1
|
Yu L, Peng J, Han Q, Huang W, Jiang Y, Ruan Y, Liu X, Milcovich G, Weng X. Encapsulation of thyme essential oil in dendritic mesoporous silica nanoparticles: Enhanced antimycotic properties and ROS-mediated inhibition mechanism. Int J Pharm 2025; 669:125057. [PMID: 39653292 DOI: 10.1016/j.ijpharm.2024.125057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Dendritic mesoporous silica nanoparticles (DMSNs) have emerged as promising nanocarriers due to their unique three-dimensional structure and tunable pore characteristics. This study investigates the potential of DMSNs to deliver thyme essential oil (TEO) for enhanced antifungal activity against Fusarium oxysporum (F. oxysporum), a major plant pathogen. DMSNs were successfully synthesized and characterized, followed by the encapsulation of TEO within their porous structure. The resulting TEO@DMSNs composites exhibited significant antifungal activity against F. oxysporum, with inhibition rates reaching 70%, indicating an effective crop protection with a dose-dependent effect. The enhanced antifungal efficacy of TEO@DMSNs compared to free TEO is attributed to the sustained release of TEO and the synergistic effect of the nanocarrier itself. In-depth mechanism investigations revealed that TEO@DMSNs likely disrupted the fungal cell membrane, leading to leakage of cellular contents and ultimately cell death. Moreover, DMSNs and TEO@DMSNs were found to be safe for plant growth, demonstrating their potential as environmentally friendly antifungal agents. This study provides valuable insights into the design and development of advanced nanocarriers for targeted drug delivery and disease management in agriculture.
Collapse
Affiliation(s)
- Liyuan Yu
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jianqin Peng
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Qun Han
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Wanxin Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yijie Jiang
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yongming Ruan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xia Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Gesmi Milcovich
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy.
| | - Xuexiang Weng
- College of Chemistry and Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
2
|
Grisolia A, De Santo M, Curcio M, Cavallaro PA, Morelli C, Leggio A, Pasqua L. Engineered Mesoporous Silica-Based Nanoparticles: Characterization of Surface Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3352. [PMID: 38998432 PMCID: PMC11243720 DOI: 10.3390/ma17133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Mesoporous silica-based nanomaterials have emerged as multifunctional platforms with applications spanning catalysis, medicine, and nanotechnology. Since their synthesis in the early 1990s, these materials have attracted considerable interest due to their unique properties, including high surface area, tunable pore size, and customizable surface chemistry. This article explores the surface properties of a series of MSU-type mesoporous silica nanoparticles, elucidating the impact of different functionalization strategies on surface characteristics. Through an extensive characterization utilizing various techniques, such as FTIR, Z-potential, and nitrogen adsorption porosimetry, insights into the surface modifications of mesoporous silica nanoparticles are provided, contributing to a deeper understanding of their nanostructure and related interactions, and paving the way to possible unexpected actionability and potential applications.
Collapse
Affiliation(s)
- Antonio Grisolia
- Department of Environmental Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Palmira Alessia Cavallaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Luigi Pasqua
- Department of Environmental Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
3
|
Zolotova MO, Znoyko SL, Orlov AV, Nikitin PI, Sinolits AV. Efficient Chlorostannate Modification of Magnetite Nanoparticles for Their Biofunctionalization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:349. [PMID: 38255517 PMCID: PMC10820483 DOI: 10.3390/ma17020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Magnetite nanoparticles (MNPs) are highly favored materials for a wide range of applications, from smart composite materials and biosensors to targeted drug delivery. These multifunctional applications typically require the biofunctional coating of MNPs that involves various conjugation techniques to form stable MNP-biomolecule complexes. In this study, a cost-effective method is developed for the chlorostannate modification of MNP surfaces that provides efficient one-step conjugation with biomolecules. The proposed method was validated using MNPs obtained via an optimized co-precipitation technique that included the use of degassed water, argon atmosphere, and the pre-filtering of FeCl2 and FeCl3 solutions followed by MNP surface modification using stannous chloride. The resulting chlorostannated nanoparticles were comprehensively characterized, and their efficiency was compared with both carboxylate-modified and unmodified MNPs. The biorecognition performance of MNPs was verified via magnetic immunochromatography. Mouse monoclonal antibodies to folic acid served as model biomolecules conjugated with the MNP to produce nanobioconjugates, while folic acid-gelatin conjugates were immobilized on the test lines of immunochromatography lateral flow test strips. The specific trapping of the obtained nanobioconjugates via antibody-antigen interactions was registered via the highly sensitive magnetic particle quantification technique. The developed chlorostannate modification of MNPs is a versatile, rapid, and convenient tool for creating multifunctional nanobioconjugates with applications that span in vitro diagnostics, magnetic separation, and potential in vivo uses.
Collapse
Affiliation(s)
- Maria O. Zolotova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Sergey L. Znoyko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Shosse, 115409 Moscow, Russia
| | - Artem V. Sinolits
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia (A.V.O.)
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Str. 19, 119991 Moscow, Russia
| |
Collapse
|
4
|
Flores D, Almeida CMR, Gomes CR, Balula SS, Granadeiro CM. Tailoring of Mesoporous Silica-Based Materials for Enhanced Water Pollutants Removal. Molecules 2023; 28:molecules28104038. [PMID: 37241778 DOI: 10.3390/molecules28104038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The adsorptive performance of mesoporous silica-based materials towards inorganic (metal ions) and organic (dyes) water pollutants was investigated. Mesoporous silica materials with different particle size, surface area and pore volume were prepared and tailored with different functional groups. These materials were then characterised by solid-state techniques, namely vibrational spectroscopy, elemental analysis, scanning electron microscopy and nitrogen adsorption-desorption isotherms, allowing the successful preparation and structural modifications of the materials to be confirmed. The influence of the physicochemical properties of the adsorbents towards the removal of metal ions (Ni2+, Cu2+ and Fe3+) and organic dyes (methylene blue and methyl green) from aqueous solutions was also investigated. The results reveal that the exceptionally high surface area and suitable ζ-potential of the nanosized mesoporous silica nanoparticles (MSNPs) seem to favour the adsorptive capacity of the material for both types of water pollutants. Kinetic studies were performed for the adsorption of organic dyes by MSNPs and large-pore mesoporous silica (LPMS), suggesting that the process follows a pseudo-second-order model. The recyclability along consecutive adsorption cycles and the stability of the adsorbents after use were also investigated, showing that the material can be reused. Current results show the potentialities of novel silica-based material as a suitable adsorbent to remove pollutants from aquatic matrices with an applicability to reduce water pollution.
Collapse
Affiliation(s)
- Daniela Flores
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - C Marisa R Almeida
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Carlos R Gomes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Salete S Balula
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Carlos M Granadeiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Nayl AA, Abd-Elhamid AI, Arafa WAA, Ahmed IM, AbdEl-Rahman AME, Soliman HMA, Abdelgawad MA, Ali HM, Aly AA, Bräse S. A Novel P@SiO 2 Nano-Composite as Effective Adsorbent to Remove Methylene Blue Dye from Aqueous Media. MATERIALS (BASEL, SWITZERLAND) 2023; 16:514. [PMID: 36676250 PMCID: PMC9864475 DOI: 10.3390/ma16020514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
This work aims to prepare a novel phosphate-embedded silica nanoparticles (P@SiO2) nanocomposite as an effective adsorbent through a hydrothermal route. Firstly, a mixed solution of sodium silicate and sodium phosphate was passed through a strong acidic resin to convert it into hydrogen form. After that, the resultant solution was hydrothermally treated to yield P@SiO2 nanocomposite. Using kinetic studies, methylene blue (MB) dye was selected to study the removal behavior of the P@SiO2 nanocomposite. The obtained composite was characterized using several advanced techniques. The experimental results showed rapid kinetic adsorption where the equilibrium was reached within 100 s, and the pseudo-second-order fitted well with experimental data. Moreover, according to Langmuir, one gram of P@SiO2 nanocomposite can remove 76.92 mg of the methylene blue dye. The thermodynamic studies showed that the adsorption process was spontaneous, exothermic, and ordered at the solid/solution interface. Finally, the results indicated that the presence of NaCl did not impact the adsorption behavior of MB dye. Due to the significant efficiency and promising properties of the prepared P@SiO2 nanocomposite, it could be used as an effective adsorbent material to remove various cationic forms of pollutants from aqueous solutions in future works.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt
| | - Wael A. A. Arafa
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ismail M. Ahmed
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Aref M. E. AbdEl-Rahman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt
| | - Hesham M. A. Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Hazim M. Ali
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Efficient Removal of Dyes from Aqueous Solution by Adsorption on L-Arginine-Modified Mesoporous Silica Nanoparticles. Processes (Basel) 2022. [DOI: 10.3390/pr10061079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of mesoporous silica modified with L-arginine (Ar-MSNPs) for the removal of ionic dyes from aqueous solutions has been investigated. Several analytical techniques have been used to determine the characteristics of nanoadsorbents. The removal of crystal violet and fluorescein was performed using the batch method to investigate the effects of cultivation pH, initial concentrations of dyes, and exposure time on adsorption efficiency. The optimum adsorption of fluorescein was achieved at pH 2, whereas the optimum adsorption of crystal violet was achieved at pH 13. The equilibrium was established in both systems at 20 min at low concentrations, and approximately 30 min at high concentrations. The equilibrium adsorption data was analyzed using Langmuir and Freundlich isotherm models. The correlation coefficient (R2) values of the isotherms presented the best fit with the Langmuir isotherm. The adsorption kinetic data was fitted with the pseudo second-order model for both systems.
Collapse
|
7
|
Ding Y, Chen Z, Wu J, Abd-Elhamid AI, Aly HF, Nayl AA, Bräse S. Graphene Oxide@Heavy Metal Ions (GO@M) Complex Simulated Waste as an Efficient Adsorbent for Removal of Cationic Methylene Blue Dye from Contaminated Water. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3657. [PMID: 35629685 PMCID: PMC9147086 DOI: 10.3390/ma15103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022]
Abstract
Graphene oxide (GO) was heavily used in the adsorption process of various heavy metal ions (such as copper (Cu) and iron (Fe) ions), resulting in a huge waste quantity of graphene oxide@metal ions complex. In this research, the authors try to solve this issue. Herein, the GO surface was loaded with divalent (Cu2+) and trivalent (Fe3+) heavy metal ions as a simulated waste of the heavy metal in various removal processes to form GO@Cu and (GO@Fe) composites, respectively. After that, the previous nanocomposites were used to remove cationic methylene blue (MB) dye. The prepared composites were characterized with a scanning electron microscope (SEM), transition electron microscope (TEM), Fourier transmission infrared (FTIR), Raman, and energy-dispersive X-ray (EDS) before and after the adsorption process. Various adsorption factors of the two composites towards MB-dye were investigated. Based on the adsorption isotherm information, the adsorption process of MB-dye is highly fitted with the Langmuir model with maximum capacities (mg g-1) (384.62, GO@Cu) and (217.39, GO@Fe). According to the thermodynamic analysis, the adsorption reaction of MB-species over the GO@Cu is exothermic and, in the case of GO@Fe, is endothermic. Moreover, the two composites presented excellent selectivity of adsorption of the MB-dye from the MB/MO mixture.
Collapse
Affiliation(s)
- Yangfan Ding
- Key Laboratory of Science and Technology, Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Bio-Technology, Donghua University, Shanghai 201620, China; (Y.D.); (Z.C.); (J.W.)
| | - Zhe Chen
- Key Laboratory of Science and Technology, Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Bio-Technology, Donghua University, Shanghai 201620, China; (Y.D.); (Z.C.); (J.W.)
| | - Jinglei Wu
- Key Laboratory of Science and Technology, Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Bio-Technology, Donghua University, Shanghai 201620, China; (Y.D.); (Z.C.); (J.W.)
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt;
| | - Hisham F. Aly
- Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt;
| | - AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|