1
|
Valme D, Rassõlkin A, Liyanage DC. From ADAS to Material-Informed Inspection: Review of Hyperspectral Imaging Applications on Mobile Ground Robots. SENSORS (BASEL, SWITZERLAND) 2025; 25:2346. [PMID: 40285037 PMCID: PMC12030986 DOI: 10.3390/s25082346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025]
Abstract
Hyperspectral imaging (HSI) has evolved from its origins in space missions to become a promising sensing technology for mobile ground robots, offering unique capabilities in material identification and scene understanding. This review examines the integration and applications of HSI systems in ground-based mobile platforms, with emphasis on outdoor implementations. The analysis covers recent developments in two main application domains: autonomous navigation and inspection tasks. In navigation, the review explores HSI applications in Advanced Driver Assistance Systems (ADAS) and off-road scenarios, examining how spectral information enhances environmental perception and decision making. For inspection applications, the investigation covers HSI deployment in search and rescue operations, mining exploration, and infrastructure monitoring. The review addresses key technical aspects including sensor types, acquisition modes, and platform integration challenges, particularly focusing on environmental factors affecting outdoor HSI deployment. Additionally, it analyzes available datasets and annotation approaches, highlighting their significance for developing robust classification algorithms. While recent advances in sensor design and processing capabilities have expanded HSI applications, challenges remain in real-time processing, environmental robustness, and system cost. The review concludes with a discussion of future research directions and opportunities for advancing HSI technology in mobile robotics applications.
Collapse
Affiliation(s)
- Daniil Valme
- Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Anton Rassõlkin
- Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia
| | | |
Collapse
|
2
|
Creemers J, Eens M, Ulenaers E, Lathouwers M, Evens R. Skyglow facilitates prey detection in a crepuscular insectivore: Distant light sources create bright skies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125821. [PMID: 39922414 DOI: 10.1016/j.envpol.2025.125821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Light profoundly shapes ecosystems, influencing the behaviour and niche specialisation of many species. This is especially true for visual predators, particularly crepuscular and nocturnal animals, whose foraging depends on adequate illumination. Despite this, research on how animals perceive light sources and position themselves relative to these sources is scarce. Using a modified dead-reckoning protocol based on GPS, accelerometer, and magnetic compass data, we investigated the body orientation of foraging European Nightjars (Caprimulgus europaeus, hereafter nightjar) to determine their line of sight relative to bright sections of the nocturnal sky, created by natural or artificial light. We found that nightjars are more likely to align themselves with brighter sections of the sky, although not necessarily with the brightest patch. On full moon nights, they positioned the moon within their line of sight when it was low on the horizon, but this likelihood decreased as the moon rose higher. During other moon phases, the likelihood of having the moon within line of sight increased linearly with moon altitude. During moonless parts of the night, nightjars appeared to use skyglow as a background for prey detection, but only when it was sufficiently bright. When both moonlight and skyglow were present, nightjars showed a preference for moonlight. This study shows that European Nightjars use illuminated sections of the sky, including skyglow, as bright backgrounds to detect flying prey. This suggests that, in the absence of the moon, nightjars can actively take advantage of this form of light pollution while foraging. However, the success of their hunting under skyglow-induced lighting remains unclear. We hypothesise that the effectiveness of these backgrounds depends on their brightness and colour composition. Further research is needed to better understand the complex dynamics of contrast detection under varying lighting conditions.
Collapse
Affiliation(s)
- Jitse Creemers
- Université Catholique de Louvain (UCL), Earth & Life Institute | Terrestrial Ecology and Biodiversity Conservation Group, Croix du Sud 4-5, 1384, Louvain-la-Neuve, Belgium; University of Antwerp, Department of Biology, Behavioural Ecology and Ecophysiology group, Universiteitsplein 1, Wilrijk, B-2610, Belgium.
| | - Marcel Eens
- University of Antwerp, Department of Biology, Behavioural Ecology and Ecophysiology group, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| | - Eddy Ulenaers
- Agentschap Natuur en Bos, Regio Noord-Limburg, Havenlaan 88 bus 75, Herman Teirlinckgebouw, 1000, Brussels, Belgium
| | - Michiel Lathouwers
- Hasselt University, Centre for Environmental Sciences, Research Group: Zoology, Biodiversity and Toxicology, Campus Diepenbeek, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium; University of Namur, Department of Geography, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Ruben Evens
- Université Catholique de Louvain (UCL), Earth & Life Institute | Terrestrial Ecology and Biodiversity Conservation Group, Croix du Sud 4-5, 1384, Louvain-la-Neuve, Belgium; University of Antwerp, Department of Biology, Behavioural Ecology and Ecophysiology group, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| |
Collapse
|
3
|
Li W, Zhang D, Zou Q, Bose APH, Jordan A, McCallum ES, Bao J, Duan M. Behavioural and transgenerational effects of artificial light at night (ALAN) of varying spectral compositions in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176336. [PMID: 39299330 DOI: 10.1016/j.scitotenv.2024.176336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Artificial light at night (ALAN) can disrupt the natural behaviour, physiology, and circadian rhythms of organisms exposed to it, and therefore presents a significant and widespread ecological concern. ALAN typically comprises a wide range of wavelengths, and different wavelengths have different effects on circadian clocks. In the animals investigated thus far, short and middle wavelengths are intensely involved in synchronisation and entrainment, but we still have a poor understanding of how different wavelengths might affect behaviour when animals are exposed to ALAN, in particular whether some wavelengths are disproportionally detrimental. This experiment examined the direct and transgenerational effects of 10 different wavelength treatments of ALAN on behaviour in zebrafish (Danio rerio), a diurnally active model organism. Across a 10-day period, female zebrafish were exposed to either a monochromatic wavelength, white light ALAN, or to a control treatment, and the individual impacts of each treatment on locomotion and anxiety-like behaviours were examined both for solitary fish and fish in groups. We found the strongest impact at short wavelengths (365 to 470 nm), with individuals and groups of zebrafish showing more anxiety-like behaviour after fewer nights of ALAN exposure relative to the other wavelengths. Furthermore, F1 offspring born from ALAN-exposed mothers displayed less frequent movement and shorter movement distances despite never being exposed to ALAN themselves, regardless of the spectral treatment. Our results highlight both the specific and broad-spectrum potential for ALAN to cause disruption to locomotion in adult zebrafish and their offspring.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Behavioural Evolution Research Group, Max Planck Institute of Animal Behaviour, Buecklestr 5a, 78464 Konstanz, Germany; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dongxu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qingqing Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Aneesh P H Bose
- Behavioural Evolution Research Group, Max Planck Institute of Animal Behaviour, Buecklestr 5a, 78464 Konstanz, Germany; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, Västerbotten 90736, Sweden
| | - Alex Jordan
- Behavioural Evolution Research Group, Max Planck Institute of Animal Behaviour, Buecklestr 5a, 78464 Konstanz, Germany
| | - Erin S McCallum
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, Västerbotten 90736, Sweden
| | - Jianghui Bao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
4
|
Quintanilla-Ahumada D, Quijón PA, Jahnsen-Guzmán N, Zúñiga-Cueto N, Miranda-Benabarre C, Lynn KD, Pulgar J, Palma J, Manríquez PH, Duarte C. The impacts of artificial light at night (ALAN) spectral composition on key behavioral traits of a sandy beach isopod. MARINE POLLUTION BULLETIN 2024; 208:116924. [PMID: 39278176 DOI: 10.1016/j.marpolbul.2024.116924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Artificial light at night (ALAN) is a widespread human-induced disturbance, whose effects have been documented in many ecosystems. However, limited attention has been given to the source of the lights behind ALAN, so this study examined three of them: High-Pressure Sodium (HPS) lamps and warm and cool white Light-Emitting Diodes (LEDs). Laboratory experiments compared the effects of each type of light to natural day/night conditions, upon the activity, feeding behavior and growth of the isopod Tylos spinulosus. Tanks equipped with actographs monitored locomotor activity, while separate tanks were utilized to assess food consumption and growth under natural and ALAN conditions. Our results show that all ALAN sources disrupt and reduce isopods' activity and feeding behavior, with cool and warm LEDs being the most severe and mildest, respectively. Instead, ALAN had only minor effects on isopod growth. Our findings suggest that warm LEDs may be preferable for ALAN mitigation purposes.
Collapse
Affiliation(s)
- Diego Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Nicole Jahnsen-Guzmán
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicol Zúñiga-Cueto
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Miranda-Benabarre
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - K Devon Lynn
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile
| | | | - Patricio H Manríquez
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile.
| |
Collapse
|
5
|
Le Tallec T, Hozer C, Perret M, Théry M. Light pollution and habitat fragmentation in the grey mouse lemur. Sci Rep 2024; 14:1662. [PMID: 38238414 PMCID: PMC10796386 DOI: 10.1038/s41598-024-51853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Light pollution, by changing organisms' behavior, affects locomotion, migration and can ultimately fragment the habitat. To investigate the effects of light pollution on habitat fragmentation, we conducted an experimental study on a nocturnal and photosensitive primate, the grey mouse lemur (Microcebus murinus). Twelve males were housed individually in an apparatus with two cages connected by two corridors, opaque and transparent. During 4 nights, the transparent corridor was illuminated by specific light intensities: 0 lx, 0.3 lx, 20 lx and 51.5 lx corresponding respectively to total darkness, full moon, minimal intensity recommended by the European standard EN-13201 on public lighting, and to light pollution recorded in an urban area. Each night, general activity, use of corridors and cage occupancy were recorded using an infrared camera. For the first time in a nocturnal primate, results demonstrate that light pollution changes the preference of use of corridors, modifies the locomotor pattern and limits the ability of animals to efficiently exploit their environment according to a light intensity-dependent relationship. However, results indicate that a dark corridor allows partial compensation partly preserving general activities. This study highlights the necessity to consider light pollution during the implementation of conservation plans and the relevance of nocturnal frames.
Collapse
Affiliation(s)
- Thomas Le Tallec
- UMR 7179 MECADEV, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 1 avenue du petit Château, 91800, Brunoy, France.
| | - Clara Hozer
- UMR 7179 MECADEV, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 1 avenue du petit Château, 91800, Brunoy, France
| | - Martine Perret
- UMR 7179 MECADEV, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 1 avenue du petit Château, 91800, Brunoy, France
| | - Marc Théry
- UMR 7179 MECADEV, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, 1 avenue du petit Château, 91800, Brunoy, France
| |
Collapse
|
6
|
Mitsui K, Saeki K, Sun M, Yamagami Y, Tai Y, Obayashi K. Effects of a violet-excitation light-emitting diode on melatonin secretion and sleepiness: preliminary findings from a randomized controlled trial. J Clin Sleep Med 2024; 20:101-109. [PMID: 37707296 PMCID: PMC10758554 DOI: 10.5664/jcsm.10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
STUDY OBJECTIVES A new type of lighting using violet-excitation light-emitting diodes (LEDs) with an action spectrum centered at approximately 405 nm was developed. Although violet-excitation LEDs can reduce melatonin suppression compared with blue-excitation LEDs, no studies have compared the effects of violet-excitation LEDs with those of blue-excitation LEDs on melatonin suppression. This study was designed to compare the effects of violet-excitation LEDs with those of blue-excitation LEDs on melatonin suppression, psychomotor vigilance, and sleepiness. METHODS Sixteen healthy Japanese males aged 20-39 years were exposed to violet- and blue-excitation LEDs for 3 hours in a crossover randomized manner. The primary outcome was changes in salivary melatonin levels compared with the baseline levels. The secondary outcomes were changes in psychomotor vigilance and the Karolinska Sleepiness Scale. Melatonin suppression was calculated from the difference in the area under the curves between the baseline and intervention. RESULTS Of the 16 participants, 15 completed the measurements. The baseline characteristics did not differ significantly between the 2 groups. After adjusting for age, a difference of 16.28 pg/mL in mean melatonin suppression was observed between the violet- and blue-excitation LED groups (-2.15 pg/mL vs -18.43 pg/mL; P = .006). The overall melatonin suppression by violet-excitation LEDs was 48.6% smaller than that by blue-excitation LEDs. No significant differences in psychomotor vigilance and sleepiness were observed between the 2 groups. CONCLUSIONS Melatonin suppression in healthy Japanese males exposed to violet-excitation LEDs was significantly smaller than that in those exposed to blue-excitation LEDs. Our preliminary findings indicate that violet-excitation LEDs may have the potential to reduce the magnitude of blue-excitation LED-induced melatonin suppression. CITATION Mitsui K, Saeki K, Sun M, Yamagami Y, Tai Y, Obayashi K. Effects of a violet-excitation light-emitting diode on melatonin secretion and sleepiness: preliminary findings from a randomized controlled trial. J Clin Sleep Med. 2024;20(1):101-109.
Collapse
Affiliation(s)
- Katsuhiro Mitsui
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
- Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, Shiga, Japan
| | - Keigo Saeki
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Mingyue Sun
- Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, Shiga, Japan
| | - Yuki Yamagami
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Yoshiaki Tai
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | - Kenji Obayashi
- Department of Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| |
Collapse
|
7
|
Li C, Managi S. Inappropriate nighttime light reduces living comfort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122173. [PMID: 37451588 DOI: 10.1016/j.envpol.2023.122173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Living comfort is an important aspect of human well-being and a critical index of sustainable environments. Many environmental factors are associated with living comfort. Nighttime light (NTL) is remote sensing data that is widely used to reflect development level and economic status, and it also represents the lighting intensity in living environments. However, the relationship between NTL and living comfort is poorly understood. Here, we employ linear regression and a random forest model to investigate the direct impact of NTL on living comfort. Our results show that increased NTL is negatively associated with living comfort, but this relationship may be obscured by other factors, such as infrastructure. According to the nonlinear relationship, when the NTL is approximately 10 nW/cm2∙sr, there is a peak in living comfort. Hence, ensuring a reasonable level of lighting is a key to promoting sustainable development. Our research offers crucial insights that can aid in developing sustainable development policies to enhance livability.
Collapse
Affiliation(s)
- Chao Li
- Urban Institute & School of Engineering, Kyushu University, Japan
| | - Shunsuke Managi
- Urban Institute & School of Engineering, Kyushu University, Japan.
| |
Collapse
|
8
|
Zhao F, Wu H, Zhu S, Zeng H, Zhao Z, Yang X, Zhang S. Material stock analysis of urban road from nighttime light data based on a bottom-up approach. ENVIRONMENTAL RESEARCH 2023; 228:115902. [PMID: 37059324 DOI: 10.1016/j.envres.2023.115902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
In recent years, there has been an increasing focus on the dynamics of material stock, that is, the basis of material flow in the entire ecosystem. With the gradual improvement of the global road network encryption project, the uncontrolled extraction, processing, and transportation of raw materials impose serious resource concerns and environmental pressure. Quantifying material stocks enable governments to formulate scientific policies because socio-economic metabolism, including resource allocation, use, and waste recovery, can be systematically assessed. In this study, OpenStreetMap road network data were used to extract the urban road skeleton, and nighttime light images were divided by watershed to construct regression equations based on geographical location attributes. Resultantly, a generic road material stock estimation model was developed and applied to Kunming. We concluded that (1) the top three stocks are stone chips, macadam, and grit (total weight is 380 million tons), (2) the proportion of asphalt, mineral powder, lime, and fly ash is correspondingly similar, and (3) the unit area stock decreases as the road grade declines; therefore, the branch road has the lowest unit stock.
Collapse
Affiliation(s)
- Fei Zhao
- School of Earth Sciences, Yunnan University, Kunming, 650500, China; Engineering Research Center of Domestic High-resolution Satellite Remote Sensing Geology for Universities of Yunnan Province, Kunming, 650500, China.
| | - Huixia Wu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China.
| | - Sijin Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China.
| | - Hongyun Zeng
- School of Earth Sciences, Yunnan University, Kunming, 650500, China.
| | - Zhifang Zhao
- School of Earth Sciences, Yunnan University, Kunming, 650500, China; Engineering Research Center of Domestic High-resolution Satellite Remote Sensing Geology for Universities of Yunnan Province, Kunming, 650500, China.
| | - Xutao Yang
- School of Information Science and Engineering, Yunnan University, Kunming, 650500, China.
| | - Sujin Zhang
- School of Earth Sciences, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
9
|
Moubarak EM, David Fernandes AS, Stewart AJA, Niven JE. Artificial light impairs local attraction to females in male glow-worms. J Exp Biol 2023; 226:jeb245760. [PMID: 37311409 DOI: 10.1242/jeb.245760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/03/2023] [Indexed: 06/15/2023]
Abstract
The negative effects of artificial lighting at night (ALAN) on insects are increasingly recognised and have been postulated as one possible cause of declines in insect populations. Yet, the behavioural mechanisms underpinning ALAN effects on insects remain unclear. ALAN interferes with the bioluminescent signal female glow-worms use to attract males, disrupting reproduction. To determine the behavioural mechanisms that underpin this effect of ALAN, we quantified the effect of white illumination on males' ability to reach a female-mimicking LED within a Y-maze. We show that as the intensity of illumination increases, the proportion of males reaching the female-mimicking LED declines. Brighter illumination also increases the time taken by males to reach the female-mimicking LED. This is a consequence of males spending more time: (i) in the central arm of the Y-maze; and (ii) with their head retracted beneath their head shield. These effects reverse rapidly when illumination is removed, suggesting that male glow-worms are averse to white light. Our results show that ALAN not only prevents male glow-worms from reaching females, but also increases the time they take to reach females and the time they spend avoiding exposure to light. This demonstrates that the impacts of ALAN on male glow-worms extend beyond those previously observed in field experiments, and raises the possibility that ALAN has similar behavioural impacts on other insect species that remain undetected in field experiments.
Collapse
Affiliation(s)
- Estelle M Moubarak
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | - Alan J A Stewart
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Jeremy E Niven
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
10
|
Grunst ML, Grunst AS. Endocrine effects of exposure to artificial light at night: A review and synthesis of knowledge gaps. Mol Cell Endocrinol 2023; 568-569:111927. [PMID: 37019171 DOI: 10.1016/j.mce.2023.111927] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023]
Abstract
Animals have evolved with natural patterns of light and darkness, such that light serves as an important zeitgeber, allowing adaptive synchronization of behavior and physiology to external conditions. Exposure to artificial light at night (ALAN) interferes with this process, resulting in dysregulation of endocrine systems. In this review, we evaluate the endocrine effects of ALAN exposure in birds and reptiles, identify major knowledge gaps, and highlight areas for future research. There is strong evidence for ecologically relevant levels of ALAN acting as an environmental endocrine disruptor. However, most studies focus on the pineal hormone melatonin, corticosterone release via the hypothalamus-pituitary-adrenal axis, or regulation of reproductive hormones via the hypothalamus-pituitary-gonadal axis, leaving effects on other endocrine systems largely unknown. We call for more research spanning a diversity of hormonal systems and levels of endocrine regulation (e.g. circulating hormone levels, receptor numbers, strength of negative feedback), and investigating involvement of molecular mechanisms, such as clock genes, in hormonal responses. In addition, longer-term studies are needed to elucidate potentially distinct effects arising from chronic exposure. Other important areas for future research effort include investigating intraspecific and interspecific variability in sensitivity to light exposure, further distinguishing between distinct effects of different types of light sources, and assessing impacts of ALAN exposure early in life, when endocrine systems remain sensitive to developmental programming. The effects of ALAN on endocrine systems are likely to have a plethora of downstream effects, with implications for individual fitness, population persistence, and community dynamics, especially within urban and suburban environments.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENS), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France.
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENS), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000, La Rochelle, France
| |
Collapse
|
11
|
Mc Larney BE, Zhang Q, Pratt EC, Skubal M, Isaac E, Hsu HT, Ogirala A, Grimm J. Detection of Shortwave-Infrared Cerenkov Luminescence from Medical Isotopes. J Nucl Med 2023; 64:177-182. [PMID: 35738902 PMCID: PMC9841262 DOI: 10.2967/jnumed.122.264079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 01/28/2023] Open
Abstract
Medical radioisotopes produce Cerenkov luminescence (CL) from charged subatomic particles (β+/-) traveling faster than light in dielectric media (e.g., tissue). CL is a blue-weighted and continuous emission, decreasing proportionally to increasing wavelength. CL imaging (CLI) provides an economic PET alternative with the advantage of also being able to image β- and α emitters. Like any optical modality, CLI is limited by the optical properties of tissue (scattering, absorption, and ambient photon removal). Shortwave-infrared (SWIR, 900-1700 nm) CL has been detected from MeV linear accelerators but not yet from keV medical radioisotopes. Methods: Indium-gallium-arsenide sensors and SWIR lenses were mounted onto an ambient light-excluding preclinical enclosure. An exposure and processing pipeline was developed for SWIR CLI and then performed across 6 radioisotopes at in vitro and in vivo conditions. Results: SWIR CL was detected from the clinical radioisotopes 90Y, 68Ga, 18F, 89Zr, 131I, and 32P (biomedical research). SWIR CLI's advantage over visible-wavelength (VIS) CLI (400-900 nm) was shown via increased light penetration and decreased scattering at depth. The SWIR CLI radioisotope sensitivity limit (8.51 kBq/μL for 68Ga), emission spectrum, and ex vivo and in vivo examples are reported. Conclusion: This work shows that radioisotope SWIR CLI can be performed with unmodified commercially available components. SWIR CLI has significant advantages over VIS CLI, with preserved VIS CLI features such as radioisotope radiance levels and dose response linearity. Further improvements in SWIR optics and technology are required to enable widespread adoption.
Collapse
Affiliation(s)
- Benedict E Mc Larney
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Qize Zhang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edwin C Pratt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Magdalena Skubal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elizabeth Isaac
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hsiao-Ting Hsu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anuja Ogirala
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York;
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Pharmacology Program, Weill Cornell Medical College, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and
- Department of Radiology, Weill Cornell Medical Center, New York, New York
| |
Collapse
|
12
|
Wavelength calibration and spectral sensitivity correction of luminescence measurements for dosimetry applications: Method comparison tested on the IR-RF of K-feldspar. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Owens ACS, Van den Broeck M, De Cock R, Lewis SM. Behavioral responses of bioluminescent fireflies to artificial light at night. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.946640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bioluminescent insects have been the subject of scientific interest and popular wonder for millennia. But in the 21st century, the fireflies, click beetles, and cave glow-worms that brighten our nights are threatened by an unprecedented competitor: anthropogenic light pollution. Artificial lights can obscure the light-based signals on which these and other bioluminescent organisms rely to court mates, deter predators, and attract prey. In the following review we summarize a recent influx of research into the behavioral consequences of artificial light at night for firefly beetles (Coleoptera: Lampyridae), which we organize into four distinct courtship signaling systems. We conclude by highlighting several opportunities for further research to advance this emerging field and by offering a set of up-to-date lighting recommendations that can help land managers and other stakeholders balance public safety and ecological sustainability.
Collapse
|
14
|
Owens ACS, Lewis SM. Artificial light impacts the mate success of female fireflies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220468. [PMID: 35958085 DOI: 10.6084/m9.figshare.c.6125244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 05/23/2023]
Abstract
Anthropogenic light pollution is a novel environmental disruption that affects the movement, foraging and mating behaviour of nocturnal animals. Most of these effects are sublethal, and their net impact on reproductive fitness and population persistence is often extrapolated from behavioural data. Without dedicated tracking of wild individuals, however, it is impossible to predict whether populations in light-polluted habitats will decline or, instead, move to shaded refuges. To disentangle these conflicting possibilities, we investigated how artificial light affects mating and movement in North American Photinus, a genus of bioluminescent fireflies known to experience courtship failure under artificial light. The degree to which artificial light reduced mate success depended on the intensity of the light treatment, its environmental context, and the temporal niche of the species in question. In the laboratory, direct exposure to artificial light completely prevented mating in semi-nocturnal Photinus obscurellus. In the field, artificial light had little impact on the movement or mate success of local Photinus pyralis and Photinus marginellus but strongly influenced mate location in Photinus greeni; all three species are relatively crepuscular. Our nuanced results suggest greater appreciation of behavioural diversity will help insect conservationists and dark sky advocates better target efforts to protect at-risk species.
Collapse
Affiliation(s)
- Avalon C S Owens
- Department of Biology, Tufts University, Medford, MA 02155-5801, USA
| | - Sara M Lewis
- Department of Biology, Tufts University, Medford, MA 02155-5801, USA
| |
Collapse
|
15
|
Sensitizer Effects on DSSC Performance under Pan-illumination Conditions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Wang X, Yan G, Mu X, Xie D, Xu J, Zhang Z, Zhang D. Human Activity Changes During COVID-19 Lockdown in China-A View From Nighttime Light. GEOHEALTH 2022; 6:e2021GH000555. [PMID: 35942293 PMCID: PMC9350096 DOI: 10.1029/2021gh000555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Strict lockdowns were implemented in China to fight Coronavirus Disease 2019 (COVID-19). We explored the nighttime light (NTL) of China's four cities in five stages of COVID-19 including case free period, newly appeared period, rising period, outbreak period, and stationary period. Using six categories of points of interest data ("company," "recreation," "healthcare," "residence," "shopping," and "traffic facility") and random forest models, we found that dimming light of four cities is associated with the epidemic development and human activity changes. When confirmed cases appeared, healthcare associated NTL radiance increased rapidly in Wuhan and Guangzhou, but decreased in the fourth and fifth stages. Companies in all cities were resuscitated in the fifth stage, while companies in Guangzhou was resuscitated in the fourth stage. Shopping related NTL radiance in Wuhan increased quickly in the fifth stage which indicated some resuscitation. In addition, compared to gross domestic product, the trend in electric power consumption was consistent with the trend in NTL radiance. The above findings contribute to the making of control policies for COVID-19 as well as other infectious diseases.
Collapse
Affiliation(s)
- Xuejun Wang
- State Key Laboratory of Remote Sensing ScienceJointly Sponsored by Beijing Normal University and Aerospace Information Research InstituteChinese Academy of SciencesBeijingChina
- Beijing Engineering Research Center for Global Land Remote Sensing ProductsFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | - Guangjian Yan
- State Key Laboratory of Remote Sensing ScienceJointly Sponsored by Beijing Normal University and Aerospace Information Research InstituteChinese Academy of SciencesBeijingChina
- Beijing Engineering Research Center for Global Land Remote Sensing ProductsFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | - Xihan Mu
- State Key Laboratory of Remote Sensing ScienceJointly Sponsored by Beijing Normal University and Aerospace Information Research InstituteChinese Academy of SciencesBeijingChina
- Beijing Engineering Research Center for Global Land Remote Sensing ProductsFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | - Donghui Xie
- State Key Laboratory of Remote Sensing ScienceJointly Sponsored by Beijing Normal University and Aerospace Information Research InstituteChinese Academy of SciencesBeijingChina
- Beijing Engineering Research Center for Global Land Remote Sensing ProductsFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | - Jiachen Xu
- State Key Laboratory of Remote Sensing ScienceJointly Sponsored by Beijing Normal University and Aerospace Information Research InstituteChinese Academy of SciencesBeijingChina
- Beijing Engineering Research Center for Global Land Remote Sensing ProductsFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | - Zhiyu Zhang
- State Key Laboratory of Remote Sensing ScienceJointly Sponsored by Beijing Normal University and Aerospace Information Research InstituteChinese Academy of SciencesBeijingChina
- Beijing Engineering Research Center for Global Land Remote Sensing ProductsFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| | - Dingdan Zhang
- State Key Laboratory of Remote Sensing ScienceJointly Sponsored by Beijing Normal University and Aerospace Information Research InstituteChinese Academy of SciencesBeijingChina
- Beijing Engineering Research Center for Global Land Remote Sensing ProductsFaculty of Geographical ScienceBeijing Normal UniversityBeijingChina
| |
Collapse
|
17
|
Owens ACS, Lewis SM. Artificial light impacts the mate success of female fireflies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220468. [PMID: 35958085 PMCID: PMC9364009 DOI: 10.1098/rsos.220468] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 05/07/2023]
Abstract
Anthropogenic light pollution is a novel environmental disruption that affects the movement, foraging and mating behaviour of nocturnal animals. Most of these effects are sublethal, and their net impact on reproductive fitness and population persistence is often extrapolated from behavioural data. Without dedicated tracking of wild individuals, however, it is impossible to predict whether populations in light-polluted habitats will decline or, instead, move to shaded refuges. To disentangle these conflicting possibilities, we investigated how artificial light affects mating and movement in North American Photinus, a genus of bioluminescent fireflies known to experience courtship failure under artificial light. The degree to which artificial light reduced mate success depended on the intensity of the light treatment, its environmental context, and the temporal niche of the species in question. In the laboratory, direct exposure to artificial light completely prevented mating in semi-nocturnal Photinus obscurellus. In the field, artificial light had little impact on the movement or mate success of local Photinus pyralis and Photinus marginellus but strongly influenced mate location in Photinus greeni; all three species are relatively crepuscular. Our nuanced results suggest greater appreciation of behavioural diversity will help insect conservationists and dark sky advocates better target efforts to protect at-risk species.
Collapse
Affiliation(s)
| | - Sara M. Lewis
- Department of Biology, Tufts University, Medford, MA 02155-5801, USA
| |
Collapse
|
18
|
Anic V, Gaston KJ, Davies TW, Bennie J. Long-term effects of artificial nighttime lighting and trophic complexity on plant biomass and foliar carbon and nitrogen in a grassland community. Ecol Evol 2022; 12:e9157. [PMID: 35949540 PMCID: PMC9352868 DOI: 10.1002/ece3.9157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
The introduction of artificial nighttime lighting due to human settlements and transport networks is increasingly altering the timing, intensity, and spectra of natural light regimes worldwide. Much of the research on the impacts of nighttime light pollution on organisms has focused on animal species. Little is known about the impacts of daylength extension due to outdoor lighting technologies on wild plant communities, despite the fact that plant growth and development are under photoperiodic control. In a five-year field experiment, artificial ecosystems ("mesocosms") of grassland communities both alone or in combination with invertebrate herbivores and predators were exposed to light treatments that simulated street lighting technologies (low-pressure sodium, and light-emitting diode [LED]-based white lighting), at ground-level illuminance. Most of the plant species in the mesocosms did not exhibit changes in biomass accumulation after 5 years of exposure to the light treatments. However, the white LED treatment had a significant negative effect on biomass production in the herbaceous species Lotus pedunculatus. Likewise, the interaction between the white LED treatment and the presence of herbivores significantly reduced the mean shoot/root ratio of the grass species Holcus lanatus. Artificial nighttime lighting had no effect on the foliar carbon or nitrogen in most of the grassland species. Nevertheless, the white LED treatment significantly increased the leaf nitrogen content in Lotus corniculatus in the presence of herbivores. Long-term exposure to artificial light at night had no general effects on plant biomass responses in experimental grassland communities. However, species-specific and negative effects of cool white LED lighting at ground-level illuminance on biomass production and allocation in mixed plant communities are suggested by our findings. Further studies on the impacts of light pollution on biomass accumulation in plant communities are required as these effects could be mediated by different factors, including herbivory, competition, and soil nutrient availability.
Collapse
Affiliation(s)
- Vinka Anic
- Environment and Sustainability InstituteUniversity of ExeterCornwallUK
| | - Kevin J. Gaston
- Environment and Sustainability InstituteUniversity of ExeterCornwallUK
| | - Thomas W. Davies
- School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
| | - Jonathan Bennie
- Environment and Sustainability InstituteUniversity of ExeterCornwallUK
| |
Collapse
|
19
|
Czarnecka M, Jermacz Ł, Glazińska P, Kulasek M, Kobak J. Artificial light at night (ALAN) affects behaviour, but does not change oxidative status in freshwater shredders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119476. [PMID: 35580711 DOI: 10.1016/j.envpol.2022.119476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Artificial light at night (ALAN) alters circadian rhythms in animals and therefore can be a source of environmental stress affecting their physiology and behaviour. The impact of ALAN can be related to the increased light level, but also to the spectral composition of night lighting. Previous research showed that many species can be particularly sensitive to the LED light, but it is unclear if they respond to its broad spectrum or specifically to the blue light wavelength. In this study, we tested whether dim ALAN (2 lx) differing in the spectral quality (warm white LED, blue LED, high-pressure sodium HPS light) modifies behaviour and changes oxidative status in two nocturnal freshwater shredder species: Dikerogammarus villosus and Gammarus jazdzewskii (Gammaroidea, Amphipoda). Our experiment revealed that ALAN, irrespective of its spectral quality, did not affect the oxidative stress markers in cells (the level of reactive oxygen species and lipid peroxidation). However, ALAN changed the gammarid behaviour in a species-specific manner, which can potentially reduce the fitness of the shredders. Dikerogammarus villosus avoided all types of light compared to darkness. Therefore, confined to the shelter, D. villosus may have fewer opportunities to forage and/or mate. Gammarus jazdzewskii was sensitive only to the narrow-spectrum blue light, but did not respond to the HPS and white LED light. Avoidance is a typical response of gammarids to natural light, thus the disruption of this behaviour in the presence of common ALAN sources can increase the predation risk in this species. To summarize, behavioural modifications induced by ALAN seem more pronounced than changes in physiology and can constitute the main driver of disturbances in the processing of organic matter in freshwater ecosystems by invertebrate shredders.
Collapse
Affiliation(s)
- Magdalena Czarnecka
- Department of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland.
| | - Łukasz Jermacz
- Department of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Paulina Glazińska
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Milena Kulasek
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Jarosław Kobak
- Department of Invertebrate Zoology and Parasitology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
20
|
Cavalli V, Kury M, Melo PBG, Carneiro RVTSM, Esteban Florez FL. Current Status and Future Perspectives of In-office Tooth Bleaching. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.912857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Xue C, Gao C, Hu J, Qiu S, Wang Q. Automatic boat detection based on diffusion and radiation characterization of boat lights during night for VIIRS DNB imaging data. OPTICS EXPRESS 2022; 30:13024-13038. [PMID: 35472925 DOI: 10.1364/oe.455555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Visible infrared imaging radiometer suite (VIIRS) day/night band (DNB) data has been used to detect lit boats during night as it is very sensitive to low radiances. The existing methods for boat detection from VIIRS DNB data are mainly based on thresholds that are estimated by the statistical characteristics of pixels or artificial experience. This may generate detection errors and poor adaptability due to the lack of characterization of boat lights. In this paper, a two-step threshold detection algorithm based on the point spread and the radiative characteristics of nightlight point sources is proposed, so that the interference from adjacent pixels could be reduced as much as possible and a reasonable threshold could be determined. Meanwhile, this algorithm is applied to three study areas, namely the sea area around Tianjin Port in Bohai Sea, the sea area around Shanghai Port in East China Sea, and the sea area around Port Sulphur in Gulf of Mexico. It is demonstrated that the detection precision of the proposed algorithm reaches up to 90% and the recall rate reaches up to 85% in three areas when validated by visual interpretation, and the precision is 85.71% when validated by automatic identification system (AIS) data in the study area of the sea area around Port Sulphur in Gulf of Mexico, which approximately increases by 5% compared with the previous algorithm.
Collapse
|
22
|
McMahon O, Smyth T, Davies TW. Broad spectrum artificial light at night increases the conspicuousness of camouflaged prey. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Oak McMahon
- School of Biological and Marine Sciences University of Plymouth Plymouth UK
| | - Tim Smyth
- Plymouth Marine Laboratory Plymouth UK
| | - Thomas W. Davies
- School of Biological and Marine Sciences University of Plymouth Plymouth UK
| |
Collapse
|
23
|
Abstract
The VIIRS day/night band (DNB) high gain stage (HGS) pixel effective dwell time is in the range of 2–3 milliseconds (ms), which is about one third of the flicker cycle present in lighting powered by alternating current. Thus, if flicker is present, it induces random fluctuations in nightly DNB radiances. This results in increased variance in DNB temporal profiles. A survey of flicker characteristics conducted with high-speed camera data collected on a wide range of individual luminaires found that the flicker is most pronounced in high-intensity discharge (HID) lamps, such as high- and low-pressure sodium and metal halides. Flicker is muted, but detectable, in incandescent luminaires. Modern light-emitting diodes (LEDs) and fluorescent lights are often nearly flicker-free, thanks to high-quality voltage smoothing. DNB pixel footprints are about half a square kilometer and can contain vast numbers of individual luminaires, some of which flicker, while others do not. If many of the flickering lights are drawing from a common AC supplier, the flicker can be synchronized and leave an imprint on the DNB temporal profile. In contrast, multiple power supplies will throw the flickering out of synchronization, resulting in a cacophony with less radiance fluctuation. The examination of DNB temporal profiles for locations before and after the conversion of high-intensity discharge (HID) to LED streetlight conversions shows a reduction in the index of dispersion, calculated by dividing the annual variance by the mean. There are a number of variables that contribute to radiance variations in the VIIRS DNB, including the view angle, cloud optical thickness, atmospheric variability, snow cover, lunar illuminance, and the compilation of temporal profiles using pixels whose footprints are not perfectly aligned. It makes sense to adjust the DNB radiance for as many of these extraneous effects as possible. However, none of these adjustments will reduce the radiance instability introduced by flicker. Because flicker is known to affect organisms, including humans, the development of methods to detect and rate the strength of flickering from space will open up new areas of research on the biologic impacts of artificial lighting. Over time, there is a trend towards the reduction of flicker in outdoor lighting through the replacement of HID with low-flicker LED sources. This study indicates that the effects of LED conversions on the brightness and steadiness of outdoor lighting can be analyzed with VIIRS DNB temporal profiles.
Collapse
|
24
|
Effect of Irradiation on Structural Changes of Levan. Int J Mol Sci 2022; 23:ijms23052463. [PMID: 35269605 PMCID: PMC8910695 DOI: 10.3390/ijms23052463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Levan, as a biocompatible and renewable biopolymer with anticancer properties, is a promising candidate for a wide range of applications in various fields of industry. However, in the literature, there is a lack of information about its behavior under the influence of UV irradiation, which may limit its potential application, including medical science. Therefore, this study describes the effects of irradiation on the structural properties of levan. This type of fructan was subjected to stability tests under radiation conditions using LED and polychromatic lamps. The results showed that the photodegradation of levan irradiated with a polychromatic light occurs faster and more efficiently than the photodegradation of levan irradiated with an LED lamp. Furthermore, AFM analysis showed that the surface became smoother after irradiation, as evidenced by decreasing values of roughness parameters. Moreover, UV irradiation causes the decrease of total surface free energy and both its components in levan; however, more significant changes occur during irradiation of the sample with a polychromatic lamp.
Collapse
|
25
|
Carbon Black/Polyvinylidene Fluoride Nanocomposite Membranes for Direct Solar Distillation. ENERGIES 2022. [DOI: 10.3390/en15030740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Water reclamation is becoming a growing need, in particular in developing countries where harvesting the required energy can be a challenging problem. In this context, exploiting solar energy in a specifically tailored membrane distillation (MD) process can be a viable solution. Traditional MD guarantees a complete retention of non-volatile compounds and does not require high feed water temperatures. In this work, a suitable amount of carbon black (CB) was incorporated into the whole matrix of a polymeric porous membrane in order to absorb light and directly heat the feed. The mixed matrix membranes were prepared forming a uniform CB dispersion in the PVDF dope solution and then using a non-solvent induced phase separation process, which is a well-established technique for membrane manufacturing. CB addition was found to be beneficial on both the membrane structure, as it increased the pore size and porosity, and on the photothermal properties of the matrix. In fact, temperatures as high as 60 °C were reached on the irradiated membrane surface. These improvements led to satisfactory distillate flux (up to 2.3 L/m2h) during the direct solar membrane distillation tests performed with artificial light sources and make this membrane type a promising candidate for practical applications in the field of water purification.
Collapse
|
26
|
Hebbar N D, Choudhari KS, Pathak N, Shivashankar SA, Kulkarni SD. Rapid annealing: minutes to enhance the green emission of the Tb 3+-doped ZnGa 2O 4 nanophosphor with restricted grain growth. NEW J CHEM 2022. [DOI: 10.1039/d1nj05584d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid annealing boosted the green emission of the Tb3+:ZnGa2O4 nanophosphor within minutes.
Collapse
Affiliation(s)
- Deepak Hebbar N
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal-576104, India
| | - K. S. Choudhari
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal-576104, India
| | - Nimai Pathak
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - S. A. Shivashankar
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, 560012, India
| | - Suresh D. Kulkarni
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal-576104, India
| |
Collapse
|
27
|
Zhou S, Kahan TF. Spatiotemporal characterization of irradiance and photolysis rate constants of indoor gas-phase species in the UTest house during HOMEChem. INDOOR AIR 2022; 32:e12964. [PMID: 34854500 DOI: 10.1111/ina.12966] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/14/2021] [Indexed: 05/25/2023]
Abstract
We made intensive measurements of wavelength-resolved spectral irradiance in a test house during the HOMEChem campaign and report diurnal profiles and two-dimensional spatial distribution of photolysis rate constants (J) of several important indoor photolabile gases. Results show that sunlight entering through windows, which was the dominant source of ultraviolet (UV) light in this house, led to clear diurnal cycles, and large time- and location-dependent variations in local gas-phase photochemical activity. Local J values of several key indoor gases under direct solar illumination were 1.8-7.4 times larger-and more strongly dependent on time, solar zenith angle, and incident angle of sunlight relative to the window-than under diffuse sunlight. Photolysis rate constants were highly spatially heterogeneous and fast photochemical reactions in the gas phase were generally confined to within tens of cm of the region that were directly sunlit. Opening windows increased UV photon fluxes by 3 times and increased predicted local hydroxyl radical (OH) concentrations in the sunlit region by 4.5 times to 3.2 × 107 molec cm-3 due to higher J values and increased contribution from O3 photolysis. These results can be used to improve the treatment of photochemistry in indoor chemistry models and are a valuable resource for future studies that use the publicly available HOMEChem measurements.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
28
|
Gajc-Wolska J, Kowalczyk K, Przybysz A, Mirgos M, Orliński P. Photosynthetic Efficiency and Yield of Cucumber ( Cucumis sativus L.) Grown under HPS and LED Lighting in Autumn-Winter Cultivation. PLANTS (BASEL, SWITZERLAND) 2021; 10:2042. [PMID: 34685851 PMCID: PMC8539192 DOI: 10.3390/plants10102042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 05/17/2023]
Abstract
The objective of this study was to evaluate the effect of the supplemental lighting of cucumber with sodium pressure lamps (HPSs) and light-emitting diodes (LEDs) on photosynthetic efficiency and yield in autumn-winter cultivation. Cucumber plants of the 'Svyatogor' F1 midi-cucumber parthenocarpic type cultivar were grown on mineral wool mats in three compartments, differing only in the type of light, i.e., (1) HPS top lighting (HPS) in the first compartment, (2) HPS top lighting and LED panel interlighting (HPS + LED) in the second compartment and (3) LED top lighting and inter-row LED panels (LED) in the third compartment. The photosynthetically active radiation was the same in each compartment. The study showed that the highest commercial yields of cucumber could be achieved under LED light (top and inter-row). The chlorophyll content in the leaf blade of younger leaves was higher in plants under LED lighting. This type of lighting also had a positive effect on the gas exchange of plants (net carbon assimilation, stomatal conductance, transpiration). LED and HPS + LED lighting increased the chlorophyll a fluorescence parameters, such as Fs, Fm' and vitality index (PI), in both younger and older leaves, which also increased the fruit yield in the tested combinations.
Collapse
Affiliation(s)
- Janina Gajc-Wolska
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, 02-776 Warszawa, Poland; (J.G.-W.); (M.M.); (P.O.)
| | - Katarzyna Kowalczyk
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, 02-776 Warszawa, Poland; (J.G.-W.); (M.M.); (P.O.)
| | - Arkadiusz Przybysz
- Department of Plant Protection, Institute of Horticultural Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Małgorzata Mirgos
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, 02-776 Warszawa, Poland; (J.G.-W.); (M.M.); (P.O.)
| | - Paweł Orliński
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, 02-776 Warszawa, Poland; (J.G.-W.); (M.M.); (P.O.)
| |
Collapse
|
29
|
Czarnecka M, Kobak J, Grubisic M, Kakareko T. Disruptive effect of artificial light at night on leaf litter consumption, growth and activity of freshwater shredders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147407. [PMID: 33965828 DOI: 10.1016/j.scitotenv.2021.147407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Artificial light at night (ALAN) is a globally widespread phenomenon potentially affecting ecosystem processes, such as leaf litter breakdown, which is a source of organic matter in fresh waters. Here, we conducted a long-term experiment to test the effects of ALAN (2 lx) differing in spectral composition: white LEDs and high pressure sodium lamps (HPS) on leaf consumption, growth and activity of two macroinvertebrate species of shredders: Gammarus jazdzewskii and Dikerogammarus villosus (Crustacea, Amphipoda), compared to the undisturbed light-dark cycle. We also tested if the nocturnal illumination would influence the algal community colonising leaves, which is an important component of the leaf-shredder diet. We found that LED light increased the consumption of leaves by both species, which was nearly twice as high as in other treatments, and supressed the growth rate of G. jazdzewskii, whereas the growth of D. villosus was not affected by either light type. Moreover, D. villosus reduced its activity when exposed to ALAN of both types. As ALAN-induced changes in shredder growth and consumption were not associated with their increased activity or decreased food quality, we suggest that LED light may be a source of physiological stress for shredders, raising their energy expenditure, which was compensated by increased food intake. We have shown that LED illumination induces greater effects on wildlife than alternative, narrow wavelength spectrum light sources, such as HPS lamps, and may potentially alter the litter breakdown in aquatic ecosystems. It may accelerate the turnover of leaves by shredders, but on the other hand, it may negatively affect the fitness of macroinvertebrates and thus disturb the leaf processing over a longer term.
Collapse
Affiliation(s)
- Magdalena Czarnecka
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Toruń, Poland.
| | - Jarosław Kobak
- Department of Invertebrate Zoology and Parasitology, Nicolaus Copernicus University, Toruń, Poland
| | - Maja Grubisic
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Tomasz Kakareko
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
30
|
Straka TM, von der Lippe M, Voigt CC, Gandy M, Kowarik I, Buchholz S. Light pollution impairs urban nocturnal pollinators but less so in areas with high tree cover. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146244. [PMID: 33714820 DOI: 10.1016/j.scitotenv.2021.146244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The increase in artificial light at night (ALAN) is widely considered as a major driver for the worldwide decline of nocturnal pollinators such as moths. However, the relationship between light and trees as 'islands of shade' within urban areas has not yet been fully understood. Here, we studied (1) the effects of three landscape variables, i.e. sources of ALAN (mercury vapour/LED street lamps; overall light pollution), impervious surfaces (e.g. roads, parking lots and buildings), and tree cover on species richness and abundance of two major macro-moth families (Noctuidae and Geometridae) and (2) the potential mitigating effect of trees on macro-moths attracted to ALAN. We undertook a landscape-scale study on 22 open green areas along an urban-rural gradient within Berlin, Germany, using light traps to collect moths. Macro-moths were identified to species level and GLMMs applied with the three landscape variables at different scales (100 m, 500 m and 1000 m). We found a significant negative effect of mercury vapour street lamps on macro-moth species richness, while impervious surfaces showed significant negative effects on abundance (total and Geometridae). We further found significant positive effects of tree cover density on species richness and abundance (total and Geometridae). Effects of tree cover, however, were mostly driven by one site. LED lamps showed no predictive effects. A negative effect of ALAN (MV lamps and overall light) on macro-moths was most prominent in areas with low tree coverage, indicating a mitigating effect of trees on ALAN. We conclude that mercury vapour street lamps should be replaced by ecologically more neutral ALAN, and that in lit and open areas trees could be planted to mitigate the negative effect of ALAN on nocturnal pollinators. In addition, sources of ALAN should be carefully managed, using movement detection technology and other means to ensure that light is only produced when necessary.
Collapse
Affiliation(s)
- Tanja M Straka
- Technische Universität Berlin, Institute of Ecology, Ecosystem Science and Plant Ecology, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
| | - Moritz von der Lippe
- Technische Universität Berlin, Institute of Ecology, Ecosystem Science and Plant Ecology, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
| | - Christian C Voigt
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany; Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
| | - Matthew Gandy
- University of Cambridge, Department of Geography, Downing Place, Cambridge CB2 3EN, UK.
| | - Ingo Kowarik
- Technische Universität Berlin, Institute of Ecology, Ecosystem Science and Plant Ecology, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
| | - Sascha Buchholz
- Technische Universität Berlin, Institute of Ecology, Ecosystem Science and Plant Ecology, 12165 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany.
| |
Collapse
|
31
|
Tidau S, Smyth T, McKee D, Wiedenmann J, D’Angelo C, Wilcockson D, Ellison A, Grimmer AJ, Jenkins SR, Widdicombe S, Queirós AM, Talbot E, Wright A, Davies TW. Marine artificial light at night: An empirical and technical guide. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Svenja Tidau
- School of Biological and Marine Sciences University of Plymouth Plymouth UK
- School of Ocean Sciences Bangor University Menai Bridge UK
| | - Tim Smyth
- Plymouth Marine Laboratory Plymouth UK
| | - David McKee
- Physics Department University of Strathclyde Glasgow UK
- Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway
| | - Jörg Wiedenmann
- School of Ocean and Earth Science University of Southampton Southampton UK
| | - Cecilia D’Angelo
- School of Ocean and Earth Science University of Southampton Southampton UK
| | - David Wilcockson
- Institute of Biological Environmental & Rural Sciences Aberystwyth University Aberystwyth UK
| | - Amy Ellison
- School of Natural Sciences Bangor University Bangor UK
| | - Andrew J. Grimmer
- School of Biological and Marine Sciences University of Plymouth Plymouth UK
| | | | | | | | | | | | - Thomas W. Davies
- School of Biological and Marine Sciences University of Plymouth Plymouth UK
| |
Collapse
|
32
|
Alaasam VJ, Kernbach ME, Miller CR, Ferguson SM. The diversity of photosensitivity and its implications for light pollution. Integr Comp Biol 2021; 61:1170-1181. [PMID: 34232263 DOI: 10.1093/icb/icab156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Artificial light at night (ALAN) is a pervasive anthropogenic pollutant, emanating from urban and suburban developments and reaching nearly all ecosystems from dense forests to coastlines. One proposed strategy for attenuating the consequences of ALAN is to modify its spectral composition to forms that are less disruptive for photosensory systems. However, ALAN is a complicated pollutant to manage due to the extensive variation in photosensory mechanisms and the diverse ways these mechanisms manifest in biological and ecological contexts. Here, we highlight the diversity in photosensitivity across taxa and the implications of this diversity in predicting biological responses to different forms of night lighting. We curated this paper to be broadly accessible and inform current decisions about the spectrum of electric lights used outdoors. We advocate that efforts to mitigate light pollution should consider the unique ways species perceive ALAN, as well as how diverse responses to ALAN scale up to produce diverse ecological outcomes.
Collapse
Affiliation(s)
- Valentina J Alaasam
- Ecology, Evolution and Conservation Program, University of Nevada, Reno, Reno, NV.,Department of Biology, University of Nevada, Reno, Reno, NV
| | | | - Colleen R Miller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| | - Stephen M Ferguson
- Department of Biology, College of Wooster, Wooster, OH.,Division of Natural Sciences, St. Norbert College, De Pere, WI
| |
Collapse
|
33
|
Zhou S, Kowal SF, Cregan AR, Kahan TF. Factors affecting wavelength-resolved ultraviolet irradiance indoors and their impacts on indoor photochemistry. INDOOR AIR 2021; 31:1187-1198. [PMID: 33373097 DOI: 10.1111/ina.12784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 05/25/2023]
Abstract
We measured wavelength-resolved ultraviolet (UV) irradiance in multiple indoor environments and quantified the effects of variables such as light source, solar angles, cloud cover, window type, and electric light color temperature on indoor photon fluxes. The majority of the 77 windows and window samples investigated completely attenuated sunlight at wavelengths shorter than 320 nm; despite variations among individual windows leading to differences in indoor HONO photolysis rate constants (JHONO ) and local hydroxyl radical (OH) concentrations of up to a factor of 50, wavelength-resolved transmittance was similar between windows in residential and non-residential buildings. We report mathematical relationships that predict indoor solar UV irradiance as a function of solar zenith angle, incident angle of sunlight on windows, and distance from windows and surfaces for direct and diffuse sunlight. Using these relationships, we predict elevated indoor steady-state OH concentrations (0.80-7.4 × 106 molec cm-3 ) under illumination by direct and diffuse sunlight and fluorescent tubes near windows or light sources. However, elevated OH concentrations at 1 m from the source are only predicted under direct sunlight. We predict that reflections from indoor surfaces will have minor contributions to room-averaged indoor UV irradiance. These results may improve parameterization of indoor chemistry models.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Shawn F Kowal
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Alyssa R Cregan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
34
|
Abstract
The physiology and behavior of most life at or near the Earth’s surface has evolved over billions of years to be attuned with our planet’s natural light–dark cycle of day and night. However, over a relatively short time span, humans have disrupted this natural cycle of illumination with the introduction and now widespread proliferation of artificial light at night (ALAN). Growing research in a broad range of fields, such as ecology, the environment, human health, public safety, economy, and society, increasingly shows that ALAN is taking a profound toll on our world. Much of our current understanding of light pollution comes from datasets generated by remote sensing, primarily from two missions, the Operational Linescan System (OLS) instrument of the now-declassified Defense Meteorological Satellite Program (DMSP) of the U.S. Department of Defense and its follow-on platform, the Day-Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on board the Suomi National Polar-Orbiting Partnership satellite. Although they have both proved invaluable for ALAN research, sensing of nighttime lights was not the primary design objective for either the DMSP-OLS or VIIRS-DNB instruments; thus, they have some critical limitations. Being broadband sensors, both the DMSP-OLS and VIIRS-DNB instruments suffer from a lack of spectral information. Additionally, their spatial resolutions are too low for many ALAN research applications, though the VIIRS-DNB instrument is much improved over the DMSP-OLS in this regard, as well as in terms of dynamic range and quantization. Further, the very late local time of VIIRS-DNB observations potentially misses the true picture of ALAN. We reviewed both current literature and guiding advice from ALAN experts, aggregated from a diverse range of disciplines and Science Goals, to derive recommendations for a mission to expand knowledge of ALAN in areas that are not adequately addressed with currently existing orbital missions. We propose a stand-alone mission focused on understanding light pollution and its effects on our planet. Here we review the science cases and the subsequent mission recommendations for NITESat (Nighttime Imaging of Terrestrial Environments Satellite), a dedicated ALAN observing mission.
Collapse
|
35
|
Lee KEM, Lum WHD, Coleman JL. Ecological impacts of the LED-streetlight retrofit on insectivorous bats in Singapore. PLoS One 2021; 16:e0247900. [PMID: 34038438 PMCID: PMC8153503 DOI: 10.1371/journal.pone.0247900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/16/2021] [Indexed: 11/19/2022] Open
Abstract
Cities around the world are transitioning to more efficient lighting schemes, especially retrofitting traditional, high-pressure sodium (HPS) streetlights with light-emitting diode (LED) lights. Although these initiatives aim to address the problems of urban sustainability and save money, the ecological impacts of these retrofits remain poorly understood, especially in brightly lit cities and in the tropics, where urbanisation is most rapid. We performed an experimental study of the retrofit in Singapore-focusing on insectivorous bats, whose activity we monitored acoustically along paired control (HPS-lit) and treatment (LED-lit) streets. We recorded seven species along these streets, but only obtained enough recordings to measure the effect of light type for three of them-all of which can reasonably be described as urban adapters. The strongest predictor of bat activity (an index of habitat use) was rainfall-it has a positive effect. Light type did not influence bat activity or species composition of the bat assemblage along these streets, though it did interact with the effects of rainfall and traffic noise for one bat species. Ultimately, the retrofit may be ecologically meaningless to urban-adapted, tropical insectivores that already experience high levels of light pollution as they do in Singapore. However, while our findings may appear reassuring to those concerned with such retrofits in other tropical and/or brightly-lit cities, they also highlight the contextual nature of ecological impacts. We point out that they should not be prematurely generalised to other locales and systems. In particular, they do not imply no impact on species that are less urban-adapted, and there is a clear need for further studies, for example, on responses of other foraging guilds and of bats (and insects) throughout the tropics.
Collapse
Affiliation(s)
- Kenneth Ee Meng Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - W. H. Deon Lum
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Joanna L. Coleman
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
36
|
The Urban Observatory: A Multi-Modal Imaging Platform for the Study of Dynamics in Complex Urban Systems. REMOTE SENSING 2021. [DOI: 10.3390/rs13081426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We describe an “Urban Observatory” facility designed for the study of complex urban systems via persistent, synoptic, and granular imaging of dynamical processes in cities. An initial deployment of the facility has been demonstrated in New York City and consists of a suite of imaging systems—both broadband and hyperspectral—sensitive to wavelengths from the visible (∼400 nm) to the infrared (∼13 micron) operating at cadences of ∼0.01–30 Hz (characteristically ∼0.1 Hz). Much like an astronomical survey, the facility generates a large imaging catalog from which we have extracted observables (e.g., time-dependent brightnesses, spectra, temperatures, chemical species, etc.), collecting them in a parallel source catalog. We have demonstrated that, in addition to the urban science of cities as systems, these data are applicable to a myriad of domain-specific scientific inquiries related to urban functioning including energy consumption and end use, environmental impacts of cities, and patterns of life and public health. We show that an Urban Observatory facility of this type has the potential to improve both a city’s operations and the quality of life of its inhabitants.
Collapse
|
37
|
Quintanilla-Ahumada D, Quijón PA, Pulgar J, Manríquez PH, García-Huidobro MR, Duarte C. Exposure to artificial light at night (ALAN) alters RNA:DNA ratios in a sandy beach coleopteran insect. MARINE POLLUTION BULLETIN 2021; 165:112132. [PMID: 33607454 DOI: 10.1016/j.marpolbul.2021.112132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Coastal habitats worldwide, including sandy beaches, are becoming increasingly exposed to Artificial Light at Night (ALAN). Despite the spread of this global stressor, research assessing ALAN potential impacts remain scarce, particularly at the molecular level. This study addressed this gap by assessing the influence of ALAN on the physiological condition of the sandy beach insect Phalerisida maculata Kulzer (Coleoptera, Tenebrionidae). RNA:DNA ratios were used here as a proxy of the insect's nutritional condition in laboratory trials that lasted 20 d. Insects were exposed to two representative ALAN conditions (either 60 or 120 lx) and compared with those maintained in a natural daylight/night cycle (0 lx at nigth; control). After the trial, organisms from each treatment were frozen in liquid nitrogen and standard protocols were followed to estimate RNA, DNA and RNA:DNA ratios. Estimates of RNA:DNA ratios from insects maintained in control conditions were significantly higher (P < 0.05) than those from insects exposed to ALAN. The reduced nutritional condition of insects exposed to light pollution is explained by the lower in situ biosynthetic capacity in these organisms resulting from a reduction in their feeding. ALAN likely altered P. maculata normal locomotor activity, which takes place primarily at night, forcing the insects to remain buried in the sand for extended periods of time. As ALAN continues to spread along coastlines worldwide, there is a likelihood of growing impacts on these and other species living on sandy beaches and other coastal habitats.
Collapse
Affiliation(s)
- D Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - P A Quijón
- Department of Biology, University of Prince Edward Island Charlottetown, Prince Edward Island, Canada
| | - J Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - P H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - M Roberto García-Huidobro
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - C Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
38
|
Pärnamets K, Pardy T, Koel A, Rang T, Scheler O, Le Moullec Y, Afrin F. Optical Detection Methods for High-Throughput Fluorescent Droplet Microflow Cytometry. MICROMACHINES 2021; 12:mi12030345. [PMID: 33807031 PMCID: PMC8004903 DOI: 10.3390/mi12030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
High-throughput microflow cytometry has become a focal point of research in recent years. In particular, droplet microflow cytometry (DMFC) enables the analysis of cells reacting to different stimuli in chemical isolation due to each droplet acting as an isolated microreactor. Furthermore, at high flow rates, the droplets allow massive parallelization, further increasing the throughput of droplets. However, this novel methodology poses unique challenges related to commonly used fluorometry and fluorescent microscopy techniques. We review the optical sensor technology and light sources applicable to DMFC, as well as analyze the challenges and advantages of each option, primarily focusing on electronics. An analysis of low-cost and/or sufficiently compact systems that can be incorporated into portable devices is also presented.
Collapse
Affiliation(s)
- Kaiser Pärnamets
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
- Correspondence:
| | - Tamas Pardy
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (T.P.); (O.S.)
| | - Ants Koel
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Toomas Rang
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (T.P.); (O.S.)
| | - Yannick Le Moullec
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Fariha Afrin
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| |
Collapse
|
39
|
Zhang S, Wang Y, Zhu Y, Li X, Song Y, Yuan J. Rotating Night Shift Work, Exposure to Light at Night, and Glomerular Filtration Rate: Baseline Results from a Chinese Occupational Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17239035. [PMID: 33291553 PMCID: PMC7730862 DOI: 10.3390/ijerph17239035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
The misalignment between the circadian clock and behavioral cycles has been implicated in pathogenesis of many diseases. The main purpose of this study is to examine the association between rotating night shift work, exposure to light at night, and glomerular filtration rate among steelworkers in north China. A total of 6869 steelworkers, aged 22 to 60 years, were included in this study. Multivariable logistic regression was used to examine the association between night shift work, the brightness of bedroom ambient light at night (LAN), and estimated glomerular filtration rate (eGFR), with adjustment for potential confounders. Mediation analysis was performed to examine the mediation effect of potential mediators on the association of duration of night shifts and eGFR. Long duration of night shift work (≥29 years) had elevated odds of decreased eGFR (≤89 mL/min/1.73 m2) (odds ratio (OR), 1.37, 95% confidence interval (CI) 1.09–1.73) compared with day work after adjustment for potential confounders. The association between duration of night shifts and eGFR (continuous) was partially modified by diastolic blood pressure (average causal mediation effect (ACME), –0.077, 95% CI –0.134 to −0.030, p < 0.001). No significant associations were observed among the different brightness of bedroom ambient light levels: middle level (OR, 0.90, 95% CI 0.77–1.05), lightest level (OR, 0.94, 95% CI 0.75–1.18), and decreased eGFR compared with the darkest level. Long-term night-shift work, rather than the brightness of bedroom ambient LAN, is associated with early stage of renal dysfunction in steelworkers, and blood pressure may mediate the relationship between night shift work and decreased eGFR.
Collapse
Affiliation(s)
- Shengkui Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (S.Z.); (Y.Z.); (X.L.); (Y.S.)
| | - Yongbin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang 453003, China;
| | - Ying Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (S.Z.); (Y.Z.); (X.L.); (Y.S.)
| | - Xiaoming Li
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (S.Z.); (Y.Z.); (X.L.); (Y.S.)
| | - Yang Song
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (S.Z.); (Y.Z.); (X.L.); (Y.S.)
| | - Juxiang Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (S.Z.); (Y.Z.); (X.L.); (Y.S.)
- Correspondence: ; Tel.: +86-0315-880-5578
| |
Collapse
|
40
|
Abstract
As urban areas continue to expand and play a critical role as both contributors to climate change and hotspots of vulnerability to its effects, cities have become battlegrounds for climate change adaptation and mitigation. Large amounts of earth observations from space have been collected over the last five decades and while most of the measurements have not been designed specifically for monitoring urban areas, an increasing number of these observations is being used for understanding the growth rates of cities and their environmental impacts. Here we reviewed the existing tools available from satellite remote sensing to study urban contribution to climate change, which could be used for monitoring the progress of climate change mitigation strategies at the city level. We described earth observations that are suitable for measuring and monitoring urban population, extent, and structure; urban emissions of greenhouse gases and other air pollutants; urban energy consumption; and extent, intensity, and effects on surrounding regions, including nearby water bodies, of urban heat islands. We compared the observations available and obtainable from space with the measurements desirable for monitoring. Despite considerable progress in monitoring urban extent, structure, heat island intensity, and air pollution from space, many limitations and uncertainties still need to be resolved. We emphasize that some important variables, such as population density and urban energy consumption, cannot be suitably measured from space with available observations.
Collapse
|
41
|
Stewart AJA, Perl CD, Niven JE. Artificial lighting impairs mate attraction in a nocturnal capital breeder. J Exp Biol 2020; 223:jeb229146. [PMID: 32665443 DOI: 10.1242/jeb.229146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/08/2020] [Indexed: 01/23/2023]
Abstract
Artificial lighting at night (ALAN) is increasingly recognised as having negative effects on many organisms, though the exact mechanisms remain unclear. Glow worms are likely susceptible to ALAN because females use bioluminescence to signal to attract males. We quantified the impact of ALAN by comparing the efficacy of traps that mimicked females to attract males in the presence or absence of a white artificial light source (ALS). Illuminated traps attracted fewer males than did traps in the dark. Illuminated traps closer to the ALS attracted fewer males than those further away, whereas traps in the dark attracted similar numbers of males up to 40 m from the ALS. Thus, ALAN impedes females' ability to attract males, the effect increasing with light intensity. Consequently, ALAN potentially affects glow worms' fecundity and long-term population survival. More broadly, this study emphasises the potentially severe deleterious effects of ALAN upon nocturnal insect populations.
Collapse
Affiliation(s)
- Alan J A Stewart
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Craig D Perl
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- Department of Zoology: Functional Morphology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden
| | - Jeremy E Niven
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
42
|
Malik I, Batra T, Das S, Kumar V. Light at night affects gut microbial community and negatively impacts host physiology in diurnal animals: Evidence from captive zebra finches. Microbiol Res 2020; 241:126597. [PMID: 32979783 DOI: 10.1016/j.micres.2020.126597] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/02/2020] [Accepted: 09/14/2020] [Indexed: 01/16/2023]
Abstract
The gastrointestinal tract (GIT) hosts a large number of diverse microorganisms, with mutualistic interactions with the host. Here, in two separate experiments, we investigated whether light at night (LAN) would affect GIT microbiota and, in turn, the host physiology in diurnal zebra finches (Taeniopygia guttata). Experiment I assessed the effects of no-night (LL) and dimly illuminated night (dim light at night, dLAN) on fecal microbiota diversity and host physiology of birds born and raised under 12 h photoperiod (LD; 12 h light: 12 h darkness). Under LL and dLAN, compared to LD, we found a significant increase in the body mass, subcutaneous fat deposition and hepatic accumulation of lipids. Although we found no difference in total 24 h food consumption, LL/ dLAN birds ate also at night, suggesting LAN-induced alteration in daily feeding times. Concurrently, there were marked differences in amplicon sequence and bacterial species richness between LD and LAN, with notable decline in Lactobacillus richness in birds under LL and dLAN. We attributed declined Lactobacillus population as causal (at least partially) to negative effects on the host metabolism. Therefore, in experiment II with similar protocol, birds under LL and dLAN were fed on diet with or without Lactobacillus rhamnosus GG (LGG) supplement. Clearly, LGG supplement ameliorated LL- and dLAN-induced negative effects in zebra finches. These results demonstrate adverse effects of unnatural lighting on GIT bacterial diversity and host physiology, and suggest the role of GIT microbiota in the maintenance of metabolic homeostasis in response to LAN environment in diurnal animals.
Collapse
Affiliation(s)
- Indu Malik
- Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Twinkle Batra
- Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Subhajit Das
- Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
43
|
Riekenberg PM, Oakes JM, Eyre BD. Shining Light on Priming in Euphotic Sediments: Nutrient Enrichment Stimulates Export of Stored Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11165-11172. [PMID: 32786559 DOI: 10.1021/acs.est.0c01914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Estuarine sediments are important sites for the interception, processing, and retention of organic matter, prior to its export to the coastal oceans. Stimulated microbial co-metabolism (priming) potentially increases export of refractory organic matter through increased production of hydrolytic enzymes. Using the microphytobenthos community to directly introduce a pulse of labile carbon into sediment, we traced a priming effect and assessed the decomposition and export of preexisting organic matter. We show enhanced efflux of preexisting carbon from intertidal sediments enriched with water column nutrients. Nutrient enrichment increased production of labile microphytobenthos carbon, which stimulated degradation of previously unavailable organic matter and led to increased liberation of "old" (6855 ± 120 years BP) refractory carbon as dissolved organic carbon (DOC). These enhanced DOC effluxes occurred at a scale that decreases estimates for global organic carbon burial in coastal systems and should be considered as an impact of eutrophication on estuarine carbon budgets.
Collapse
Affiliation(s)
- Philip M Riekenberg
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, Den Hoorn 1790AB, The Netherlands
- Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia
| | - Joanne M Oakes
- Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia
| | - Bradley D Eyre
- Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia
| |
Collapse
|
44
|
Kehoe R, Sanders D, Cruse D, Silk M, Gaston KJ, Bridle JR, van Veen F. Longer photoperiods through range shifts and artificial light lead to a destabilizing increase in host-parasitoid interaction strength. J Anim Ecol 2020; 89:2508-2516. [PMID: 32858779 DOI: 10.1111/1365-2656.13328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022]
Abstract
Many organisms are experiencing changing daily light regimes due to latitudinal range shifts driven by climate change and increased artificial light at night (ALAN). Activity patterns are often driven by light cycles, which will have important consequences for species interactions. We tested whether longer photoperiods lead to higher parasitism rates by a day-active parasitoid on its host using a laboratory experiment in which we independently varied daylength and the presence of ALAN. We then tested whether reduced nighttime temperature tempers the effect of ALAN. We found that parasitism rate increased with daylength, with ALAN intensifying this effect only when the temperature was not reduced at night. The impact of ALAN was more pronounced under short daylength. Increased parasitoid activity was not compensated for by reduced life span, indicating that increased daylength leads to an increase in total parasitism effects on fitness. To test the significance of increased parasitism rate for population dynamics, we developed a host-parasitoid model. The results of the model predicted an increase in time-to-equilibrium with increased daylength and, crucially, a threshold daylength above which interactions are unstable, leading to local extinctions. Here we demonstrate that ALAN impact interacts with daylength and temperature by changing the interaction strength between a common day-active consumer species and its host in a predictable way. Our results further suggest that range expansion or ALAN-induced changes in light regimes experienced by insects and their natural enemies will result in unstable dynamics beyond key tipping points in daylength.
Collapse
Affiliation(s)
- Rachel Kehoe
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Dave Cruse
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Matthew Silk
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Jon R Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK.,Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Frank van Veen
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| |
Collapse
|
45
|
Wu W, Zhang Z, Zheng L, Han C, Wang X, Xu J, Wang X. Research Progress on the Early Monitoring of Pine Wilt Disease Using Hyperspectral Techniques. SENSORS 2020; 20:s20133729. [PMID: 32635285 PMCID: PMC7374340 DOI: 10.3390/s20133729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 11/30/2022]
Abstract
Pine wilt disease (PWD) caused by pine wood nematode (PWN, Bursaphelenchus xylophilus) originated in North America and has since spread to Asia and Europe. PWN is currently a quarantine object in 52 countries. In recent years, pine wilt disease has caused considerable economic losses to the pine forest production industry in China, as it is difficult to control. Thus, one of the key strategies for controlling pine wilt disease is to identify epidemic points as early as possible. The use of hyperspectral cameras mounted on drones is expected to enable PWD monitoring over large areas of forest, and hyperspectral images can reflect different stages of PWD. The trend of applying hyperspectral techniques to the monitoring of pine wilt disease is analyzed, and the corresponding strategies to address the existing technical problems are proposed, such as data collection of early warning stages, needs of using unmanned aerial vehicles (UAVs), and establishment of models after preprocessing.
Collapse
Affiliation(s)
- Weibin Wu
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Z.Z.); (C.H.); (X.W.); (J.X.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Zhenbang Zhang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Z.Z.); (C.H.); (X.W.); (J.X.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Lijun Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Chongyang Han
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Z.Z.); (C.H.); (X.W.); (J.X.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Xiaoming Wang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Z.Z.); (C.H.); (X.W.); (J.X.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Jian Xu
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; (W.W.); (Z.Z.); (C.H.); (X.W.); (J.X.)
- Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China
| | - Xinrong Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
- Correspondence:
| |
Collapse
|
46
|
Post-Earthquake Night-Time Light Piecewise (PNLP) Pattern Based on NPP/VIIRS Night-Time Light Data: A Case Study of the 2015 Nepal Earthquake. REMOTE SENSING 2020. [DOI: 10.3390/rs12122009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Earthquakes are unpredictable and potentially destructive natural disasters that take a long time to recover from. Monitoring post-earthquake human activity (HA) is of great significance to recovery and reconstruction work. There is a strong correlation between night-time light (NTL) and HA, which aid in the study of spatiotemporal changes in post-earthquake human activities. However, seasonal and noise impact from National Polar-Orbiting Partnership Satellite Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) data greatly limits their application. To tackle these issues, random noise and seasonal fluctuation of NPP/VIIRS from January 2014 to December 2018 is removed by adopting the seasonal-trend decomposition procedure based on loess (STL). Based on the theory of post-earthquake recovery model, a post-earthquake night-time light piecewise (PNLP) pattern is explored by employing the National Polar-Orbiting Partnership Satellite Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) monthly data. PNLP indicators, including pre-earthquake development rate (kp), recovery rate (kr1), reconstruction rate (kr2), development rate (kd), relative reconstruction rate (krp) and loss (S), are defined to describe the PNLP pattern. Furthermore, the 2015 Nepal earthquake is chosen as a case study and the spatiotemporal changes in different areas are analyzed. The results reveal that: (1) STL is an effective algorithm for obtaining HA trend from the time series of denoising NTL; (2) the PNLP pattern, divided into four phases, namely the emergency phase (EP), recovery phase (RP-1), reconstruction phase (RP-2), and development phase (DP), aptly describes the variation in post-earthquake HA; (3) PNLP indicators are capable of evaluating the recovery differences across regions. The main socio-economic factors affecting the PNLP pattern and PNLP indicators are energy source for lighting, type of building, agricultural economy, and human poverty index. Based on the NPP/VIIRS data, the PNLP pattern can reflect the periodical changes of HA after earthquakes and provide an effective means for the analysis and evaluation of post-earthquake recovery and reconstruction.
Collapse
|
47
|
de Meester J, Storch T. Optimized Performance Parameters for Nighttime Multispectral Satellite Imagery to Analyze Lightings in Urban Areas. SENSORS 2020; 20:s20113313. [PMID: 32532117 PMCID: PMC7308855 DOI: 10.3390/s20113313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023]
Abstract
Contrary to its daytime counterpart, nighttime visible and near infrared (VIS/NIR) satellite imagery is limited in both spectral and spatial resolution. Nevertheless, the relevance of such systems is unquestioned with applications to, e.g., examine urban areas, derive light pollution, and estimate energy consumption. To determine optimal spectral bands together with required radiometric and spatial resolution, at-sensor radiances are simulated based on combinations of lamp spectra with typical luminances according to lighting standards, surface reflectances, and radiative transfers for the consideration of atmospheric effects. Various band combinations are evaluated for their ability to differentiate between lighting types and to estimate the important lighting parameters: efficacy to produce visible light, percentage of emissions attributable to the blue part of the spectrum, and assessment of the perceived color of radiation sources. The selected bands are located in the green, blue, yellow-orange, near infrared, and red parts of the spectrum and include one panchromatic band. However, these nighttime bands tailored to artificial light emissions differ significantly from the typical daytime bands focusing on surface reflectances. Compared to existing or proposed nighttime or daytime satellites, the recommended characteristics improve, e.g., classification of lighting types by >10%. The simulations illustrate the feasible improvements in nocturnal VIS/NIR remote sensing which will lead to advanced applications.
Collapse
|
48
|
Synergies and Trade-Offs Between Sustainable Development and Energy Performance of Exterior Lighting. ENERGIES 2020. [DOI: 10.3390/en13092245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this review was to map synergies and trade-offs between sustainable development and energy efficiency and savings regarding exterior lighting. Exterior lighting, such as public road and street lighting, requires significant amounts of energy and hinders sustainable development through its increasing of light pollution, ecological impact, and global climate change. Interlinkages between indicators in sustainability and energy that have positive interactions will lead to a mutual reinforcement in the decision-making process, and vice versa, interlinkages between trade-offs may lead to unwanted and conflicting effects. Very few studies have presented a clear vision of how exterior lighting should be contributing to, and not counteracting, the sustainable development of our planet. This study was conducted through a theoretical and systematic analysis that examined the interactions between sustainable development and energy performance based on a framework using indicators and variables, and by reviewing the current literature. Additionally, 17 indicators of energy efficiency and energy savings were identified and used in the analysis. Most interactions between variables for sustainable development and energy performance (52%) were found to be synergistic. The synergistic interactions were mostly found (71%) in the ecological and environmental dimension showing that environmental and ecological sustainability goes hand in hand with energy efficiency and savings. Trade-offs were found only in the economic and social dimensions accounting for 18% of the interactions identified. This review shows that the interactions between sustainable development and energy performance can be used to establish more efficient policies for decision-making processes regarding exterior lighting.
Collapse
|
49
|
Deconvoluting Wavelengths Leading to Fluorescent Light Induced Inflammation and Cellular Stress in Zebrafish (Danio rerio). Sci Rep 2020; 10:3321. [PMID: 32094353 PMCID: PMC7039929 DOI: 10.1038/s41598-020-59502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/23/2020] [Indexed: 11/16/2022] Open
Abstract
Fluorescent light (FL) has been shown to induce a cellular immune and inflammatory response that is conserved over 450 MY of evolutionary divergence and among vertebrates having drastically different lifestyles such as Mus musculus, Danio rerio, Oryzias latipes and Xiphophorus maculatus. This surprising finding of an inflammation and immune response to FL not only holds for direct light receiving organs (skin) but is also observed within internal organs (brain and liver). Light responsive genetic circuitry initiated by the IL1B regulator induces a highly conserved acute phase response in each organ assessed for all of biological models surveyed to date; however, the specific light wavelengths triggering this response have yet to be determined so investigation of mechanisms and/or light specific molecule(s) leading to this response are difficult to assess. To understand how specific light wavelengths are received in both external and internal organs, zebrafish were exposed to specific 50 nm light wavebands spanning the visible spectrum from 300–600 nm and the genetic responses to each waveband exposure were assessed. Surprisingly, the induced cellular stress response previously observed following FL exposure is not triggered by the lower “damaging” wavelengths of light (UVB and UVA from 300–400 nm) but instead is maximally induced by higher wavelengths ranging from 450–500 nm in skin to 500–600 nm in both brain and liver).
Collapse
|
50
|
McEnery-Stonelake ME, Clark MA, Vidimos AT. Vulvar basal cell carcinoma arising in the setting of repeated perilamp exposure. JAAD Case Rep 2020; 6:103-105. [PMID: 32016151 PMCID: PMC6992888 DOI: 10.1016/j.jdcr.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
| | - Melanie A Clark
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allison T Vidimos
- Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|