1
|
Alparslan C, Yentimur MF, Kütük-Sert T, Bayraktar Ş. A Review on Additive Manufactured Engineering Materials for Enhanced Road Safety and Transportation Applications. Polymers (Basel) 2025; 17:877. [PMID: 40219267 PMCID: PMC11991174 DOI: 10.3390/polym17070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Road safety systems are critical engineering solutions designed to minimize the effects of traffic accidents and increase the safety of transportation infrastructures. Traditional road safety structures are generally manufactured using steel, concrete and polymer materials. However, manufacturing processes with these materials are high-cost, limited in terms of design flexibility and can lead to material waste. In recent years, rapidly developing additive manufacturing (AM) technologies stand out as an important alternative in the production of road safety systems. AM enables the production of complex geometries and enables the development of lightweight and high-strength structures that can absorb impact energy more effectively. This study focuses on the use of AM methods in road safety systems, examining the performance and applicability of polymer, metal and composite materials. The advantages of AM-produced road safety barriers, traffic signs, speed bumps and shock absorbing structures, depending on the material type, are evaluated. In addition, the advantages offered by AM, such as design flexibility, sustainable production processes and material efficiency, are discussed, and technical challenges and applicability limitations are also discussed. This review evaluates the current and potential applications of AM for road safety systems, providing insights into how this technology can be used more effectively in the future. The findings of the study provide significant contributions towards improving the integration of AM technologies into road safety systems from both academic and industrial perspectives. The findings of the study provide important contributions to the development of the integration of AM technologies into road safety systems from both academic and industrial perspectives. Future research can further enhance the innovative potential of AM in road safety systems, with a particular focus on sustainable material use, design optimization and energy efficiency in manufacturing processes. However, overcoming technical challenges in large-scale applications and compliance with regulatory standards are critical research areas for the widespread adoption of this technology.
Collapse
Affiliation(s)
- Cem Alparslan
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (C.A.); (Ş.B.)
| | - Muhammed Fatih Yentimur
- Department of Civil Engineering, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, 53100 Rize, Türkiye;
| | - Tuba Kütük-Sert
- Department of Civil Engineering, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, 53100 Rize, Türkiye;
| | - Şenol Bayraktar
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, 53100 Rize, Türkiye; (C.A.); (Ş.B.)
| |
Collapse
|
2
|
Ospina C, Ibáñez-Ibáñez PF, Tagliaro I, Stendardo L, Tosatti S, Antonini C. Withdrawn: Low ice adhesion on soft surfaces: Elasticity or lubrication effects? J Colloid Interface Sci 2024; 676:1118. [PMID: 39111122 DOI: 10.1016/j.jcis.2024.07.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Catalina Ospina
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Pablo F Ibáñez-Ibáñez
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy; Department of Applied Physics, University of Granada, Av. de Fuente Nueva, s/n, 18071, Granada, Spain
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy.
| | - Luca Stendardo
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | | | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy.
| |
Collapse
|
4
|
Delacourt C, Chemtob A, Goddard JP, Spangenberg A, Cormier M. 3D-Printed Eosin Y-Based Heterogeneous Photocatalyst for Organic Reactions. Chemistry 2024; 30:e202304363. [PMID: 38411305 DOI: 10.1002/chem.202304363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 02/28/2024]
Abstract
Heterogenization of Eosin Y by 3D-printing and its application in photocatalysis are reported. The approach allows a fine tuning of the photocatalyst morphology and its rapid preparation. Photocatalytic activity was evaluated through model organic reactions involving oxidation, reduction, and photosensitization pathways. The efficiency, recyclability and stability of 3D printed EY is remarkable paving the way to new generation of heterogeneous photocatalysts with a perfect control of their shape and adaptable to any photoreactors.
Collapse
Affiliation(s)
- Cloé Delacourt
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace, Université de Strasbourg, CNRS, 3 rue Alfred Werner, 68093, Mulhouse, France
- Institut de Science des Matériaux de Mulhouse (IS2 M) UMR 7361, Université de Haute-Alsace, Université de Strasbourg, CNRS, 15 rue Jean Starcky, 68057, Mulhouse, France
| | - Abraham Chemtob
- Institut de Science des Matériaux de Mulhouse (IS2 M) UMR 7361, Université de Haute-Alsace, Université de Strasbourg, CNRS, 15 rue Jean Starcky, 68057, Mulhouse, France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace, Université de Strasbourg, CNRS, 3 rue Alfred Werner, 68093, Mulhouse, France
| | - Arnaud Spangenberg
- Institut de Science des Matériaux de Mulhouse (IS2 M) UMR 7361, Université de Haute-Alsace, Université de Strasbourg, CNRS, 15 rue Jean Starcky, 68057, Mulhouse, France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace, Université de Strasbourg, CNRS, 3 rue Alfred Werner, 68093, Mulhouse, France
| |
Collapse
|
5
|
Kolibaba TJ, Killgore JP, Caplins BW, Higgins CI, Arp U, Miller CC, Poster DL, Zong Y, Broce S, Wang T, Talačka V, Andersson J, Davenport A, Panzer MA, Tumbleston JR, Gonzalez JM, Huffstetler J, Lund BR, Billerbeck K, Clay AM, Fratarcangeli MR, Qi HJ, Porcincula DH, Bezek LB, Kikuta K, Pearlson MN, Walker DA, Long CJ, Hasa E, Aguirre-Soto A, Celis-Guzman A, Backman DE, Sridhar RL, Cavicchi KA, Viereckl RJ, Tong E, Hansen CJ, Shah DM, Kinane C, Pena-Francesch A, Antonini C, Chaudhary R, Muraca G, Bensouda Y, Zhang Y, Zhao X. Results of an interlaboratory study on the working curve in vat photopolymerization. ADDITIVE MANUFACTURING 2024; 84:10.1016/j.addma.2024.104082. [PMID: 38567361 PMCID: PMC10986335 DOI: 10.1016/j.addma.2024.104082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters. Here, an interlaboratory study (ILS) is described in which 24 individual laboratories performed a working curve measurement on an aliquot from a single batch of PAM resin. The ILS reveals that there is enormous scatter in the working curve data and the key fit parameters derived from it. The measured depth of light penetration Dp varied by as much as 7x between participants, while the critical radiant exposure for gelation Ec varied by as much as 70x. This significant scatter is attributed to a lack of common procedure, variation in light engines, epistemic uncertainties from the Jacobs equation, and the use of measurement tools with insufficient precision. The ILS findings highlight an urgent need for procedural standardization and better hardware characterization in this rapidly growing field.
Collapse
Affiliation(s)
- Thomas J. Kolibaba
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Jason P. Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Benjamin W. Caplins
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Callie I. Higgins
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Uwe Arp
- Sensor Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - C. Cameron Miller
- Sensor Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Dianne L. Poster
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Yuqin Zong
- Sensor Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Scott Broce
- 3D Systems, 26600 SW Parkway Ave #300, Wilsonville, OR 97070, USA
| | - Tong Wang
- Allnex USA Inc., 9005 Westside Parkway, Alpharetta, GA 30009, USA
| | | | | | - Amelia Davenport
- Arkema, Inc., 1880 S. Flatirons Ct. Suite J, Boulder, CO 80301, USA
| | | | | | | | | | - Benjamin R. Lund
- Desktop Metal, 1122 Alma Rd. Ste. 100, Richardson, TX 75081, USA
| | - Kai Billerbeck
- DMG Digital Enterprises SE, Elbgaustraße 248, Hamburg 22547, Germany
| | - Anthony M. Clay
- DEVCOM-Army Research Laboratory, FCDD-RLW-M, Manufacturing Science and Technology Branch, 6300 Roadman Road, Aberdeen Proving Ground, MD 21005, USA
| | - Marcus R. Fratarcangeli
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr, Atlanta, GA 30332, USA
| | - H. Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr, Atlanta, GA 30332, USA
| | | | - Lindsey B. Bezek
- Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
| | - Kenji Kikuta
- Osaka Organic Chemical Industry, Ltd., 1-7-2, Nihonbashi Honcho, Chuo, Tokyo 103-0023, Japan
| | | | | | - Corey J. Long
- Sartomer, 502 Thomas Jones Way, Exton, PA 19341, USA
| | - Erion Hasa
- Stratasys, Inc., 1122 Saint Charles St, Elgin, IL 60120, USA
| | - Alan Aguirre-Soto
- School of Engineering and Science, Tecnologico de Monterrey, Colonia Tecnológico, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| | - Angel Celis-Guzman
- School of Engineering and Science, Tecnologico de Monterrey, Colonia Tecnológico, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| | - Daniel E. Backman
- Lung Biotechnology, PBC., 1000 Sprint Street, Silver Spring, MD 20910, USA
| | | | - Kevin A. Cavicchi
- School of Polymer Science and Polymer Engineering, University of Akron., 250 S Forge St, Akron, OH 44325, USA
| | - RJ Viereckl
- School of Polymer Science and Polymer Engineering, University of Akron., 250 S Forge St, Akron, OH 44325, USA
| | - Elliott Tong
- School of Polymer Science and Polymer Engineering, University of Akron., 250 S Forge St, Akron, OH 44325, USA
| | - Christopher J. Hansen
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Lowell, 1 University Ave, Lowell, MA 01854, USA
| | - Darshil M. Shah
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Lowell, 1 University Ave, Lowell, MA 01854, USA
| | - Cecelia Kinane
- Department of Materials Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
| | - Abdon Pena-Francesch
- Department of Materials Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milan 20125, Italy
| | - Rajat Chaudhary
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milan 20125, Italy
| | - Gabriele Muraca
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milan 20125, Italy
| | - Yousra Bensouda
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700O′Hara Street, Pittsburgh, PA 15261, USA
| | - Yue Zhang
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700O′Hara Street, Pittsburgh, PA 15261, USA
| | - Xiayun Zhao
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700O′Hara Street, Pittsburgh, PA 15261, USA
| |
Collapse
|