1
|
Xu Y, Dai Q, Zhang D, Zhang F, Yue F, Ye J, Liu C, Zeng X, Lan W. Improving the Monophenolic Yield of Lignin Depolymerization in Dualistic Aprotic Solvent System by Organic Solvent Fractionation. CHEMSUSCHEM 2024; 17:e202400378. [PMID: 38570922 DOI: 10.1002/cssc.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Converting lignin into aromatic chemicals is a promising strategy for the high-value utilization of lignocellulosic feedstock. However, the inherent heterogeneity of lignin poses a significant obstacle to achieving efficient conversion and optimal product yields within bio-refinery systems. Herein, we employed a one-step fractionation method to enhance lignin homogeneity and utilized the THF/DMSO-EtONa (tetrahydrofuran/dimethyl sulfoxide-sodium ethoxide) system to depolymerize the fractionated lignin. Three protic and three aprotic solvents were used for fractionation. The impact of the solvent properties on the structure and the depolymerization efficiency of the fractionated lignin was investigated. Methanol-fractionated lignin generated the benzoic acid compounds with a yield of 30 wt%, 50 % higher than that of the unfractionated lignin. The polarities (δP), hydrogen bonding abilities (δH), and viscosities (η) of selected protic solvents showed strong linear correlation with molecular weight (Mw), polymer dispersity index (PDI), and syringyl/guaiacyl ratio (S/G ratio) of the fractionated lignin, as well as the total yield of benzoic acid compounds derived from the β-O-4 bond cleavage. This study elucidates the relationship between solvent properties and lignin structure and proposes a promising approach for refining lignin to enhance utilization efficiency, thereby presenting a potential strategy for value-added application of complex lignin polymers.
Collapse
Affiliation(s)
- Yan Xu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qiqi Dai
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Danlu Zhang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fan Zhang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fengxia Yue
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jun Ye
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chuanfu Liu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xu Zeng
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wu Lan
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
2
|
Li Y, Liu M, Tang Q, Liang K, Sun Y, Yu Y, Lou Y, Liu Y, Yu H. Hydrogen-transfer strategy in lignin refinery: Towards sustainable and versatile value-added biochemicals. CHEMSUSCHEM 2024; 17:e202301912. [PMID: 38294404 DOI: 10.1002/cssc.202301912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Lignin, the most prevalent natural source of polyphenols on Earth, offers substantial possibilities for the conversion into aromatic compounds, which is critical for attaining sustainability and carbon neutrality. The hydrogen-transfer method has garnered significant interest owing to its environmental compatibility and economic viability. The efficacy of this approach is contingent upon the careful selection of catalytic and hydrogen-donating systems that decisively affect the yield and selectivity of the monomeric products resulting from lignin degradation. This paper highlights the hydrogen-transfer technique in lignin refinery, with a specific focus on the influence of hydrogen donors on the depolymerization pathways of lignin. It delineates the correlation between the structure and activity of catalytic hydrogen-transfer arrangements and the gamut of lignin-derived biochemicals, utilizing data from lignin model compounds, separated lignin, and lignocellulosic biomass. Additionally, the paper delves into the advantages and future directions of employing the hydrogen-transfer approach for lignin conversion. In essence, this concept investigation illuminates the efficacy of the hydrogen-transfer paradigm in lignin valorization, offering key insights and strategic directives to maximize lignin's value sustainably.
Collapse
Affiliation(s)
- Yilin Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Meng Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Qi Tang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Kaixia Liang
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yaxu Sun
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yanyan Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yuhan Lou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| |
Collapse
|
3
|
Li K, Zhong W, Li P, Ren J, Jiang K, Wu W. Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications. Int J Biol Macromol 2023; 251:125992. [PMID: 37544567 DOI: 10.1016/j.ijbiomac.2023.125992] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Lignin, a by-product of processing lignocellulosic materials, has a polyphenolic structure and can be used as an antioxidant directly or synergistically with synthetic types of antioxidants, leading to different applications. Its antioxidant mechanism is mainly related to the production of ROS, but the details need to be further investigated. The antioxidant property of lignin is mainly related to the content of phenolic hydroxyl group, but methoxy, purity will also have an effect on it. In addition, different methods to detect the antioxidant properties of lignin have different advantages and disadvantages. In this paper, the antioxidant mechanism of lignin, the methods to determine the antioxidant activity and the progress of its application in various fields are reviewed. In addition, the current research on the antioxidant properties of lignin and the hot directions are provided, and an outlook on the research into the antioxidant properties of lignin is provided to broaden its potential application areas.
Collapse
Affiliation(s)
- Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kangjie Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Vinod A, Pulikkalparambil H, Jagadeesh P, Rangappa SM, Siengchin S. Recent advancements in lignocellulose biomass-based carbon fiber: Synthesis, properties, and applications. Heliyon 2023; 9:e13614. [PMID: 37101468 PMCID: PMC10123159 DOI: 10.1016/j.heliyon.2023.e13614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
A growing need to reduce the global carbon footprint has prompted all sectors to make significant efforts in this direction. For example, there has been much focus on green carbon fiber sustainability. For example, it was found that the polyaromatic heteropolymer lignin might act as an intermediary in synthesising carbon fiber. Biomass is seen as a potential carbon accommodated solid natural sources that protects the nature and has a big overall supply and widespread distribution. With growing environmental concern in recent years, biomass has gained appeal as a raw material for production of carbon fibers. Especially, the positives of lignin material include its reasonable budget, sustainability, and higher carbon content, which makes it a dominating precursor. This review has examined a variety of bio precursors that help produce lignin and have higher lignin concentrations. In addition, there has been much research on plant sources, lignin types, factors affecting carbon fiber synthesis, spinning methods, stabilization, carbonization, and activation the characterisation techniques used for the lignin carbon fiber to comprehend the structure and features. In addition, an overview of the applications that use lignin carbon fiber has been provided.
Collapse
Affiliation(s)
- Athira Vinod
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Harikrishnan Pulikkalparambil
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Praveenkumara Jagadeesh
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok, 10800, Thailand
| |
Collapse
|
5
|
Rizal S, Alfatah T, Abdul Khalil HPS, Yahya EB, Abdullah CK, Mistar EM, Ikramullah I, Kurniawan R, Bairwan RD. Enhanced Functional Properties of Bioplastic Films Using Lignin Nanoparticles from Oil Palm-Processing Residue. Polymers (Basel) 2022; 14:5126. [PMID: 36501521 PMCID: PMC9740209 DOI: 10.3390/polym14235126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
The development of bioplastic materials that are biobased and/or degradable is commonly presented as an alleviating alternative, offering sustainable and eco-friendly properties over conventional petroleum-derived plastics. However, the hydrophobicity, water barrier, and antimicrobial properties of bioplastics have hindered their utilization in packaging applications. In this study, lignin nanoparticles (LNPs) with a purification process were used in different loadings as enhancements in a Kappaphycus alvarezii matrix to reduce the hydrophilic nature and improve antibacterial properties of the matrix and compared with unpurified LNPs. The influence of the incorporation of LNPs on functional properties of bioplastic films, such as morphology, surface roughness, structure, hydrophobicity, water barrier, antimicrobial, and biodegradability, was studied and found to be remarkably enhanced. Bioplastic film containing 5% purified LNPs showed the optimum enhancement in almost all of the ultimate performances. The enhancement is related to strong interfacial interaction between the LNPs and matrix, resulting in high compatibility of films. Bioplastic films could have additional advantages and provide breakthroughs in packaging materials for a wide range of applications.
Collapse
Affiliation(s)
- Samsul Rizal
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Tata Alfatah
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - H. P. S. Abdul Khalil
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Esam Bashir Yahya
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - C. K. Abdullah
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Eka Marya Mistar
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Ikramullah Ikramullah
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rudi Kurniawan
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - R. D. Bairwan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|