1
|
Hasoon BA, Hasan DMA, Jawad KH, Shakaer SS, Sulaiman GM, Hussein NN, Mohammed HA, Abomughaid MM, Ramesh T. Promising antibiofilm formation: Liquid phase pulsed laser ablation synthesis of Graphene Oxide@Platinum core-shell nanoparticles. PLoS One 2024; 19:e0310997. [PMID: 39316585 PMCID: PMC11421819 DOI: 10.1371/journal.pone.0310997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
The increasing prevalence of multi-drug resistance in pathogenic bacteria has rendered antibiotics ineffective, necessitating the exploration of alternative antibacterial approaches. Consequently, research efforts have shifted towards developing new antibiotics and improving the efficacy of existing ones. In the present study, novel core shell graphene oxide@platinum nanoparticles (GRO@Pt-NPs) and their unchanging form have been synthesized using the two-step pulsed laser ablation in liquid (PLAL) technique. The first step involved using the graphene target to create graphene nanoparticles (GRO-NPs), followed by the ablation of GRO-NPs inside platinum nanoparticles (Pt-NPs). To characterize the nanoparticles, various methods were employed, including UV-VIS, transmission electron microscopy (TEM), energy dispersive X-ray (EDX), mapping tests, and X-ray diffraction (XRD). The anti-bacterial and anti-biofilm properties of the nanoparticles were investigated. TEM data confirm the creation of GRO@Pt-NPs. The average particle size was 11 nm for GRO-NPs, 14 nm for Pt-NPs, and 26 nm for GRO@Pt-NPs. The results demonstrate that the created GRO@Pt-NPs have strong antibacterial properties. This pattern is mostly produced through the accumulation of GRO@Pt-NPs on the bacterial surface of Klebsiella pneumoniae (K. pneumoniae) and Enterococcus faecium (E. faecium). The inhibition zones against K. pneumoniae and E. faecium when GRO-NPs were used alone were found to be 11.80 mm and 11.50 mm, respectively. For Pt-NPs, the inhibition zones of E. faecium and K. pneumoniae were 20.50 mm and 16.50 mm, respectively. The utilization of GRO@Pt-NPs resulted in a significant increase in these values, with inhibitory rates of 25.50 mm for E. faecium and 20.45 mm for K. pneumoniae. The antibacterial results were more potent in the core-shell structure than the GRO-NPs alone or Pt-NPs alone. The current work uses, for the first time, a fast and effective technique to synthesize the GRO@Pt-NPs by PLAL method, and the preparation has high clinical potential for prospective use as an antibacterial agent.
Collapse
Affiliation(s)
- Buthenia A Hasoon
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Dahlia M A Hasan
- Department of Biomedical Engineering, Technology University, Baghdad, Iraq
| | - Kareem H Jawad
- Department of Laser and Optoelectronics Engineering, University of Technology, Baghdad, Iraq
| | - Saaud S Shakaer
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | | | - Nehia N Hussein
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Qassim, Saudi Arabia
| | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Thotakura Ramesh
- Department of Physics, BVRIT Hyderabad College Engineering for Women, Hyderabad, India
| |
Collapse
|
2
|
Luo Y, Qiu L, Geng M, Zhang W. Retention and fatigue performance of modified polyetheretherketone clasps for removable prosthesis. J Mech Behav Biomed Mater 2024; 154:106539. [PMID: 38598917 DOI: 10.1016/j.jmbbm.2024.106539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE Polyetheretherketone (PEEK) is considered as an alternative to metal material for removable partial denture (RPD). However, the retentive force is not strong as a metal RPD. This study investigated the retention and fatigue performance of PEEK clasps with different proportions of clasp arm engaging the undercut to verify a new strategy to improve their clinical performance. METHODS Three groups (n = 10/group) of PEEK clasps with their terminal 1/3, 2/3 and the whole of retentive arms engaging the undercut were fabricated along with a group (n = 10) of conventional cobalt-chrome (CoCr) clasps as control group. Retentive forces were measured by universal testing machine initially and at an interval of 1500 cycles for a total of 15,000 fatigue cycles. The fatigue cycles were conducted by repeated insertion and removal of the clasp using fatigue testing machine. Each clasp was scanned by Trios3 scanner before and after fatigue test to obtain digital models. The deformation of the clasp was evaluated by root mean square (RMS) through aligning the two models in Geomagic wrap (2021). Scanning electron microscopy (SEM) and finite element analysis were carried out to observe the abrasion and the von Mises stress of the clasp arm. Kruskal-Wallis H test was used to compare the retentive forces and the RMSs of the studied groups followed by Bonferroni multiple comparisons. RESULTS The whole of PEEK clasp arm engaging the undercut provided higher mean retentive forces (7.99 ± 2.02 N) than other PEEK clasp groups (P < 0.001) and was closer to CoCr clasps (11.88 ± 2.05 N). The RMSs of PEEK clasps were lower than CoCr clasps (P < 0.05) while the differences among PEEK clasps were of no statistical significance (P > 0.05). SEM showed that evidences of surface abrasion were observed on the section that engaged the undercut for all groups of clasps. The stress concentration mainly occurred on the initial part of the retentive arm. The maximum von Mises stress of each group was below the compressive strength of PEEK. CONCLUSIONS Proportions of PEEK clasp arm engaging the undercut positively influenced the retentive force and the fatigue resistance of PEEK clasps was superior than CoCr clasps. It is a feasible method to improve the retention of PEEK clasps by increasing the proportion of clasp arm engaging the undercut. Clinical trials are needed to further verify this innovation.
Collapse
Affiliation(s)
- Yichen Luo
- Department of Oral Special Consultation, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, PR China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, PR China
| | - Lin Qiu
- Department of Oral Special Consultation, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, PR China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, PR China
| | - Mingzhu Geng
- Department of Oral Special Consultation, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, PR China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, PR China
| | - Wei Zhang
- Department of Oral Special Consultation, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, PR China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, PR China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, PR China.
| |
Collapse
|
3
|
Antunes M. Application of Graphene-Based Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2748. [PMID: 37887899 PMCID: PMC10609724 DOI: 10.3390/nano13202748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023]
Abstract
This Topic on the "Application of Graphene-Based Materials", which consists of a total of twenty-six articles, including two review articles, written by research groups of experts in the field, considers the most recent research and trends on the synthesis and characterization of graphene-based materials, including nanohybrids, intended for a vast array of high-demanding technological applications, namely batteries/fuel cells, aerogels, laser technology, sensors, electronic/magnetic devices, catalysts, etc [...].
Collapse
Affiliation(s)
- Marcelo Antunes
- Department of Materials Science and Engineering, Poly2 Group, Technical University of Catalonia (UPC BarcelonaTech), ESEIAAT, C/Colom 11, 08222 Terrassa, Spain
| |
Collapse
|
4
|
Lee PC, Peng TY, Ma TL, Chiang KY, Mine Y, Lee IT, Yu CC, Chen SF, Yu JH. Effect of Various Airborne Particle Abrasion Conditions on Bonding between Polyether-Ether-Ketone (PEEK) and Dental Resin Cement. Polymers (Basel) 2023; 15:polym15092114. [PMID: 37177258 PMCID: PMC10181231 DOI: 10.3390/polym15092114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The effects of alumina particle size and jet pressure on the bond strength of polyetheretherketone (PEEK) were examined to determine the airborne particle abrasion parameters with minimal effects on PEEK and to achieve optimal bond strength, as a reference for future clinical use. An alumina particle with four particle sizes and three jet pressures was used to air-abrade PEEK. Surface roughness (Ra), morphology, chemical structure, and wettability were analyzed using a stylus profilometer, scanning electron microscope, X-ray diffractometer, and contact angle analyzer, respectively. The shear bond strength (SBS) of PEEK and dental resin cement was analyzed using a universal testing machine (n = 10). The failure modes and debonded fracture surfaces were observed using optical microscopy. Airborne particle abrasion increased the Ra and hydrophobicity of PEEK and deposited alumina residues. The SBS generally decreased after thermal cycling. A large particle size damaged the PEEK surface. The effects of different particle sizes and jet pressures on the SBS were only significant in certain groups. Adhesive failure was the main mode for all groups. Within the limitations of this study, 110 μm grain-sized alumina particles combined with a jet pressure of 2 bar prevented damage to PEEK, providing sufficient SBS and bonding durability between PEEK and dental resin cement.
Collapse
Affiliation(s)
- Pao-Chieh Lee
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Tien-Li Ma
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kuan-Yu Chiang
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuichi Mine
- Department of Medical Systems Engineering, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chang-Chiang Yu
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Happy Dental Clinic, Taichung 42950, Taiwan
| | - Su-Feng Chen
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jian-Hong Yu
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
5
|
Çakmak G, Herren KV, Donmez MB, Kahveci Ç, Schimmel M, Yilmaz B. Effect of coffee thermocycling on the surface roughness and stainability of nanographene-reinforced polymethyl methacrylate used for fixed definitive prostheses. J Prosthet Dent 2023; 129:507.e1-507.e6. [PMID: 36737355 DOI: 10.1016/j.prosdent.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023]
Abstract
STATEMENT OF PROBLEM A nanographene-reinforced polymethyl methacrylate (PMMA) has been introduced for definitive prostheses. However, knowledge on the surface roughness and stainability of this material is lacking. PURPOSE The purpose of this in vitro study was to compare the surface roughness and stainability of nanographene-reinforced PMMA with those of a prepolymerized PMMA and a reinforced composite resin after coffee thermocycling. MATERIAL AND METHODS Disk-shaped specimens (Ø10×1.5-mm) were prepared from 3 different A1-shade millable resins (prepolymerized PMMA [M-PM; PMMA]; nanographene-reinforced PMMA [G-CAM; G-PMMA]; reinforced composite resin [Brilliant Crios; RCR]). Surface roughness (Ra) values were measured before and after conventional polishing by using a noncontact profilometer. Initial color coordinates were measured over a gray background with a spectrophotometer after polishing. Specimens were then thermocycled in coffee for 5000 cycles. Measurements were repeated after coffee thermocycling, and color differences (ΔE00) were calculated. Ra values among different time intervals were analyzed by using either the Friedman and Dunn tests (RCR) or repeated measures analysis of variance (ANOVA) and Bonferroni corrected paired samples t tests (PMMA and G-PMMA), while Ra values within a time interval were analyzed by using either the Kruskal-Wallis and Dunn tests (before polishing) or 1-way ANOVA and Tukey HSD (after polishing) or Tamhane T2 tests (after coffee thermocycling). ΔE00 values were analyzed by using 1-way ANOVA and Tukey HSD tests, while color coordinates of the specimens after polishing and after coffee thermocycling were compared by using paired samples t tests (α=.05). RESULTS All materials had their highest Ra values before polishing (P≤.011), while differences after polishing and after coffee thermocycling values were nonsignificant (P≥.140). PMMA had higher Ra than RCR before polishing (P=.002), and RCR had higher values than G-PMMA after polishing and after coffee thermocycling (P≤.023). RCR had the highest ΔE00 (P<.001). Polishing increased the b∗ values of PMMA, and coffee thermocycling increased the a∗ values of G-PMMA and all values of RCR (P≤.012). CONCLUSIONS The tested materials had similar and acceptable surface roughness after polishing. The surface roughness of materials was not affected by coffee thermocycling. Considering the reported color thresholds, all materials had acceptable color change, but the computer-aided design and computer-aided manufacturing composite resin had perceptible color change after coffee thermocycling.
Collapse
Affiliation(s)
- Gülce Çakmak
- Senior Research Associate, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Kira Vera Herren
- Predoctoral student, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Private Practice, Zahnaerzte Flamatt, Wünnewil-Flamatt, Switzerland
| | - Mustafa Borga Donmez
- Assistant Professor, Department of Prosthodontics, Faculty of Dentistry, Istinye University, İstanbul, Turkey; Visiting Researcher, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Çiğdem Kahveci
- Assistant Professor, Department of Prosthodontics, Faculty of Dentistry, Giresun University, Giresun, Turkey
| | - Martin Schimmel
- Chairman, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; External Research Associate, Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Burak Yilmaz
- Associate Professor, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Associate Professor, Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Liu Y, Fang M, Zhao R, Liu H, Li K, Tian M, Niu L, Xie R, Bai S. Clinical Applications of Polyetheretherketone in Removable Dental Prostheses: Accuracy, Characteristics, and Performance. Polymers (Basel) 2022; 14:polym14214615. [PMID: 36365609 PMCID: PMC9654455 DOI: 10.3390/polym14214615] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The high-performance thermoplastic polyetheretherketone (PEEK) has excellent mechanical properties, biocompatibility, chemical stability, and radiolucency. The present article comprehensively reviews various applications of PEEK in removable dental prostheses, including in removable partial dentures (RPDs) (frameworks and clasps), double-crown RPDs, and obturators. The clinical performance of PEEK in removable dental prostheses is shown to be satisfactory and promising based on the short-term clinical evidence and technical complications are scarce. Moreover, the accuracy of RPDs is a vital factor for their long-term success rate. PEEK in removable dental prostheses is fabricated using the conventional lost-wax technique and CAD/CAM milling, which produces a good fit. Furthermore, fused deposition modeling is considered to be one of the most practical additive techniques. PEEK in removable prostheses produced by this technique exhibits good results in terms of the framework fit. However, in light of the paucity of evidence regarding other additive techniques, these manufacturers cannot yet be endorsed. Surface roughness, bacterial retention, color stability, and wear resistance should also be considered when attempting to increase the survival rates of PEEK removable prostheses. In addition, pastes represent an effective method for PEEK polishing to obtain a reduced surface roughness, which facilitates lower bacterial retention. As compared to other composite materials, PEEK is less likely to become discolored or deteriorate due to wear abrasion.
Collapse
Affiliation(s)
- Yuchen Liu
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ming Fang
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (M.F.); (S.B.)
| | - Ruifeng Zhao
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Hengyan Liu
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Kangjie Li
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Min Tian
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Lina Niu
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Rui Xie
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Shizhu Bai
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (M.F.); (S.B.)
| |
Collapse
|