1
|
Roschelle M, Rabbani R, Papageorgiou E, Zhang H, Cooperberg M, Stohr BA, Niknejad A, Anwar M. Multicolor fluorescence microscopy for surgical guidance using a chip-scale imager with a low-NA fiber optic plate and a multi-bandpass interference filter. BIOMEDICAL OPTICS EXPRESS 2024; 15:1761-1776. [PMID: 38495694 PMCID: PMC10942699 DOI: 10.1364/boe.509235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/19/2024]
Abstract
In curative-intent cancer surgery, intraoperative fluorescence imaging of both diseased and healthy tissue can help to ensure the successful removal of all gross and microscopic diseases with minimal damage to neighboring critical structures, such as nerves. Current fluorescence-guided surgery (FGS) systems, however, rely on bulky and rigid optics that incur performance-limiting trade-offs between sensitivity and maneuverability. Moreover, many FGS systems are incapable of multiplexed imaging. As a result, clinical FGS is currently limited to millimeter-scale detection of a single fluorescent target. Here, we present a scalable, lens-less fluorescence imaging chip, VISION, capable of sensitive and multiplexed detection within a compact form factor. Central to VISION is a novel optical frontend design combining a low-numerical-aperture fiber optic plate (LNA-FOP) and a multi-bandpass interference filter, which is affixed to a custom CMOS image sensor. The LNA-FOP acts as a planar collimator to improve resolution and compensate for the angle-sensitivity of the interference filter, enabling high-resolution and multiplexed fluorescence imaging without lenses. We show VISION is capable of detecting tumor foci of less than 100 cells at near video framerates and, as proof of principle, can simultaneously visualize both tumors and nerves in ex vivo prostate tissue.
Collapse
Affiliation(s)
- Micah Roschelle
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Rozhan Rabbani
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Efthymios Papageorgiou
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Hui Zhang
- Department of Radiation Oncology, University of California, San Francisco, California 94158, USA
| | - Matthew Cooperberg
- Department of Urology, University of California, San Francisco, California 94158, USA
| | - Bradley A Stohr
- Department of Pathology, University of California, San Francisco, California 94158, USA
| | - Ali Niknejad
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
| | - Mekhail Anwar
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
- Department of Radiation Oncology, University of California, San Francisco, California 94158, USA
| |
Collapse
|
2
|
Roschelle M, Rabbani R, Papageorgiou E, Zhang H, Cooperberg M, Stohr BA, Niknejad A, Anwar M. Multicolor fluorescence microscopy for surgical guidance using a chip-scale imager with a low-NA fiber optic plate and a multi-bandpass interference filter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562247. [PMID: 37904924 PMCID: PMC10614810 DOI: 10.1101/2023.10.16.562247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
In curative-intent cancer surgery, intraoperative fluorescence imaging of both diseased and healthy tissue can help to ensure successful removal of all gross and microscopic disease with minimal damage to neighboring critical structures, such as nerves. Current fluorescence-guided surgery (FGS) systems, however, rely on bulky and rigid optics that incur performance-limiting trade-offs between sensitivity and maneuverability. Moreover, many FGS systems are incapable of multiplexed imaging. As a result, clinical FGS is currently limited to millimeter-scale detection of a single fluorescent target. Here we present a scalable, lens-less fluorescence imaging chip, VISION, capable of sensitive and multiplexed detection within a compact form factor. Central to VISION is a novel optical frontend design combining a low-numerical-aperture fiber optic plate (LNA-FOP) and a multi-bandpass interference filter, which is affixed to a custom CMOS image sensor. The LNA-FOP acts as a planar collimator to improve resolution and compensate for the angle-sensitivity of the interference filter, enabling high-resolution and multiplexed fluorescence imaging without lenses. We show VISION is capable of detecting tumor foci of less than 100 cells at near video framerates and, as proof of principle, can simultaneously visualize both tumor and nerves in ex vivo prostate tissue.
Collapse
|
3
|
Rustami E, Sasagawa K, Sugie K, Ohta Y, Takehara H, Haruta M, Tashiro H, Ohta J. Thin and Scalable Hybrid Emission Filter via Plasma Etching for Low-Invasive Fluorescence Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:3695. [PMID: 37050755 PMCID: PMC10098729 DOI: 10.3390/s23073695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Hybrid emission filters, comprising an interference filter and an absorption filter, exhibit high excitation light rejection performance and can act as lensless fluorescent devices. However, it has been challenging to produce them in large batches over a large area. In this study, we propose and demonstrate a method for transferring a Si substrate, on which the hybrid filter is deposited, onto an image sensor by attaching it to the sensor and removing the substrate via plasma etching. Through this method, we can transfer uniform filters onto fine micrometer-sized needle devices and millimeter-sized multisensor chips. Optical evaluation reveals that the hybrid filter emits light in the 500 to 560 nm range, close to the emission region of green fluorescent protein (GFP). Furthermore, by observing the fluorescence emission from the microbeads, a spatial resolution of 12.11 μm is calculated. In vitro experiments confirm that the fabricated device is able to discriminate GFP emission patterns from brain slices.
Collapse
Affiliation(s)
- Erus Rustami
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University (Bogor), Kampus IPB Dramaga, Bogor 16680, West Java, Indonesia
| | - Kiyotaka Sasagawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | - Kenji Sugie
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | - Yasumi Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | - Hironari Takehara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | - Makito Haruta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | - Hiroyuki Tashiro
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jun Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| |
Collapse
|
4
|
Sasagawa K, Kimura A, Haruta M, Noda T, Tokuda T, Ohta J. Highly sensitive lens-free fluorescence imaging device enabled by a complementary combination of interference and absorption filters. BIOMEDICAL OPTICS EXPRESS 2018; 9:4329-4344. [PMID: 30615707 PMCID: PMC6157770 DOI: 10.1364/boe.9.004329] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 05/28/2023]
Abstract
We report a lens-free fluorescence imaging device using a composite filter composed of an interference filter and an absorption filter, each applied to one side of a fiber optic plate (FOP). The transmission of angled excitation light through the interference filter is absorbed by the absorption filter. The auto-fluorescence of the absorption filter is reduced by the reflection from the interference filter of normally incident excitation light. As a result, high-performance rejection of excitation light is achieved in a lens-free device. The FOP provides a flat, hard imaging device surface that does not degrade the spatial resolution. We demonstrate excitation rejection of approximately 108:1 at a wavelength of 450 nm in a fabricated lens-free device. The resolution of fluorescence imaging is approximately 12 µm. Time-lapse imaging of cells containing green fluorescent protein was performed in a 5-µm thin-film chamber. The small dimensions of the device allow observation of cell culturing in a CO2 incubator. We also demonstrate that the proposed lens-free filter is compatible with super-resolution bright-field imaging techniques. These features open a way to develop a high-performance, dual-mode, lens-free imaging device that is expected to be a powerful tool for many applications, such as imaging of labeled cells and point-of-care assay.
Collapse
Affiliation(s)
- Kiyotaka Sasagawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara,
Japan
| | - Ayaka Kimura
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara,
Japan
| | - Makito Haruta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara,
Japan
| | - Toshihiko Noda
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara,
Japan
| | - Takashi Tokuda
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara,
Japan
| | - Jun Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara,
Japan
| |
Collapse
|
5
|
Ulep TH, Yoon JY. Challenges in paper-based fluorogenic optical sensing with smartphones. NANO CONVERGENCE 2018; 5:14. [PMID: 29755926 PMCID: PMC5937860 DOI: 10.1186/s40580-018-0146-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/27/2018] [Indexed: 05/23/2023]
Abstract
Application of optically superior, tunable fluorescent nanotechnologies have long been demonstrated throughout many chemical and biological sensing applications. Combined with microfluidics technologies, i.e. on lab-on-a-chip platforms, such fluorescent nanotechnologies have often enabled extreme sensitivity, sometimes down to single molecule level. Within recent years there has been a peak interest in translating fluorescent nanotechnology onto paper-based platforms for chemical and biological sensing, as a simple, low-cost, disposable alternative to conventional silicone-based microfluidic substrates. On the other hand, smartphone integration as an optical detection system as well as user interface and data processing component has been widely attempted, serving as a gateway to on-board quantitative processing, enhanced mobility, and interconnectivity with informational networks. Smartphone sensing can be integrated to these paper-based fluorogenic assays towards demonstrating extreme sensitivity as well as ease-of-use and low-cost. However, with these emerging technologies there are always technical limitations that must be addressed; for example, paper's autofluorescence that perturbs fluorogenic sensing; smartphone flash's limitations in fluorescent excitation; smartphone camera's limitations in detecting narrow-band fluorescent emission, etc. In this review, physical optical setups, digital enhancement algorithms, and various fluorescent measurement techniques are discussed and pinpointed as areas of opportunities to further improve paper-based fluorogenic optical sensing with smartphones.
Collapse
Affiliation(s)
- Tiffany-Heather Ulep
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721 USA
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
6
|
Papageorgiou EP, Zhang H, Boser BE, Park C, Anwar M. Angle-insensitive amorphous silicon optical filter for fluorescence contact imaging. OPTICS LETTERS 2018; 43:354-357. [PMID: 29400857 DOI: 10.1364/ol.43.000354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
We introduce a novel amorphous silicon absorption filter that has high rejection for all angles of incident light for wavelengths below approximately 700 nm. This filter is used for microscopic cancer tissue detection in a small intraoperative contact fluorescence imaging system that requires excitation light at oblique angles. Our 15 μm thick filter presents over five orders of magnitude rejection at 633 nm, making it compatible with several clinically tested fluorophores, including IR700DX. We have demonstrated imaging of fluorescently labeled human epidermal growth factor receptor 2+ breast cancer tissue using the filter, and we can reliably detect microscopic clusters of breast cancer cells with only a 75 ms integration time.
Collapse
|
7
|
Ley C, Ibrahim A, Allonas X. Isomerization controlled photopolymerization: effect of dye photophysics on photoinitiation efficiency. Photochem Photobiol Sci 2016; 15:1054-60. [PMID: 27443964 DOI: 10.1039/c6pp00028b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The efficiency of free radical polymerization by photoinitiating systems based on two Astrazon orange cyanine dyes was shown to be directly related to the isomerization process of the dye in the excited states. The impact of resin viscosity on photopolymerization reactions was measured and related to the overall radical quantum yields. The quantum yields were calculated according to the photocyclic behaviour of the initiating systems based on the Astrazon orange dyes. These dyes are characterized by a viscosity dependent photophysics, which leads to an isomerization-diffusion-controlled photopolymerization. Besides this demonstration, Astrazon orange dyes appeared to be very good candidates for free radical photopolymerization in the visible, presenting high absorption coefficient, low cost and good sensitivity.
Collapse
Affiliation(s)
- C Ley
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaires, ENSCMu, Université de Haute-Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France.
| | | | | |
Collapse
|
8
|
Yadid-Pecht O. Real-time biochemical sensor based on Raman scattering with CMOS contact imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:7950-7953. [PMID: 26738136 DOI: 10.1109/embc.2015.7320236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work presents a biochemical sensor based on Raman scattering with Complementary metal-oxide-semiconductor (CMOS) contact imaging. This biochemical optical sensor is designed for detecting the concentration of solutions. The system is built with a laser diode, an optical filter, a sample holder and a commercial CMOS sensor. The output of the system is analyzed by an image processing program. The system provides instant measurements with a resolution of 0.2 to 0.4 Mol. This low cost and easy-operated small scale system is useful in chemical, biomedical and environmental labs for quantitative bio-chemical concentration detection with results reported comparable to a highly cost commercial spectrometer.
Collapse
|
9
|
Ley C, Bordat P, di Stefano LH, Remongin L, Ibrahim A, Jacques P, Allonas X. Joint spectroscopic and theoretical investigation of cationic cyanine dye Astrazon Orange-R: solvent viscosity controlled relaxation of excited states. Phys Chem Chem Phys 2015; 17:5982-90. [DOI: 10.1039/c4cp05103c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this paper, the first study of cationic cyanine dye Astrazon Orange-R by combined spectroscopic and theoretical investigation is presented.
Collapse
Affiliation(s)
| | - Patrice Bordat
- Institut des Sciences Analytiques et de Physico-Chimie sur l'Environnement et les Matériaux
- IPREM
- UMR 5254 du CNRS et de l'Université de Pau et des Pays de l'Adour
- 64053 Pau cedex
- France
| | | | | | | | | | | |
Collapse
|
10
|
Daivasagaya DS, Yao L, Yi Yung K, Hajj-Hassan M, Cheung MC, Chodavarapu VP, Bright FV. Contact CMOS imaging of gaseous oxygen sensor array. SENSORS AND ACTUATORS. B, CHEMICAL 2011; 157:408-16. [PMID: 24493909 PMCID: PMC3909528 DOI: 10.1016/j.snb.2011.04.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) encapsulated within sol-gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors.
Collapse
Affiliation(s)
- Daisy S. Daivasagaya
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A2A7, Canada
| | - Lei Yao
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A2A7, Canada
| | - Ka Yi Yung
- Department of Chemistry, University at Buffalo, The State University of New York, Natural Sciences Complex, Buffalo, NY 14260-3000 USA
| | - Mohamad Hajj-Hassan
- Department of Biomedical Engineering, Lebanese International University, Mazraa, Beirut, PO Box 146404, Lebanon
| | - Maurice C. Cheung
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A2A7, Canada
| | - Vamsy P. Chodavarapu
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A2A7, Canada
- Corresponding author. Tel.: +514 398 3118; fax: +514 398 4470., (V.P. Chodavarapu)
| | - Frank V. Bright
- Department of Chemistry, University at Buffalo, The State University of New York, Natural Sciences Complex, Buffalo, NY 14260-3000 USA
| |
Collapse
|