated that 25-50% polyesters are used in the medical field, while an increase of at least 20% has been achieved since the COVID-19 pandemic started. The remaining percentage is provided by other types of natural or synthetic polymers; i.e., 25% polyolefins in personal protection equipment (PPE).
Collapse
Affiliation(s)
- Raluca Nicoleta Darie-Niță
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Maria Râpă
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Stanisław Frąckowiak
- Faculty of Environmental Engineering, University of Science and Technology, 50-013 Wrocław, Poland;
| |
Collapse
|
13
|
Oliveira AS, Silva JC, Figueiredo L, Ferreira FC, Kotov NA, Colaço R, Serro AP. High-performance bilayer composites for the replacement of osteochondral defects. Biomater Sci 2022; 10:5856-5875. [DOI: 10.1039/d2bm00716a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two novel bilayer constructs for the repair of osteochondral defects were developed from nanofibers and ceramic particles embedded into PVA matrices, exhibiting multiple promising properties similar to those of corresponding natural tissues.
Collapse
Affiliation(s)
- A. S. Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - J. C. Silva
- Centre for Rapid and Sustainable Product Development, Politécnico de Leiria, Rua de Portugal – Zona Industrial, 2430-028 Marinha Grande, Portugal
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - L. Figueiredo
- Bioceramed S.A., Rua José Gomes Ferreira 1 Arm. D, 2660-360 São Julião do Tojal, Portugal
| | - F. C. Ferreira
- Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - N. A. Kotov
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - R. Colaço
- Instituto de Engenharia Mecânica and Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - A. P. Serro
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
14
|
U-Shaped Optical Fiber Probes Coated with Electrically Doped GQDs for Humidity Measurements. Polymers (Basel) 2021; 13:polym13162696. [PMID: 34451236 PMCID: PMC8401709 DOI: 10.3390/polym13162696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023] Open
Abstract
The influence of the bending radius on the sensitivity of the graphene quantum dots (GQDs)-coated probe is experimentally investigated for a U-shaped probe. The fiber is bent into a U shape using the optic fiber flame heating method, and the optic fiber is enclosed in a glass tube to increase the stability of the probe. The surface of the U-shaped optical fiber was coated with electrospun fibers formed via electrospinning. Polymer materials doped with GQDs are applied to U-shaped optical fiber as humidity sensors. Graphene quantum dot nanofibers on the U-shaped optical fiber sensor to form a network structure of graphene quantum dots U-shape fiber sensor (GQDUS). The polymer network structure absorbs water molecules, which in turn affects the bending radius of the optical fiber, and changes the optical fiber spectrum. Graphene quantum dots provide optical enhancement benefits, which in turn increase the sensitivity of fiber optic sensors. The spectra monitoring system consists of an optical spectrum analyzer (OSA) and an amplified spontaneous emission (ASE). This system can be used to detect humidity changes between 20% RH and 80% RH in the chamber. Our results indicate promising applications for quantum dots probe sensors from electrospun nanofibers increasing sensitive environmental monitoring. As such, it could be of substantial value in optical sensors detection.
Collapse
|