1
|
Panda P, Maity P, Dutta A, Das RK. Anisotropic Anti-Swelling Hydrogels with Hydrophobic Association and Metal-Ligand Cross-Links for Applications in Underwater Strain Sensing and Anisotropic Actuation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40393780 DOI: 10.1021/acs.langmuir.5c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
We report herein a strategy to design mechanically strong and anisotropic metal ion cross-linked conducting hydrogel materials and their possible application in anisotropic resistive strain sensing. A dynamic hydrophobic association was incorporated in a chemically cross-linked poly(acrylamide-co-methacrylic acid) hydrogel by incorporating a hydrophobic comonomer appended with a terpyridine ligand. After prestretching this hydrogel, Fe3+ ion-ligand cross-linking was established with carboxylic group of methacrylic acid and the terpyridine unit of the hydrophobic comonomer to lock the alignment of the polymer chains, which significantly enhanced the mechanical performance of the hydrogel. The anisotropic hydrogels achieved high mechanical strength of 1.6-2.7 MPa, breaking strain of 250-320%, toughness of 3-4 MJ m-3, and elastic modulus of 1.7-2.5 MPa under optimized experimental condition. Significantly inferior mechanical performance was observed when the load was applied in the direction perpendicular to prestretching direction. High fracture energy of 0.99 ± 0.4 kJ m-2 -similar to that of (∼1000 J m-2) the biological load bearing tissue cartilage-could be achieved when the crack was introduced perpendicular to prestretch direction. The anisotropic alignment of the polymer chains in the hydrogel was confirmed by FESEM and SAXS experiments. The Fe3+ ions as well as the hydrophobe concentration played a vital role in altering the mechanical properties of these hydrogels. The presence of hydrophobic association contributes to enhancing the mechanical anisotropy of the hydrogels, whereas the methacrylic acid-Fe3+ cross-links contributed to enhancing the tensile strength and stiffness of these anisotropic hydrogels. The hydrogel materials demonstrated anisotropic resistive strain sensing and anisotropic actuation behavior. These anisotropic swelling-resistant hydrogels also showed capability for stable and repetitive underwater strain sensing, which may have potential applications in underwater human motion sensing and soft robotics application.
Collapse
Affiliation(s)
- Prachishree Panda
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pintu Maity
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Agniva Dutta
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajat Kumar Das
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Rogic Miladinovic Z, Krstic M, Suljovrujic E. Swelling Behavior, Biocompatibility, and Controlled Delivery of Sodium-Diclofenac in New Temperature-Responsive P(OEGMA/OPGMA) Copolymeric Hydrogels. Gels 2025; 11:201. [PMID: 40136906 PMCID: PMC11942386 DOI: 10.3390/gels11030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
This study investigates the synthesis and properties of innovative poly(oligo(alkylene glycol)) methacrylate hydrogels synthesized via gamma radiation-induced copolymerization and the crosslinking of oligo(ethylene glycol) methacrylate (OEGMA) and oligo(propylene glycol) methacrylate (OPGMA) at varying mole fractions. Our primary objective is to investigate the impact of copolymerization on the swelling properties of P(OEGMA/OPGMA) hydrogels compared to their homopolymeric counterparts, namely, POEGMA and POPGMA, which exhibit distinct volume phase transition temperatures (VPTTs) of around 70 and 13 °C, respectively, under physiological conditions. To this end, a comprehensive library of smart methacrylate-based hydrogel biomaterials was developed, featuring detailed data on their swelling behavior across different copolymer molar ratios and physiological temperature ranges. To achieve these objectives, we conducted swelling behavior analysis across a wide range of temperatures, assessed the pH sensitivity of hydrogels, utilized scanning electron microscopy for morphological characterization, performed in vitro biocompatibility assessment through cell viability and hemolysis assays, and employed diclofenac sodium as a model drug to control drug delivery testing. Our findings demonstrate that the newly synthesized P(OEGMA40/OPGMA60) copolymeric hydrogel exhibits desirable characteristics, with VPTT close to the physiological temperatures required for controlled drug delivery applications.
Collapse
Affiliation(s)
| | | | - Edin Suljovrujic
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia; (Z.R.M.); (M.K.)
| |
Collapse
|
3
|
Chen M, Liu J, Lin J, Zhuang K, Shan Y, Tiwari S, Jiang L, Zhang J. Progress in Polysaccharide-Based Hydrogels for Preventing Postoperative Adhesions: A Review. Gels 2025; 11:188. [PMID: 40136893 PMCID: PMC11942346 DOI: 10.3390/gels11030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Postoperative adhesions are common complications following surgery, often accompanied by pain and inflammation that significantly diminish patients' quality of life. Moreover, managing postoperative adhesions incurs substantial cost, imposing a considerable financial burden on both patients and healthcare systems. Traditional anti-adhesion materials are confronted with limitations, such as inadequate tissue adherence in a moist environment and poor degradability, underscoring the urgent need for more effective solutions. Recently, polysaccharide-based hydrogels have received considerable attention for their potential in preventing postoperative adhesions. The hydrogels not only facilitate wound healing but also effectively reduce inflammation, providing a promising approach to preventing postoperative adhesions. This review provides an extensive analysis of the progress made in the development of polysaccharide-based hydrogels for postoperative anti-adhesion therapy. It highlights their principal benefits, outlines future research trajectories, and addresses the ongoing challenges that need to be overcome.
Collapse
Affiliation(s)
- Mengyao Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
| | - Jialin Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhong Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhuang
- Pharma Solutions, Nutrition and Health, BASF (China) Company, Ltd., 333 Jiang Xin Sha Road, Shanghai 200137, China
| | - Yudong Shan
- Hangzhou Zhongmeihuadong Pharmaceutical Co., Ltd., 866 Moganshan Road, Hangzhou 310011, China
| | - Sandip Tiwari
- Pharma Solutions, BASF Corp., 500 White Plains Rd, Tarrytown, NY 10591, USA
| | - Lei Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, Ningbo 315300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Xue M, Pei X, Zhang J, Niu C, Wang H, Nie L, Ding J. Double cross-linked cellulose hydrogel-supported Fe species for efficient wound healing. RSC Adv 2025; 15:7885-7896. [PMID: 40078972 PMCID: PMC11900889 DOI: 10.1039/d4ra09019e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Traditional dressings often lack adequate skin structure support, which can lead to secondary damage, poor hemostasis, and an increased risk of inflammation due to wound adhesion. In this work, cellulose hydrogels were prepared by physical/chemical double cross-linking via a 'sol-gel' strategy and further loaded with Fe to obtain a three-dimensional (3D) porous cellulose/Fe composite hydrogel (cellulose/Fe gel). The obtained cellulose/Fe gel featured a 3D porous nanofiber structure, excellent water absorption/moisture retention performance, and good mechanical stability. Moreover, it could effectively remove reactive oxygen species (ROS) and inhibit cellular oxidative stress, demonstrating potential anti-inflammatory effects. When applied to wound repair in rats, cellulose/Fe gel, with excellent cell compatibility, effectively stimulated the formation of new blood vessels and significantly reduced the level of inflammatory factors, promoting wound healing. This work provides a new approach for cellulose-based hydrogel wound dressings.
Collapse
Affiliation(s)
- Mingyue Xue
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
| | - Jian Zhang
- School of Forensic Medicine, Guizhou Medical University Guiyang 550004 China
| | - Cuiling Niu
- Yunnan Characteristic Plant Extraction Laboratory, College of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Hongqin Wang
- School of Materials and Architectural Engineering, Guizhou Normal University Guiyang 550025 China
| | - Ling Nie
- School of Materials Science & Engineering, Hubei University of Automotive Technology Shiyan 442002 China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University Guiyang 550004 China
| |
Collapse
|
5
|
Oyom W, Awuku RB, Faraji H, Bi Y, Tahergorabi R. Protein hydrogel formation from chicken processing By-Products: Exploring applications in food. Food Res Int 2025; 201:115632. [PMID: 39849726 DOI: 10.1016/j.foodres.2024.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Chicken processing by-products, such as meat left over on bones, skin, frames and connective tissues, are great sources of functional proteins that offer significant potential for value-added applications, contributing to both waste reduction and environmental sustainability. By transforming the recovered proteins from by-products into hydrogels, new materials can be developed for use in various industries, including food. However, understanding the chemical composition of these by-products and optimizing hydrogel production techniques are critical to producing hydrogels with desirable properties. This review examines the latest techniques for isolating proteins from chicken by-products and transforming them into functional hydrogels. It highlights methods of hydrogel preparation, crosslinking, and characterization, with a focus on their conformational properties and applications in food systems. The review also addresses the current scope of health benefits and future potential of these hydrogels in enhancing food product quality. Advances in protein extraction and hydrogel formation show that these hydrogels can retain water, improve gelation, and maintain stability, making them ideal for food products. Specifically, they can be used as edible coatings in fried foods to reduce fat uptake and limit the formation of harmful compounds. Chicken protein-based hydrogels hold great potential for future food processing applications, promoting sustainability and consumer well-being.
Collapse
Affiliation(s)
- William Oyom
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
| | - Ruth Boahemaah Awuku
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
| | - Habibollah Faraji
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.
| |
Collapse
|
6
|
Hong S, Baravkar SB, Lu Y, Masoud AR, Zhao Q, Zhou W. Molecular Modification of Queen Bee Acid and 10-Hydroxydecanoic Acid with Specific Tripeptides: Rational Design, Organic Synthesis, and Assessment for Prohealing and Antimicrobial Hydrogel Properties. Molecules 2025; 30:615. [PMID: 39942719 PMCID: PMC11819776 DOI: 10.3390/molecules30030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Royal jelly and medical grade honey are traditionally used in treating wounds and infections, although their effectiveness is often variable and insufficient. To overcome their limitations, we created novel amphiphiles by modifying the main reparative and antimicrobial components, queen bee acid (hda) and 10-hydroxyl-decanoic acid (hdaa), through peptide bonding with specific tripeptides. Our molecular design incorporated amphiphile targets as being biocompatible in wound healing, biodegradable, non-toxic, hydrogelable, prohealing, and antimicrobial. The amphiphilic molecules were designed in a hda(hdaa)-aa1-aa2-aa3 structural model with rational selection criteria for each moiety, prepared via Rink/Fmoc-tBu-based solid-phase peptide synthesis, and structurally verified by NMR and LC-MS/MS. We tested several amphiphiles among those containing moieties of hda or hdaa and isoleucine-leucine-aspartate (ILD-amidated) or IL-lysine (ILK-NH2). These tests were conducted to evaluate their prohealing and antimicrobial hydrogel properties. Our observation of their hydrogelation and hydrogel-rheology showed that they can form hydrogels with stable elastic moduli and injectable shear-thinning properties, which are suitable for cell and tissue repair and regeneration. Our disc-diffusion assay demonstrated that hdaa-ILK-NH2 markedly inhibited Staphylococcus aureus. Future research is needed to comprehensively evaluate the prohealing and antimicrobial properties of these novel molecules modified from hda and hdaa with tripeptides.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA
| | - Sachin B. Baravkar
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Qi Zhao
- NMR Laboratory, Department of Chemistry, Tulane University, New Orleans, LA 70115, USA;
| | - Weilie Zhou
- Department of Physics and AMRI, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
7
|
Li B, Li C, Yan Z, Yang X, Xiao W, Zhang D, Liu Z, Liao X. A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications. Int J Biol Macromol 2025; 287:138323. [PMID: 39645113 DOI: 10.1016/j.ijbiomac.2024.138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.
Collapse
Affiliation(s)
- Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chenchen Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ziyi Yan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Yang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Dawei Zhang
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan 250031, China.
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
8
|
Darvishi A, Ansari M. Thermoresponsive and Supramolecular Polymers: Interesting Biomaterials for Drug Delivery. Biotechnol J 2024; 19:e202400379. [PMID: 39380492 DOI: 10.1002/biot.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
How to use and deliver drugs to diseased and damaged areas has been one of the main concerns of pharmacologists and doctors for a long time. With the efforts of researchers, the advancement of technology, and the involvement of engineering in the health field, diverse and promising approaches have been studied and used to achieve this goal. A better understanding of biomaterials and the ability of production equipment led researchers to offer new drug delivery systems to the world. In recent decades, responsive polymers (exclusively to temperature and pH) and supramolecular polymers have received much attention due to their unique capabilities. Although this field of research still needs to be scrutinized and studied more, their recognition, examination, and use as drug delivery systems is a start for a promising future. This review study, focusing on temperature-responsive and supramolecular biomaterials and their application as drug delivery systems, deals with their structure, properties, and role in the noninvasive and effective delivery of medicinal agents.
Collapse
Affiliation(s)
- Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
9
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
10
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
11
|
Chelu M, Calderon Moreno JM, Musuc AM, Popa M. Natural Regenerative Hydrogels for Wound Healing. Gels 2024; 10:547. [PMID: 39330149 PMCID: PMC11431064 DOI: 10.3390/gels10090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Regenerative hydrogels from natural polymers have come forth as auspicious materials for use in regenerative medicine, with interest attributed to their intrinsic biodegradability, biocompatibility, and ability to reassemble the extracellular matrix. This review covers the latest advances in regenerative hydrogels used for wound healing, focusing on their chemical composition, cross-linking mechanisms, and functional properties. Key carbohydrate polymers, including alginate, chitosan, hyaluronic acid, and polysaccharide gums, including agarose, carrageenan, and xanthan gum, are discussed in terms of their sources, chemical structures and specific properties suitable for regenerative applications. The review further explores the categorization of hydrogels based on ionic charge, response to physiological stimuli (i.e., pH, temperature) and particularized roles in wound tissue self-healing. Various methods of cross-linking used to enhance the mechanical and biological performance of these hydrogels are also examined. By highlighting recent innovations and ongoing challenges, this article intends to give a detailed understanding of natural hydrogels and their potential to revolutionize regenerative medicine and improve patient healing outcomes.
Collapse
Affiliation(s)
| | - Jose M. Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (A.M.M.)
| | | | - Monica Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (A.M.M.)
| |
Collapse
|
12
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
13
|
Lu Q, Liu W, Chen D, Yu D, Song Z, Wang H, Li G, Liu X, Ge S. Hydrophobic association-improved multi-functional hydrogels with liquid metal droplets stabilized by xanthan gum and PEDOT:PSS for strain sensors. Int J Biol Macromol 2024; 271:132494. [PMID: 38788874 DOI: 10.1016/j.ijbiomac.2024.132494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The synthesis of liquid metal-infused hydrogels, typically constituted by polyacrylamide networks crosslinked through covalent bonds, often encounters a conundrum: they exhibit restricted extensibility and a diminished capacity for self-repair, owing to the inherently irreversible nature of the covalent linkages. This study introduces a hydrophobically associated hydrogel embedding gallium (Ga)-droplets, realized through the in situ free radical copolymerization of hydrophobic hexadecyl methacrylate (HMA) and hydrophilic acrylamide (AM) in a milieu containing xanthan gum (XG) and PEDOT:PSS, which co-stabilizes the Ga-droplets. The Ga-droplets, synergistically functioning as conductive agents alongside PEDOT:PSS, also expedite the hydrogel's formation. The resultant XG/PEDOT:PSS-Ga-P(AM-HMA) hydrogel is distinguished by its remarkable extensibility (2950 %), exceptional toughness (3.28 MJ/m3), superior adherence to hydrophobic, smooth substrates, and an innate ability for hydrophobic-driven self-healing. As a strain sensing medium, this hydrogel-based sensor exhibits heightened sensitivity (gauge factor = 12.66), low detection threshold (0.1 %), and robust durability (>500 cycles). Furthermore, the inclusion of glycerol endows the XG/PEDOT:PSS-Ga-P(AM-HMA) hydrogel with anti-freezing properties without compromising its mechanical integrity and sensing acumen. This sensor adeptly captures a spectrum of human movements, from the nuanced radial pulse to extensive joint articulations. This research heralds a novel approach for fabricating multifaceted PAM-based hydrogels with toughness and superior sensing capabilities.
Collapse
Affiliation(s)
- Qishu Lu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China.
| | - Duo Chen
- Department of Optoelectronic Science and Technology, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China.
| | - Zhaoping Song
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Huili Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Guodong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| |
Collapse
|
14
|
Zeichner J, Bussmann T, Weise JM, Maass E, Krüger A, Schade AK, Lain E, Mariwalla K, Kirchner F, Draelos ZD. Evaluation of Antioxidants' Ability to Enhance Hyaluronic-acid Based Topical Moisturizers. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2024; 17:48-51. [PMID: 38495545 PMCID: PMC10941847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Hyaluronic acid (HA) is a unique molecule of the extracellular matrix with multiple biological activities. In skin, HA plays an essential role as a humectant, capable of binding up to 1,000 times its mass with water, providing skin with moisture and viscoelastic properties. HA concentration and synthesis decrease significantly in aging skin, due to exogenous and endogenous factors, including photoaging and HA metabolism. A key driver for HA degradation and reduced concentration is mediated via induction of reactive oxygen species (ROS) and other free radicals. Objective In this study, we evaluate antioxidant ingredients essential in the development of next-generation HA-based topical formulations aimed at leveraging HA's ability to maximize anti-aging properties. Methods Two antioxidants, glycine saponin (Glycine soja germ extract) and glycyrrhetinic acid (enoxolone), were evaluated for stimulation of endogenous HA production and inhibition of endogenous hyaluronidase activity, respectively. Results The antioxidant glycine saponin induced endogenous HA synthesis in fibroblasts, while the antioxidant glycyrrhetinic acid decreased the degradation rate of HA by 54 percent. Conclusion While HA has been included in numerous topical skin products, critical aspects of HA metabolism, especially in aging skin, have often been overlooked, including decreases in HA synthesis with increasing age, and increases in HA degradation mediated by exogenously induced reactive oxygen species and free radicals and increased enzymatic degradation by endogenous hyaluronidases. Here, we describe a unique approach to inclusion of two antioxidants essential for the development of the next generation of antioxidant complex-based topical skin formulations to limit the signs of aging skin.
Collapse
Affiliation(s)
- Joshua Zeichner
- Dr. Zeichner is with the Department of Dermatology at Mount Sinai Hospital in New York, New York
| | - Tanja Bussmann
- Drs. Bussmann and Weise, Ms. Maass, Ms. Krüger, and Ms. Schade are with Research and Development at Beiersdorf AG in Hamburg, Germany
| | - Julia M. Weise
- Drs. Bussmann and Weise, Ms. Maass, Ms. Krüger, and Ms. Schade are with Research and Development at Beiersdorf AG in Hamburg, Germany
| | - Elisabeth Maass
- Drs. Bussmann and Weise, Ms. Maass, Ms. Krüger, and Ms. Schade are with Research and Development at Beiersdorf AG in Hamburg, Germany
| | - Andrea Krüger
- Drs. Bussmann and Weise, Ms. Maass, Ms. Krüger, and Ms. Schade are with Research and Development at Beiersdorf AG in Hamburg, Germany
| | - Anne-Kathleen Schade
- Drs. Bussmann and Weise, Ms. Maass, Ms. Krüger, and Ms. Schade are with Research and Development at Beiersdorf AG in Hamburg, Germany
| | - Edward Lain
- Dr. Mariwalla is with Mariwalla Dermatology in West Islip, New York
| | | | - Frank Kirchner
- Mr. Kirchner is with Beiersdorf Inc. in Florham Park, New Jersey
| | - Zoe D. Draelos
- Dr. Draelos is with Dermatology Consulting Services, PLLC in High Point, North Carolina
| |
Collapse
|
15
|
Araujo Neto LA, Silva LP. Influence of biopolymer composition and crosslinking agent concentration on the micro- and nanomechanical properties of hydrogel-based filaments. J Mech Behav Biomed Mater 2024; 150:106316. [PMID: 38145614 DOI: 10.1016/j.jmbbm.2023.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Hydrogel filaments were manufactured using wet spinning technique, incorporating variations in the concentrations of sodium alginate, gelatin, and calcium chloride (crosslinking agent). The combination of biopolymer concentrations was determined using design of experiments (DoE) approach. The resulting filaments were produced from the developed hydrogels. Tensile and vertical strength analyses of the filaments were conducted using an electromechanical extensor. Atomic force microscopy was employed to evaluate the roughness, viscoelasticity, retraction, and deflection of the hydrogels. By employing DoE, a total of seventeen different combinations of biopolymers and crosslinkers were generated to construct the hydrogels. The filaments exhibited variations in electromechanical traction (measured in kPa) and produced distinct stress peaks. Furthermore, diverse roughness values were observed among the tested materials, with the combinations featuring higher concentrations of sodium alginate displaying the highest Young's modulus. This study demonstrates that manipulating the concentrations of biopolymers and crosslinking agents can modulate the micro and nanomechanical properties of biopolymeric filaments.
Collapse
Affiliation(s)
- Lucio Assis Araujo Neto
- Embrapa Genetic Resources and Biotechnology, Laboratory of Nanobiotechnology (LNANO), Brasília, 70770-917, DF, Brazil; Federal University of Paraná (UFPR), Postgraduate Program in Pharmaceutical Sciences, Curitiba, 80210-170, PR, Brazil
| | - Luciano Paulino Silva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Nanobiotechnology (LNANO), Brasília, 70770-917, DF, Brazil; Federal University of Paraná (UFPR), Postgraduate Program in Pharmaceutical Sciences, Curitiba, 80210-170, PR, Brazil.
| |
Collapse
|
16
|
Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym 2024; 323:121408. [PMID: 37940291 DOI: 10.1016/j.carbpol.2023.121408] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Hydrogels are three-dimensional networks of polymer chains containing large amounts of water in their structure. Hydrogels have received significant attention in biomedical applications owing to their attractive physicochemical properties, including flexibility, softness, biodegradability, and biocompatibility. Different natural and synthetic polymers have been intensely explored in developing hydrogels for the desired applications. Biopolymers-based hydrogels have advantages over synthetic polymers regarding improved cellular activity and weak immune response. These properties can be further improved by grafting with other polymers or adding nanomaterials, and they structurally mimic the living tissue environments, which opens their broad applicability. The hydrogels can be physically or chemically cross-linked depending on the structure. The use of different biopolymers-based hydrogels in biomedical applications has been reviewed and discussed earlier. However, no report is still available to comprehensively introduce the synthesis, advantages, disadvantages, and biomedical applications of biopolymers-based hydrogels from the material point of view. Herein, we systematically overview different synthesis methods of hydrogels and provide a holistic approach to biopolymers-based hydrogels for biomedical applications, especially in bone regeneration, wound healing, drug delivery, bioimaging, and therapy. The current challenges and prospects of biopolymers-based hydrogels are highlighted rationally, giving an insight into the progress of these hydrogels and their practical applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
17
|
Ullah R, Shah LA, Khan M, Ara L. Guar gum reinforced conductive hydrogel for strain sensing and electronic devices. Int J Biol Macromol 2023; 246:125666. [PMID: 37406904 DOI: 10.1016/j.ijbiomac.2023.125666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Hydrophobically associated conductive hydrogels got great attention due to their excellent properties like stretchability, energy dissipation mechanism, and strain sensor. But hydrophobically associated hydrogels have poor mechanical properties and time response to external stimuli. To enhance the mechanical properties and response to stimuli, Acrylamide- co-Butyl acrylate/Gum based conductive hydrogels were prepared. SDS works as a cross-linker and micelle-forming agent while NaCl makes hydrogel as conductive. The results show that our % strain sensing reached up to 400 %, and fracture stress and fracture strain reached to 0.5 MPa and 401 % respectively. Besides this, it's having an excellent response to continuous stretching and unstretching multiple cycles without any fracture up to 180 s and an excellent time response of 190 s. The conductivity of the hydrogel was 0.20 Sm-1. The hydrophobic hydrogels showed a clear and quick response to human motions like finger, wresting, writing, speaking, etc. Interestingly, our prepared hydrogels can detect the mood of the human face. Similarly, the hydrogels were found efficient in bridging the surface of electronic devices with human skin. This indicates that our prepared hydrogels can monitor human body motion and will replace the existing materials used in strain sensors in the near future.
Collapse
Affiliation(s)
- Rafi Ullah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
| | - Mansoor Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Latafat Ara
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| |
Collapse
|
18
|
Lupu A, Gradinaru LM, Gradinaru VR, Bercea M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023; 9:gels9050376. [PMID: 37232968 DOI: 10.3390/gels9050376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source of inspiration for new structures and new functionalities of more and more competitive materials. Natural compounds present a series of physico-chemical and biological characteristics suitable for biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity. Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices in the human body. This paper discusses the main advantages of the presence of biomolecules (polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural compounds and their specific properties are emphasized. The most suitable applications will be highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture, wound dressings, 3D bioprinting, foods, etc.
Collapse
Affiliation(s)
- Alexandra Lupu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|