1
|
Keriel NA, Delezoide C, Chauvin D, Korri-Youssoufi H, Lai ND, Ledoux-Rak I, Nguyen CT. Optofluidic Sensor Based on Polymer Optical Microresonators for the Specific, Sensitive and Fast Detection of Chemical and Biochemical Species. SENSORS (BASEL, SWITZERLAND) 2023; 23:7373. [PMID: 37687829 PMCID: PMC10490054 DOI: 10.3390/s23177373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
The accurate, rapid, and specific detection of DNA strands in solution is becoming increasingly important, especially in biomedical applications such as the trace detection of COVID-19 or cancer diagnosis. In this work we present the design, elaboration and characterization of an optofluidic sensor based on a polymer-based microresonator which shows a quick response time, a low detection limit and good sensitivity. The device is composed of a micro-racetrack waveguide vertically coupled to a bus waveguide and embedded within a microfluidic circuit. The spectral response of the microresonator, in air or immersed in deionised water, shows quality factors up to 72,900 and contrasts up to 0.9. The concentration of DNA strands in water is related to the spectral shift of the microresonator transmission function, as measured at the inflection points of resonance peaks in order to optimize the signal-over-noise ratio. After functionalization by a DNA probe strand on the surface of the microresonator, a specific and real time measurement of the complementary DNA strands in the solution is realized. Additionally, we have inferred the dissociation constant value of the binding equilibrium of the two complementary DNA strands and evidenced a sensitivity of 16.0 pm/µM and a detection limit of 121 nM.
Collapse
Affiliation(s)
- Nolwenn-Amandine Keriel
- Laboratoire Lumière, Matière et Interfaces (LuMIn), Ecole Normale Superieure Paris Saclay, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 9024, CentraleSupelec, Institut d’Alembert, Université Paris Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France; (N.-A.K.); (N.D.L.); (C.-T.N.)
| | - Camille Delezoide
- Laboratoire Lumière, Matière et Interfaces (LuMIn), Ecole Normale Superieure Paris Saclay, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 9024, CentraleSupelec, Institut d’Alembert, Université Paris Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France; (N.-A.K.); (N.D.L.); (C.-T.N.)
| | - David Chauvin
- Laboratoire Lumière, Matière et Interfaces (LuMIn), Ecole Normale Superieure Paris Saclay, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 9024, CentraleSupelec, Institut d’Alembert, Université Paris Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France; (N.-A.K.); (N.D.L.); (C.-T.N.)
| | - Hafsa Korri-Youssoufi
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8182, Université Paris Saclay, 17 Avenue des Sciences, 91400 Orsay, France;
| | - Ngoc Diep Lai
- Laboratoire Lumière, Matière et Interfaces (LuMIn), Ecole Normale Superieure Paris Saclay, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 9024, CentraleSupelec, Institut d’Alembert, Université Paris Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France; (N.-A.K.); (N.D.L.); (C.-T.N.)
| | - Isabelle Ledoux-Rak
- Laboratoire Lumière, Matière et Interfaces (LuMIn), Ecole Normale Superieure Paris Saclay, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 9024, CentraleSupelec, Institut d’Alembert, Université Paris Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France; (N.-A.K.); (N.D.L.); (C.-T.N.)
| | - Chi-Thanh Nguyen
- Laboratoire Lumière, Matière et Interfaces (LuMIn), Ecole Normale Superieure Paris Saclay, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 9024, CentraleSupelec, Institut d’Alembert, Université Paris Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France; (N.-A.K.); (N.D.L.); (C.-T.N.)
| |
Collapse
|
2
|
Puumala LS, Grist SM, Morales JM, Bickford JR, Chrostowski L, Shekhar S, Cheung KC. Biofunctionalization of Multiplexed Silicon Photonic Biosensors. BIOSENSORS 2022; 13:53. [PMID: 36671887 PMCID: PMC9855810 DOI: 10.3390/bios13010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Silicon photonic (SiP) sensors offer a promising platform for robust and low-cost decentralized diagnostics due to their high scalability, low limit of detection, and ability to integrate multiple sensors for multiplexed analyte detection. Their CMOS-compatible fabrication enables chip-scale miniaturization, high scalability, and low-cost mass production. Sensitive, specific detection with silicon photonic sensors is afforded through biofunctionalization of the sensor surface; consequently, this functionalization chemistry is inextricably linked to sensor performance. In this review, we first highlight the biofunctionalization needs for SiP biosensors, including sensitivity, specificity, cost, shelf-stability, and replicability and establish a set of performance criteria. We then benchmark biofunctionalization strategies for SiP biosensors against these criteria, organizing the review around three key aspects: bioreceptor selection, immobilization strategies, and patterning techniques. First, we evaluate bioreceptors, including antibodies, aptamers, nucleic acid probes, molecularly imprinted polymers, peptides, glycans, and lectins. We then compare adsorption, bioaffinity, and covalent chemistries for immobilizing bioreceptors on SiP surfaces. Finally, we compare biopatterning techniques for spatially controlling and multiplexing the biofunctionalization of SiP sensors, including microcontact printing, pin- and pipette-based spotting, microfluidic patterning in channels, inkjet printing, and microfluidic probes.
Collapse
Affiliation(s)
- Lauren S. Puumala
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Samantha M. Grist
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
| | - Jennifer M. Morales
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Justin R. Bickford
- Army Research Laboratory, US Army Combat Capabilities Development Command, 2800 Powder Mill Rd., Adelphi, MD 20783, USA
| | - Lukas Chrostowski
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Sudip Shekhar
- Dream Photonics Inc., Vancouver, BC V6T 0A7, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
He J, Kovach A, Chen D, Saris PJG, Yu R, Armani AM. All-optical reversible control of integrated resonant cavity by a self-assembled azobenzene monolayer. OPTICS EXPRESS 2020; 28:22462-22477. [PMID: 32752506 DOI: 10.1364/oe.397776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The next frontier in photonics will rely on the synergistic combination of disparate material systems. One unique organic molecule is azobenzene. This molecule can reversibly change conformations when optically excited in the blue (trans-to-cis) or mid-IR (cis-to-trans). Here, we form an oriented monolayer of azobenzene-containing 4-(4-diethylaminophenylazo)pyridine (Aazo) on SiO2 optical resonators. Due to the uniformity of the Aazo layers, quality factors over 106 are achieved. To control the photo-response, the density of Aazo groups is tuned by integrating methyl spacer molecules. Using a pair of lasers, the molecule is reversibly flipped between molecular conformations, inducing a refractive index change which results in a resonant wavelength shift. The magnitude of the shift scales with the relative surface density of Aazo. To investigate reproducibility and stability of the organic monolayer, three switching cycles are demonstrated, and the performance is consistent even after a device is stored in air for 6 months.
Collapse
|
4
|
Luan E, Shoman H, Ratner DM, Cheung KC, Chrostowski L. Silicon Photonic Biosensors Using Label-Free Detection. SENSORS 2018; 18:s18103519. [PMID: 30340405 PMCID: PMC6210424 DOI: 10.3390/s18103519] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/24/2022]
Abstract
Thanks to advanced semiconductor microfabrication technology, chip-scale integration and miniaturization of lab-on-a-chip components, silicon-based optical biosensors have made significant progress for the purpose of point-of-care diagnosis. In this review, we provide an overview of the state-of-the-art in evanescent field biosensing technologies including interferometer, microcavity, photonic crystal, and Bragg grating waveguide-based sensors. Their sensing mechanisms and sensor performances, as well as real biomarkers for label-free detection, are exhibited and compared. We also review the development of chip-level integration for lab-on-a-chip photonic sensing platforms, which consist of the optical sensing device, flow delivery system, optical input and readout equipment. At last, some advanced system-level complementary metal-oxide semiconductor (CMOS) chip packaging examples are presented, indicating the commercialization potential for the low cost, high yield, portable biosensing platform leveraging CMOS processes.
Collapse
Affiliation(s)
- Enxiao Luan
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Hossam Shoman
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Daniel M Ratner
- Department of Bioengineering, University of Washington, 3720 15th Ave. NE, Seattle, WA 98195-5061, USA.
| | - Karen C Cheung
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Lukas Chrostowski
- Department of Electrical and Computer Engineering, University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
5
|
Zhang YN, Zhou T, Han B, Zhang A, Zhao Y. Optical bio-chemical sensors based on whispering gallery mode resonators. NANOSCALE 2018; 10:13832-13856. [PMID: 30020301 DOI: 10.1039/c8nr03709d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Whispering gallery mode (WGM) resonators have attracted extensive attention and their unique characteristics have led to some remarkable achievements. In particular, when combined with optical sensing technology, the WGM reonator-based sensor offers the advantages of small size, high sensitivity and a real-time dynamic response. At present, this type of sensor is widely applied in the bio-chemical sensing field. In this paper, we briefly review the sensing principle, the structures and the sensing applications of optical bio-chemical sensors based on the WGM resonator, with particular focuses on their sensing properties and their advantages and disadvantages. In addition, the existing problems and future development trends of WGM resonator-based optical bio-chemical sensors are discussed.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China. and State Key Laboratory of Synthetical Automation for Process Industries, Shenyang, 110819, China
| | - Tianmin Zhou
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Bo Han
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China. and Liaoning Provincial Institute of Measurement, Shenyang 110819, China
| | - Aozhuo Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yong Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China. and State Key Laboratory of Synthetical Automation for Process Industries, Shenyang, 110819, China
| |
Collapse
|
6
|
Heylman KD, Knapper KA, Horak EH, Rea MT, Vanga SK, Goldsmith RH. Optical Microresonators for Sensing and Transduction: A Materials Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700037. [PMID: 28627118 DOI: 10.1002/adma.201700037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/01/2017] [Indexed: 05/27/2023]
Abstract
Optical microresonators confine light to a particular microscale trajectory, are exquisitely sensitive to their microenvironment, and offer convenient readout of their optical properties. Taken together, this is an immensely attractive combination that makes optical microresonators highly effective as sensors and transducers. Meanwhile, advances in material science, fabrication techniques, and photonic sensing strategies endow optical microresonators with new functionalities, unique transduction mechanisms, and in some cases, unparalleled sensitivities. In this progress report, the operating principles of these sensors are reviewed, and different methods of signal transduction are evaluated. Examples are shown of how choice of materials must be suited to the analyte, and how innovations in fabrication and sensing are coupled together in a mutually reinforcing cycle. A tremendously broad range of capabilities of microresonator sensors is described, from electric and magnetic field sensing to mechanical sensing, from single-molecule detection to imaging and spectroscopy, from operation at high vacuum to in live cells. Emerging sensing capabilities are highlighted and put into context in the field. Future directions are imagined, where the diverse capabilities laid out are combined and advances in scalability and integration are implemented, leading to the creation of a sensor unparalleled in sensitivity and information content.
Collapse
Affiliation(s)
- Kevin D Heylman
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Kassandra A Knapper
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Erik H Horak
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Morgan T Rea
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Sudheer K Vanga
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin, 1101 University Ave, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Gungor E, Armani AM. Photocleavage of Covalently Immobilized Amphiphilic Block Copolymer: From Bilayer to Monolayer. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Eda Gungor
- Mork Family
Department of
Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Andrea M. Armani
- Mork Family
Department of
Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Hammond GD, Vojta AL, Grant SA, Hunt HK. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques. BIOSENSORS-BASEL 2016; 6:26. [PMID: 27314397 PMCID: PMC4931486 DOI: 10.3390/bios6020026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/01/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022]
Abstract
The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 10⁶. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring.
Collapse
Affiliation(s)
- G Denise Hammond
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| | - Adam L Vojta
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| | - Sheila A Grant
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| | - Heather K Hunt
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
9
|
Chen YJ, Xiang W, Klucken J, Vollmer F. Tracking micro-optical resonances for identifying and sensing novel procaspase-3 protein marker released from cell cultures in response to toxins. NANOTECHNOLOGY 2016; 27:164001. [PMID: 26963176 DOI: 10.1088/0957-4484/27/16/164001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The response of cells to toxins is commonly investigated by detecting intracellular markers for cell death, such as caspase proteins. This requires the introduction of labels by the permeabilization or complete lysis of cells. Here we introduce a non-invasive tool for monitoring a caspase protein in the extracellular medium. The tool is based on highly sensitive optical micro-devices, referred to as whispering-gallery mode biosensors (WGMBs). WGMBs are functionalized with antibodies for the specific and label-free detection of procaspase-3 released from human embryonic kidney HEK293 and neuroglioma H4 cells after introducing staurosporine and rotenone toxins, respectively. Additional tests show that the extracellular accumulation of procaspase-3 is concomitant with a decrease in cell viability. The hitherto unknown release of procaspase-3 from cells in response to toxins and its accumulation in the medium is further investigated by Western blot, showing that the extracellular detection of procaspase-3 is interrelated with cytotoxicity of alpha-synuclein protein (aSyn) overexpressed in H4 cells. These studies provide evidence for procaspase-3 as a novel extracellular biomarker for cell death, with applications in cytotoxicity tests. Such WGMBs could be applied to further identify as-yet unknown extracellular biomarkers using established antibodies against intracellular antigens.
Collapse
Affiliation(s)
- Ying-Jen Chen
- Max Planck Institute for the Science of Light, Günther-Scharowsky-Str.1/Bldg. 24, D-91058 Erlangen, Germany. Erlangen Graduate School in Advanced Optical Technology (SAOT), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 6, D-91052 Erlangen, Germany
| | | | | | | |
Collapse
|
10
|
Mallén-Alberdi M, Vigués N, Mas J, Fernández-Sánchez C, Baldi A. Impedance spectral fingerprint of E. coli cells on interdigitated electrodes: A new approach for label free and selective detection. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Khan M, Schuster S, Zharnikov M. Chemical derivatization and biofunctionalization of hydrogel nanomembranes for potential biomedical and biosensor applications. Phys Chem Chem Phys 2016; 18:12035-42. [DOI: 10.1039/c5cp07840g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Ozgur E, Toren P, Aktas O, Huseyinoglu E, Bayindir M. Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators. Sci Rep 2015; 5:13173. [PMID: 26271605 PMCID: PMC4642504 DOI: 10.1038/srep13173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/16/2015] [Indexed: 01/31/2023] Open
Abstract
Although label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned.
Collapse
Affiliation(s)
- Erol Ozgur
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Pelin Toren
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Ozan Aktas
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Ersin Huseyinoglu
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Mehmet Bayindir
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
13
|
Wang F, Anderson M, Bernards MT, Hunt HK. PEG Functionalization of Whispering Gallery Mode Optical Microresonator Biosensors to Minimize Non-Specific Adsorption during Targeted, Label-Free Sensing. SENSORS 2015; 15:18040-60. [PMID: 26213937 PMCID: PMC4570306 DOI: 10.3390/s150818040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 01/14/2023]
Abstract
Whispering Gallery Mode (WGM) optical microresonator biosensors are a powerful tool for targeted detection of analytes at extremely low concentrations. However, in complex environments, non-specific adsorption can significantly reduce their signal to noise ratio, limiting their accuracy. To overcome this, poly(ethylene glycol) (PEG) can be employed in conjunction with appropriate recognition elements to create a nonfouling surface capable of detecting targeted analytes. This paper investigates a general route for the addition of nonfouling elements to WGM optical biosensors to reduce non-specific adsorption, while also retaining high sensitivity. We use the avidin-biotin analyte-recognition element system, in conjunction with PEG nonfouling elements, as a proof-of-concept, and explore the extent of non-specific adsorption of lysozyme and fibrinogen at multiple concentrations, as well as the ability to detect avidin in a concentration-dependent fashion. Ellipsometry, contact angle measurement, fluorescence microscopy, and optical resonator characterization methods were used to study non-specific adsorption, the quality of the functionalized surface, and the biosensor’s performance. Using a recognition element ratio to nonfouling element ratio of 1:1, we showed that non-specific adsorption could be significantly reduced over the controls, and that high sensitivity could be maintained. Due to the frequent use of biotin-avidin-biotin sandwich complexes in functionalizing sensor surfaces with biotin-labeled recognition elements, this chemistry could provide a common basis for creating a non-fouling surface capable of targeted detection. This should improve the ability of WGM optical biosensors to operate in complex environments, extending their application towards real-world detection.
Collapse
Affiliation(s)
- Fanyongjing Wang
- Department of Bioengineering, University of Missouri, Columbia, MO 65201, USA.
| | - Mark Anderson
- Department of Biochemistry, University of Missouri, Columbia, MO 65201, USA.
| | - Matthew T Bernards
- Department of Chemical Engineering, University of Missouri, Columbia, MO 65201, USA.
| | - Heather K Hunt
- Department of Bioengineering, University of Missouri, Columbia, MO 65201, USA.
| |
Collapse
|
14
|
Foreman MR, Swaim JD, Vollmer F. Whispering gallery mode sensors. ADVANCES IN OPTICS AND PHOTONICS 2015; 7:168-240. [PMID: 26973759 PMCID: PMC4786191 DOI: 10.1364/aop.7.000168] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We present a comprehensive overview of sensor technology exploiting optical whispering gallery mode (WGM) resonances. After a short introduction we begin by detailing the fundamental principles and theory of WGMs in optical microcavities and the transduction mechanisms frequently employed for sensing purposes. Key recent theoretical contributions to the modeling and analysis of WGM systems are highlighted. Subsequently we review the state of the art of WGM sensors by outlining efforts made to date to improve current detection limits. Proposals in this vein are numerous and range, for example, from plasmonic enhancements and active cavities to hybrid optomechanical sensors, which are already working in the shot noise limited regime. In parallel to furthering WGM sensitivity, efforts to improve the time resolution are beginning to emerge. We therefore summarize the techniques being pursued in this vein. Ultimately WGM sensors aim for real-world applications, such as measurements of force and temperature, or alternatively gas and biosensing. Each such application is thus reviewed in turn, and important achievements are discussed. Finally, we adopt a more forward-looking perspective and discuss the outlook of WGM sensors within both a physical and biological context and consider how they may yet push the detection envelope further.
Collapse
Affiliation(s)
- Matthew R. Foreman
- Max Planck Institute for the Science of Light, Laboratory of Nanophotonics and Biosensing, Günther-Scharowsky-Straße 1, 91058 Erlangen, Germany
| | - Jon D. Swaim
- Max Planck Institute for the Science of Light, Laboratory of Nanophotonics and Biosensing, Günther-Scharowsky-Straße 1, 91058 Erlangen, Germany
| | - Frank Vollmer
- Max Planck Institute for the Science of Light, Laboratory of Nanophotonics and Biosensing, Günther-Scharowsky-Straße 1, 91058 Erlangen, Germany
| |
Collapse
|
15
|
Label-free, single molecule resonant cavity detection: a double-blind experimental study. SENSORS 2015; 15:6324-41. [PMID: 25785307 PMCID: PMC4435135 DOI: 10.3390/s150306324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 01/04/2023]
Abstract
Optical resonant cavity sensors are gaining increasing interest as a potential diagnostic method for a range of applications, including medical prognostics and environmental monitoring. However, the majority of detection demonstrations to date have involved identifying a “known” analyte, and the more rigorous double-blind experiment, in which the experimenter must identify unknown solutions, has yet to be performed. This scenario is more representative of a real-world situation. Therefore, before these devices can truly transition, it is necessary to demonstrate this level of robustness. By combining a recently developed surface chemistry with integrated silica optical sensors, we have performed a double-blind experiment to identify four unknown solutions. The four unknown solutions represented a subset or complete set of four known solutions; as such, there were 256 possible combinations. Based on the single molecule detection signal, we correctly identified all solutions. In addition, as part of this work, we developed noise reduction algorithms.
Collapse
|
16
|
Kumar K, Boonstra M, Loos K. Synthesis of carbon microrings using polymer blends as templates. RSC Adv 2015. [DOI: 10.1039/c5ra04185f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Carbon microrings were produced using a template based on phase separation of amylose/pentadecyl phenol (PDP)/dimethyl sulfoxide (DMSO) mixtures.
Collapse
Affiliation(s)
- Kamlesh Kumar
- Department of Polymer Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- Groningen
- The Netherlands
| | - Marjon Boonstra
- Department of Polymer Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- Groningen
- The Netherlands
| | - Katja Loos
- Department of Polymer Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- Groningen
- The Netherlands
| |
Collapse
|
17
|
Sedlmeir F, Zeltner R, Leuchs G, Schwefel HGL. High-Q MgF₂ whispering gallery mode resonators for refractometric sensing in aqueous environment. OPTICS EXPRESS 2014; 22:30934-30942. [PMID: 25607042 DOI: 10.1364/oe.22.030934] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present our experiments on refractometric sensing with ultrahigh-Q, crystalline, birefringent magnesium fluoride (MgF₂) whispering gallery mode resonators. The difference to fused silica which is most commonly used for sensing experiments is the small refractive index of MgF₂ which is very close to that of water. Compared to fused silica this leads to more than 50% longer evanescent fields and a 4.25 times larger sensitivity. Moreover the birefringence amplifies the sensitivity difference between TM and TE type modes which will enhance sensing experiments based on difference frequency measurements. We estimate the performance of our resonators and compare them with fused silica theoretically and present experimental data showing the interferometrically measured evanescent field decay and the sensitivity of mm-sized MgF₂ whispering gallery mode resonators immersed in water. These data show reasonable agreement with the developed theory. Furthermore, we observe stable Q factors in water well above 1 × 10⁸.
Collapse
|
18
|
Label free detection of 5'hydroxymethylcytosine within CpG islands using optical sensors. Biosens Bioelectron 2014; 65:198-203. [PMID: 25461158 DOI: 10.1016/j.bios.2014.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 01/01/2023]
Abstract
Significant research has been invested in correlating genetic variations with different disease probabilities. Recently, it has become apparent that other DNA modifications, such as the addition of a methyl or hydroxymethyl group to cytosine, can also play a role. While these modifications do not change the sequence, they can negatively impact the function. Therefore, it is critical to be able to both read the genetic code and identify these modifications. Currently, the detection of hydroxymethylated cytosine (5'hmC) and the two closely related variants, cytosine (C) and 5'methylcytosine (5'mC), relies on a combination of nucleotide modification steps, followed by PCR and gene sequencing. However, this approach is not ideal because transcription errors which are inherent to the PCR process can be misinterpreted as fluctuations in the relative C:5'mC:5'hmC concentrations. As such, an alternative method which does not rely on PCR or nucleotide modification is desirable. One approach is based on label-free optical resonant cavity sensors. In the present work, toroidal resonant cavity sensors are functionalized with antibodies to enable label-free detection and discrimination between C, 5'mC, and 5'hmC in real-time without PCR. Specifically, epoxide chemistry is used to covalently attach the 5'hmC antibody to the surface of the cavity. Subsequently, to thoroughly characterize the sensor platform, detection of C, 5'mC, and 5'hmC is performed over a concentration range from pM to nM. At low (pM) concentrations, the hydroxymethylated cytosine produces a significantly larger signal than the structurally similar epigenetic markers; thus demonstrating the applicability of this platform.
Collapse
|
19
|
Bog U, Brinkmann F, Kalt H, Koos C, Mappes T, Hirtz M, Fuchs H, Köber S. Large-scale parallel surface functionalization of goblet-type whispering gallery mode microcavity arrays for biosensing applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3863-3868. [PMID: 24990526 DOI: 10.1002/smll.201400813] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/14/2014] [Indexed: 06/03/2023]
Abstract
A novel surface functionalization technique is presented for large-scale selective molecule deposition onto whispering gallery mode microgoblet cavities. The parallel technique allows damage-free individual functionalization of the cavities, arranged on-chip in densely packaged arrays. As the stamp pad a glass slide is utilized, bearing phospholipids with different functional head groups. Coated microcavities are characterized and demonstrated as biosensors.
Collapse
Affiliation(s)
- Uwe Bog
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Dahmen JL, Yang Y, Greenlief CM, Stacey G, Hunt HK. Interfacing Whispering Gallery Mode Optical Microresonator Biosensors with the Plant Defense Elicitor Chitin. Colloids Surf B Biointerfaces 2014; 122:241-249. [DOI: 10.1016/j.colsurfb.2014.06.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023]
|
21
|
Mehrabani S, Maker AJ, Armani AM. Hybrid integrated label-free chemical and biological sensors. SENSORS (BASEL, SWITZERLAND) 2014; 14:5890-928. [PMID: 24675757 PMCID: PMC4029679 DOI: 10.3390/s140405890] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.
Collapse
Affiliation(s)
- Simin Mehrabani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Ashley J Maker
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Andrea M Armani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
22
|
Chibli H, Ghali H, Park S, Peter YA, Nadeau JL. Immobilized phage proteins for specific detection of staphylococci. Analyst 2014; 139:179-86. [DOI: 10.1039/c3an01608k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Yadav AR, Sriram R, Carter JA, Miller BL. Comparative study of solution-phase and vapor-phase deposition of aminosilanes on silicon dioxide surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 35:283-90. [PMID: 24411379 DOI: 10.1016/j.msec.2013.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/03/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023]
Abstract
The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods.
Collapse
Affiliation(s)
- Amrita R Yadav
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| | - Rashmi Sriram
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | | - Benjamin L Miller
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Dermatology, University of Rochester, Rochester, NY, USA; Department of Biophysics and Biochemistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
24
|
Bañuls MJ, Puchades R, Maquieira Á. Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review. Anal Chim Acta 2013; 777:1-16. [PMID: 23622959 DOI: 10.1016/j.aca.2013.01.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/29/2022]
Abstract
Increasing interest has been paid to label-free biosensors in recent years. Among them, refractive index (RI) optical biosensors enable high density and the chip-scale integration of optical components. This makes them more appealing to help develop lab-on-a-chip devices. Today, many RI integrated optical (IO) devices are made using silicon-based materials. A key issue in their development is the biofunctionalization of sensing surfaces because they provide a specific, sensitive response to the analyte of interest. This review critically discusses the biofunctionalization procedures, assay formats and characterization techniques employed in setting up IO biosensors. In addition, it provides the most relevant results obtained from using these devices for real sample biosensing. Finally, an overview of the most promising future developments in the fields of chemical surface modification and capture agent attachment for IO biosensors follows.
Collapse
Affiliation(s)
- María-José Bañuls
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | |
Collapse
|
25
|
Passaro VMN, Troia B, Notte ML, Leonardis FD. Photonic resonant microcavities for chemical and biochemical sensing. RSC Adv 2013. [DOI: 10.1039/c2ra21984k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
26
|
Vollmer F, Yang L. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. NANOPHOTONICS 2012; 1:267-291. [PMID: 26918228 PMCID: PMC4764104 DOI: 10.1515/nanoph-2012-0021] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Optical microcavities that confine light in high-Q resonance promise all of the capabilities required for a successful next-generation microsystem biodetection technology. Label-free detection down to single molecules as well as operation in aqueous environments can be integrated cost-effectively on microchips, together with other photonic components, as well as electronic ones. We provide a comprehensive review of the sensing mechanisms utilized in this emerging field, their physics, engineering and material science aspects, and their application to nanoparticle analysis and biomolecular detection. We survey the most recent developments such as the use of mode splitting for self-referenced measurements, plasmonic nanoantennas for signal enhancements, the use of optical force for nanoparticle manipulation as well as the design of active devices for ultra-sensitive detection. Furthermore, we provide an outlook on the exciting capabilities of functionalized high-Q microcavities in the life sciences.
Collapse
Affiliation(s)
- Frank Vollmer
- Max Planck Institute for the Science of Light, Laboratory of Nanophotonics and Biosensing, G. Scharowsky Str. 1, 91058 Erlangen, Germany
| | - Lan Yang
- Electrical and Systems Engineering Department, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
27
|
Soteropulos CE, Zurick KM, Bernards MT, Hunt HK. Tailoring the protein adsorption properties of whispering gallery mode optical biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15743-15750. [PMID: 23061463 DOI: 10.1021/la302041d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Label-free biosensor technologies have the potential to revolutionize environmental monitoring, medical diagnostics, and food safety evaluation processes due to their unique combinations of high-sensitivity signal transducers and high-specificity recognition elements. This enables their ability to perform real-time detection of deleterious compounds at extremely low concentrations. However, to further improve the biosensors' performance in complex environments, such as wastewater, blood, and urine, it is necessary to minimize nonspecific binding, which in turn will increase their specificity, and decrease the rate of false positives. In the present work, we illustrate the potential of combining emerging high-sensitivity optical signal transducers, such as whispering gallery mode (WGM) microcavities, with covalently bound poly(ethylene glycol) (PEG) coatings of varying thickness, as an effective treatment for the prevention of nonspecific protein adsorption onto the biosensor surface. We monitor the sensitivity of the coated biosensor, and investigate the effect of PEG chain length on minimizing nonspecific adsorption via protein adsorption studies. Experimental results confirm not only that PEG-functionalization reduces nonspecific protein adsorption to the surface of the sensor by as much as a factor of 4 compared to an initialized control surface, but also that chain length significantly impacts the nonfouling character of the microcavity surface. Surprisingly, it is the short chain PEG surfaces that experience the best improvement in specificity, unlike many other systems where longer PEG chains are preferred. The combination of WGM microcavities with PEG coatings tuned specifically to the device will significantly improve the overall performance of biosensor platforms, and enable their wider application in complex, real-world monitoring scenarios.
Collapse
Affiliation(s)
- Carol E Soteropulos
- Department of Biological Engineering, University of Missouri, Columbia, 65211, United States
| | | | | | | |
Collapse
|
28
|
Shi C, Mehrabani S, Armani AM. Leveraging bimodal kinetics to improve detection specificity. OPTICS LETTERS 2012; 37:1643-1645. [PMID: 22627523 DOI: 10.1364/ol.37.001643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Optical microcavities are high sensitivity transducers able to detect single nanoparticles and molecules. However, the specificity of detection is dependent on the availability of an appropriate targeting moiety with minimal cross-reactivity. In the present work, an alternative approach is shown. Namely, using biotin-functionalized toroidal microcavities, the dissociation constant of biotin to two different streptavidin complexes (free and polystyrene bead) is determined. Based on the difference in affinity and in mass transport, the two complexes are identified from a mixture. By leveraging information in the binding site, improved specificity can be achieved.
Collapse
Affiliation(s)
- C Shi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
29
|
Soteropulos CE, Hunt HK. Attaching biological probes to silica optical biosensors using silane coupling agents. J Vis Exp 2012:e3866. [PMID: 22588224 DOI: 10.3791/3866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In order to interface with biological environments, biosensor platforms, such as the popular Biacore system (based on the Surface Plasmon Resonance (SPR) technique), make use of various surface modification techniques, that can, for example, prevent surface fouling, tune the hydrophobicity/hydrophilicity of the surface, adapt to a variety of electronic environments, and most frequently, induce specificity towards a target of interest. These techniques extend the functionality of otherwise highly sensitive biosensors to real-world applications in complex environments, such as blood, urine, and wastewater analysis. While commercial biosensing platforms, such as Biacore, have well-understood, standard techniques for performing such surface modifications, these techniques have not been translated in a standardized fashion to other label-free biosensing platforms, such as Whispering Gallery Mode (WGM) optical resonators. WGM optical resonators represent a promising technology for performing label-free detection of a wide variety of species at ultra-low concentrations. The high sensitivity of these platforms is a result of their unique geometric optics: WGM optical resonators confine circulating light at specific, integral resonance frequencies. Like the SPR platforms, the optical field is not totally confined to the sensor device, but evanesces; this "evanescent tail" can then interact with species in the surrounding environment. This interaction causes the effective refractive index of the optical field to change, resulting in a slight, but detectable, shift in the resonance frequency of the device. Because the optical field circulates, it can interact many times with the environment, resulting in an inherent amplification of the signal, and very high sensitivities to minor changes in the environment. To perform targeted detection in complex environments, these platforms must be paired with a probe molecule (usually one half of a binding pair, e.g. antibodies/antigens) through surface modification. Although WGM optical resonators can be fabricated in several geometries from a variety of material systems, the silica microsphere is the most common. These microspheres are generally fabricated on the end of an optical fiber, which provides a "stem" by which the microspheres can be handled during functionalization and detection experiments. Silica surface chemistries may be applied to attach probe molecules to their surfaces; however, traditional techniques generated for planar substrates are often not adequate for these three-dimensional structures, as any changes to the surface of the microspheres (dust, contamination, surface defects, and uneven coatings) can have severe, negative consequences on their detection capabilities. Here, we demonstrate a facile approach for the surface functionalization of silica microsphere WGM optical resonators using silane coupling agents to bridge the inorganic surface and the biological environment, by attaching biotin to the silica surface. Although we use silica microsphere WGM resonators as the sensor system in this report, the protocols are general and can be used to functionalize the surface of any silica device with biotin.
Collapse
|
30
|
Cheema MI, Mehrabani S, Hayat AA, Peter YA, Armani AM, Kirk AG. Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy. OPTICS EXPRESS 2012; 20:9090-8. [PMID: 22513620 DOI: 10.1364/oe.20.009090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biodetection events. One of the sources of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach is to track the change in the quality factor of the optical cavity by using phase shift cavity ring down spectroscopy, a technique which is insensitive to the intensity fluctuations of the laser source. Here, using biotinylated microtoroid resonant cavities, we show simultaneous measurement of the quality factor and the wavelength shift by using phase shift cavity ring down spectroscopy. These measurements were performed for disassociation phase of biotin-streptavidin reaction. We found that the disassociation curves are in good agreement with the previously published results. Hence, we demonstrate not only the application of phase shift cavity ring down spectroscopy to microcavities in the liquid phase but also simultaneous measurement of the quality factor and the wavelength shift for the microcavity biosensors in the application of kinetics measurements.
Collapse
Affiliation(s)
- M Imran Cheema
- ECE Dept., McGill University, 3480 University Street, Montreal, Canada H3A 2A9.
| | | | | | | | | | | |
Collapse
|
31
|
Size matters: problems and advantages associated with highly miniaturized sensors. SENSORS 2012; 12:3018-36. [PMID: 22736990 PMCID: PMC3376590 DOI: 10.3390/s120303018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/23/2012] [Accepted: 02/23/2012] [Indexed: 01/15/2023]
Abstract
There is no doubt that the recent advances in nanotechnology have made it possible to realize a great variety of new sensors with signal transduction mechanisms utilizing physical phenomena at the nanoscale. Some examples are conductivity measurements in nanowires, deflection of cantilevers and spectroscopy of plasmonic nanoparticles. The fact that these techniques are based on the special properties of nanostructural entities provides for extreme sensor miniaturization since a single structural unit often can be used as transducer. This review discusses the advantages and problems with such small sensors, with focus on biosensing applications and label-free real-time analysis of liquid samples. Many aspects of sensor design are considered, such as thermodynamic and diffusion aspects on binding kinetics as well as multiplexing and noise issues. Still, all issues discussed are generic in the sense that the conclusions apply to practically all types of surface sensitive techniques. As a counterweight to the current research trend, it is argued that in many real world applications, better performance is achieved if the active sensor is larger than that in typical nanosensors. Although there are certain specific sensing applications where nanoscale transducers are necessary, it is argued herein that this represents a relatively rare situation. Instead, it is suggested that sensing on the microscale often offers a good compromise between utilizing some possible advantages of miniaturization while avoiding the complications. This means that ensemble measurements on multiple nanoscale sensors are preferable instead of utilizing a single transducer entity.
Collapse
|
32
|
Biggs BW, Hunt HK, Armani AM. Selective patterning of Si-based biosensor surfaces using isotropic silicon etchants. J Colloid Interface Sci 2012; 369:477-81. [PMID: 22196345 PMCID: PMC3265681 DOI: 10.1016/j.jcis.2011.11.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
Ultra-sensitive, label-free biosensors have the potential to have a tremendous impact on fields like medical diagnostics. For the majority of these Si-based integrated devices, it is necessary to functionalize the surface with a targeting ligand in order to perform specific biodetection. To do this, silane coupling agents are commonly used to immobilize the targeting ligand. However, this method typically results in the bioconjugation of the entire device surface, which is undesirable. To compensate for this effect, researchers have developed complex blocking strategies that result in selective patterning of the sensor surface. Recently, silane coupling agents were used to attach biomolecules to the surface of silica toroidal biosensors integrated on a silicon wafer. Interestingly, only the silica biosensor surface was conjugated. Here, we hypothesize why this selective patterning occurred. Specifically, the silicon etchant (xenon difluoride), which is used in the fabrication of the biosensor, appears to reduce the efficiency of the silane coupling attachment to the underlying silicon wafer. These results will enable future researchers to more easily control the bioconjugation of their sensor surfaces, thus improving biosensor device performance.
Collapse
Affiliation(s)
- Bradley W. Biggs
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | - Heather K. Hunt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
- Department of Biological Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Andrea M. Armani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
- Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|
33
|
Affiliation(s)
- Matthew S. Luchansky
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| |
Collapse
|
34
|
Baaske M, Vollmer F. Optical Resonator Biosensors: Molecular Diagnostic and Nanoparticle Detection on an Integrated Platform. Chemphyschem 2011; 13:427-36. [DOI: 10.1002/cphc.201100757] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/28/2011] [Indexed: 11/08/2022]
|
35
|
Huang M, Yang J, Jun S, Mu S, Lan Y. Simulation and analysis of a metamaterial sensor based on a microring resonator. SENSORS 2011; 11:5886-99. [PMID: 22163933 PMCID: PMC3231442 DOI: 10.3390/s110605886] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/15/2011] [Accepted: 05/18/2011] [Indexed: 11/16/2022]
Abstract
Metamaterials are artificial media structured on a size scale smaller than the wavelength of external stimuli, that may provide novel tools to significantly enhance the sensitivity and resolution of the sensors. In this paper, we derive the dispersion relation of hollow cylindrical dielectric waveguide, and compute the resonant frequencies and Q factors of the corresponding Whispering-Gallery-Modes (WGM). A metamaterial sensor based on microring resonator operating in WGM is proposed, and the resonance intensity spectrum curves in the frequency range from 185 to 212 THz were studied under different sensing conditions. Full-wave simulations, considering the frequency shift sensitivity influenced by the change of core media permittivity, the thickness and permittivity of the adsorbed substance, prove that the sensitivity of the metamaterial sensor is more than 7 times that of the traditional microring resonator sensor, and the metamaterial layer loaded in the inner side of the microring doesn't affect the high Q performance of the microring resonator.
Collapse
Affiliation(s)
- Ming Huang
- School of Information Science and Engineering, Yunnan University, Kunming 650091, China; E-Mails: (S.M.); (Y.L.)
- Authors to whom correspondence should be addressed; E-Mails: (M.H.); (J.Y.); Tel.: +86-871-503-3743; Fax: +86-871-503-3743
| | - Jingjing Yang
- School of Information Science and Engineering, Yunnan University, Kunming 650091, China; E-Mails: (S.M.); (Y.L.)
- Authors to whom correspondence should be addressed; E-Mails: (M.H.); (J.Y.); Tel.: +86-871-503-3743; Fax: +86-871-503-3743
| | - Sun Jun
- Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093, China; E-Mail:
| | - Shujuan Mu
- School of Information Science and Engineering, Yunnan University, Kunming 650091, China; E-Mails: (S.M.); (Y.L.)
| | - Yaozhong Lan
- School of Information Science and Engineering, Yunnan University, Kunming 650091, China; E-Mails: (S.M.); (Y.L.)
| |
Collapse
|
36
|
Kemling JW, Qavi AJ, Bailey RC, Suslick KS. Nanostructured Substrates for Optical Sensing. J Phys Chem Lett 2011; 2:2934-2944. [PMID: 22174955 PMCID: PMC3235654 DOI: 10.1021/jz201147g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sensors that change color have the advantages of versatility, ease of use, high sensitivity, and low cost. The recent development of optically based chemical sensing platforms has increasingly employed substrates manufactured with advanced processing or fabrication techniques to provide precise control over shape and morphology of the sensor micro- and nano-structure. New sensors have resulted with improved capabilities for a number of sensing applications, including the detection of biomolecules and environmental monitoring. This perspective focuses on recent optical sensor devices that utilize nanostructured substrates.
Collapse
|
37
|
Soteropulos CE, Hunt HK, Armani AM. Determination of binding kinetics using whispering gallery mode microcavities. APPLIED PHYSICS LETTERS 2011; 99:103703-1037033. [PMID: 21990943 PMCID: PMC3189252 DOI: 10.1063/1.3634023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/16/2011] [Indexed: 05/08/2023]
Abstract
Silica optical microcavity sensors show great promise in the kinetic evaluation of binding pairs, fundamental in understanding biomolecular interactions. Here, we develop and demonstrate a novel platform, based on bioconjugated silica microsphere resonators, to study the binding kinetics of the biotin-streptavidin system. We characterize the optical performance, verify the covalent attachment of biotin to the surface, and perform streptavidin detection experiments. We perform preliminary kinetic analysis of the detection data which shows the potential of whispering gallery mode resonators in the determination of the dissociation constant of the binding pair, which is in good agreement with previously published values.
Collapse
|
38
|
A microring resonator based negative permeability metamaterial sensor. SENSORS 2011; 11:8060-71. [PMID: 22164062 PMCID: PMC3231719 DOI: 10.3390/s110808060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 11/17/2022]
Abstract
Metamaterials are artificial multifunctional materials that acquire their material properties from their structure, rather than inheriting them directly from the materials they are composed of, and they may provide novel tools to significantly enhance the sensitivity and resolution of sensors. In this paper, we derive the dispersion relation of a cylindrical dielectric waveguide loaded on a negative permeability metamaterial (NPM) layer, and compute the resonant frequencies and electric field distribution of the corresponding Whispering-Gallery-Modes (WGMs). The theoretical resonant frequency and electric field distribution results are in good agreement with the full wave simulation results. We show that the NPM sensor based on a microring resonator possesses higher sensitivity than the traditional microring sensor since with the evanescent wave amplification and the increase of NPM layer thickness, the sensitivity will be greatly increased. This may open a door for designing sensors with specified sensitivity.
Collapse
|
39
|
Terahertz active photonic crystals for condensed gas sensing. SENSORS 2011; 11:6003-14. [PMID: 22163939 PMCID: PMC3231430 DOI: 10.3390/s110606003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/18/2011] [Accepted: 05/31/2011] [Indexed: 11/18/2022]
Abstract
The terahertz (THz) spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs), i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU.
Collapse
|
40
|
Abstract
Optical biosensors have tremendous potential for commercial applications in medical diagnostics, environmental monitoring, and food safety evaluation. In these applications, sensor reuse is desirable to reduce costs. To achieve this, harsh, wet chemistry treatments are required to remove surface chemistry from the sensor, typically resulting in reduced sensor performance and increased noise due to recognition moiety and optical transducer degradation. In the present work, we suggest an alternative, dry-chemistry method, based on O2 plasma treatment. This approach is compatible with typical fabrication of substrate-based optical transducers. This treatment completely removes the recognition moiety, allowing the transducer surface to be refreshed with new recognition elements and thus enabling the sensor to be recycled.
Collapse
Affiliation(s)
- Heather K Hunt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|