1
|
Liu L, Zhang J, Zhao Y, Zhang M, Wu L, Yang P, Liu Z. Research progress on direct borohydride fuel cells. Chem Commun (Camb) 2024; 60:1965-1978. [PMID: 38273804 DOI: 10.1039/d3cc06169h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The rapid development of industry has accelerated the utilization and consumption of fossil energy, resulting in an increasing shortage of energy resources and environmental pollution. Therefore, it is crucial to explore new energy storage devices using renewable and environment-friendly energy as fuel. Direct borohydride fuel cells (DBFCs) are expected to be a feasible and efficient energy storage device by virtue of the read availability of raw materials, non-toxicity of products, and excellent operational stability. Moreover, while utilizing H2O2 as an oxidant, a significant theoretical energy density of 17 kW h kg-1 can be achieved, indicating the broad application prospect of DBFCs in long-range operation and oxygen-free environment. This review summarizes the research progress on DBFCs in term of reaction kinetics, electrode materials, membrane materials, architecture, and electrolytes. In addition, we predict the future research challenges and feasible research directions, considering both performance and cost. We hope this review will help guide future studies on DBFCs.
Collapse
Affiliation(s)
- Liu Liu
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | - Junming Zhang
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | - Ying Zhao
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | - Milin Zhang
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | - Linzhi Wu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| | - Zhiliang Liu
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China.
| |
Collapse
|
2
|
From PET Bottles Waste to N-Doped Graphene as Sustainable Electrocatalyst Support for Direct Liquid Fuel Cells. Catalysts 2023. [DOI: 10.3390/catal13030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Direct liquid fuel cells represent one of the most rapidly emerging energy conversion devices. The main challenge in developing fuel cell devices is finding low-cost and highly active catalysts. In this work, PET bottle waste was transformed into nitrogen-doped graphene (NG) as valuable catalyst support. NG was prepared by a one-pot thermal decomposition process of mineral water waste bottles with urea at 800 °C. Then, NG/Pt electrocatalysts with Pt loadings as low as 0.9 wt.% and 1.8 wt.% were prepared via a simple reduction method in aqueous solution at room temperature. The physical and electrochemical properties of the NG/Pt electrocatalysts are characterized and evaluated for application in direct borohydride peroxide fuel cells (DBPFCs). The results show that NG/Pt catalysts display catalytic activity for borohydride oxidation reaction, particularly the NG/Pt_1, with a number of exchanged electrons of 2.7. Using NG/Pt composite in fuel cells is anticipated to lower prices and boost the usage of electrochemical energy devices. A DBPFC fuel cell using NG/Pt_1 catalyst (1.8 wt.% Pt) in the anode achieved a power density of 75 mW cm−2 at 45 °C. The exceptional performance and economic viability become even more evident when expressed as mass-specific power density, reaching a value as high as 15.8 W mgPt−1.
Collapse
|
3
|
Palanisamy G, Thangarasu S, Oh TH. Effect of Sulfonated Inorganic Additives Incorporated Hybrid Composite Polymer Membranes on Enhancing the Performance of Microbial Fuel Cells. Polymers (Basel) 2023; 15:polym15051294. [PMID: 36904534 PMCID: PMC10006918 DOI: 10.3390/polym15051294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Microbial fuel cells (MFCs) provide considerable benefits in the energy and environmental sectors for producing bioenergy during bioremediation. Recently, new hybrid composite membranes with inorganic additives have been considered for MFC application to replace the high cost of commercial membranes and improve the performances of cost-effective polymers, such as MFC membranes. The homogeneous impregnation of inorganic additives in the polymer matrix effectively enhances the physicochemical, thermal, and mechanical stabilities and prevents the crossover of substrate and oxygen through polymer membranes. However, the typical incorporation of inorganic additives in the membrane decreases the proton conductivity and ion exchange capacity. In this critical review, we systematically explained the impact of sulfonated inorganic additives (such as (sulfonated) sSiO2, sTiO2, sFe3O4, and s-graphene oxide) on different kinds of hybrid polymers (such as PFSA, PVDF, SPEEK, SPAEK, SSEBS, and PBI) membrane for MFC applications. The membrane mechanism and interaction between the polymers and sulfonated inorganic additives are explained. The impact of sulfonated inorganic additives on polymer membranes is highlighted based on the physicochemical, mechanical, and MFC performances. The core understandings in this review can provide vital direction for future development.
Collapse
|
4
|
Modified Cellulose Proton-Exchange Membranes for Direct Methanol Fuel Cells. Polymers (Basel) 2023; 15:polym15030659. [PMID: 36771960 PMCID: PMC9920170 DOI: 10.3390/polym15030659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
A direct methanol fuel cell (DMFC) is an excellent energy device in which direct conversion of methanol to energy occurs, resulting in a high energy conversion rate. For DMFCs, fluoropolymer copolymers are considered excellent proton-exchange membranes (PEMs). However, the high cost and high methanol permeability of commercial membranes are major obstacles to overcome in achieving higher performance in DMFCs. Novel developments have focused on various reliable materials to decrease costs and enhance DMFC performance. From this perspective, cellulose-based materials have been effectively considered as polymers and additives with multiple concepts to develop PEMs for DMFCs. In this review, we have extensively discussed the advances and utilization of cost-effective cellulose materials (microcrystalline cellulose, nanocrystalline cellulose, cellulose whiskers, cellulose nanofibers, and cellulose acetate) as PEMs for DMFCs. By adding cellulose or cellulose derivatives alone or into the PEM matrix, the performance of DMFCs is attained progressively. To understand the impact of different structures and compositions of cellulose-containing PEMs, they have been classified as functionalized cellulose, grafted cellulose, acid-doped cellulose, cellulose blended with different polymers, and composites with inorganic additives.
Collapse
|
5
|
Elessawy NA, Gouda MH, Elnouby M, Ali SM, Salerno M, Youssef ME. Sustainable Microbial and Heavy Metal Reduction in Water Purification Systems Based on PVA/IC Nanofiber Membrane Doped with PANI/GO. Polymers (Basel) 2022; 14:polym14081558. [PMID: 35458309 PMCID: PMC9025637 DOI: 10.3390/polym14081558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
Effective and efficient removal of both heavy metal pollutants and bacterial contamination from fresh water is an open issue, especially in developing countries. In this work, a novel eco-friendly functional composite for water treatment application was investigated. The composite consisted of electrospun nanofiber membrane from blended polyvinyl alcohol (PVA)/iota carrageenan (IC) polymers doped with equal concentrations of graphene oxide (GO) nanoparticles and polyaniline (PANI). The effectiveness of this composite as a water purification fixed-bed filter was optimized in a batch system for the removal of cadmium (Cd+2) and lead (Pb+2) ions, and additionally characterized for its antimicrobial and antifungal properties and cytotoxicity effect. The fiber nanocomposite exhibited efficient antibacterial activity, with maximum adsorption capacity of about 459 mg g−1 after 120 min for Cd+2 and of about 486 mg g−1 after 90 min for Pb+2. The optimized conditions for removal of both metals were assessed by using a response surface methodology model. The resulting scores at 25 °C were 91.4% (Cd+2) removal at 117 min contact time for 89.5 mg L−1 of initial concentration and 29.6 cm2 membrane area, and 97.19% (Pb+2) removal at contact time 105 min for 83.2 mg L−1 of initial concentration and 30.9 cm2 nanofiber composite membrane. Adsorption kinetics and isotherm followed a pseudo-second-order model and Langmuir and Freundlich isotherm model, respectively. The prepared membrane appears to be promising for possible use in domestic water purification systems.
Collapse
Affiliation(s)
- Noha A. Elessawy
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, City of Scientific Research & Technological Applications (SRTA-City), Alexandria 21934, Egypt;
- Correspondence: (N.A.E.); (M.S.)
| | - Marwa H. Gouda
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - Mohamed Elnouby
- Nanomaterials and Composites Research Department, Advanced Technology and NewMaterials Research Institute, City of Scientific Research and Technological; Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - Safaa M. Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt;
| | - M. Salerno
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01069 Dresden, Germany
- Correspondence: (N.A.E.); (M.S.)
| | - M. Elsayed Youssef
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, City of Scientific Research & Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| |
Collapse
|
6
|
Dardeer HM, Toghan A, Zaki MEA, Elamary RB. Design, Synthesis and Evaluation of Novel Antimicrobial Polymers Based on the Inclusion of Polyethylene Glycol/TiO 2 Nanocomposites in Cyclodextrin as Drug Carriers for Sulfaguanidine. Polymers (Basel) 2022; 14:polym14020227. [PMID: 35054634 PMCID: PMC8780372 DOI: 10.3390/polym14020227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Polymers and their composites have recently attracted attention in both pharmaceutical and biomedical applications. Polyethylene glycol (PEG) is a versatile polymer extensively used in medicine. Herein, three novel PEG-based polymers that are pseudopolyrotaxane (PEG/α-CD) (1), titania–nanocomposite (PEG/TiO2NPs) (2), and pseudopolyrotaxane–titania–nanocomposite (PEG/α-CD/TiO2NPs) (3), were synthesized and characterized. The chemical structure, surface morphology, and optical properties of the newly materials were examined by FT-IR, 1H-NMR, SEM, and UV–Vis., respectively. The prepared polymers were used as drug carriers of sulfaguanidine as PEG/α-CD/Drug (4), PEG/TiO2NPs/Drug (5), and PEG/α-CD/TiO2NPs/Drug (6). The influence of these drug-carrying formulations on the physical and chemical characteristics of sulfaguanidine including pharmacokinetic response, solubility, and tissue penetration was explored. Evaluation of the antibacterial and antibiofilm effect of sulfaguanidine was tested before and after loading onto the prepared polymers against some Gram-negative and positive bacteria (E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus (MRSA)), as well. The results of this work turned out to be very promising as they confirmed that loading sulfaguanidine to the newly designed polymers not only showed superior antibacterial and antibiofilm efficacy compared to the pure drug, but also modified the properties of the sulfaguanidine drug itself.
Collapse
Affiliation(s)
- Hemat M. Dardeer
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Arafat Toghan
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
- Correspondence: or
| | - Magdi E. A. Zaki
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Rokaia B. Elamary
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
| |
Collapse
|