1
|
Mir MA, Qayoom H, Sofi S, Jan N. Proteomics: A groundbreaking development in cancer biology. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
2
|
Camels' biological fluids contained nanobodies: promising avenue in cancer therapy. Cancer Cell Int 2022; 22:279. [PMID: 36071488 PMCID: PMC9449263 DOI: 10.1186/s12935-022-02696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a major health concern and accounts for one of the main causes of death worldwide. Innovative strategies are needed to aid in the diagnosis and treatment of different types of cancers. Recently, there has been an evolving interest in utilizing nanobodies of camel origin as therapeutic tools against cancer. Nanotechnology uses nanobodies an emerging attractive field that provides promises to researchers in advancing different scientific sectors including medicine and oncology. Nanobodies are characteristically small-sized biologics featured with the ability for deep tissue penetration and dissemination and harbour high stability at high pH and temperatures. The current review highlights the potential use of nanobodies that are naturally secreted in camels’ biological fluids, both milk and urine, in the development of nanotechnology-based therapy for treating different typesQuery of cancers and other diseases. Moreover, the role of nano proteomics in the invention of novel therapeutic agents specifically used for cancer intervention is also illustrated.
Collapse
|
3
|
Mousavi SM, Hashemi SA, Yari Kalashgrani M, Omidifar N, Lai CW, Vijayakameswara Rao N, Gholami A, Chiang WH. The Pivotal Role of Quantum Dots-Based Biomarkers Integrated with Ultra-Sensitive Probes for Multiplex Detection of Human Viral Infections. Pharmaceuticals (Basel) 2022; 15:880. [PMID: 35890178 PMCID: PMC9319763 DOI: 10.3390/ph15070880] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
The spread of viral diseases has caused global concern in recent years. Detecting viral infections has become challenging in medical research due to their high infectivity and mutation. A rapid and accurate detection method in biomedical and healthcare segments is essential for the effective treatment of pathogenic viruses and early detection of these viruses. Biosensors are used worldwide to detect viral infections associated with the molecular detection of biomarkers. Thus, detecting viruses based on quantum dots biomarkers is inexpensive and has great potential. To detect the ultrasensitive biomarkers of viral infections, QDs appear to be a promising option as biological probes, while physiological components have been used directly to detect multiple biomarkers simultaneously. The simultaneous measurement of numerous clinical parameters of the same sample volume is possible through multiplex detection of human viral infections, which reduces the time and cost required to record any data point. The purpose of this paper is to review recent studies on the effectiveness of the quantum dot as a detection tool for human pandemic viruses. In this review study, different types of quantum dots and their valuable properties in the structure of biomarkers were investigated. Finally, a vision for recent advances in quantum dot-based biomarkers was presented, whereby they can be integrated into super-sensitive probes for the multiplex detection of human viral infections.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | | | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (UM), Kuala Lumpur 50603, Malaysia;
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| |
Collapse
|
4
|
Yamamoto D, Sasaki K, Kosaka T, Oya M, Sato T. Functional analysis of GCNT3 for cell migration and EMT of castration-resistant prostate cancer cells. Glycobiology 2022; 32:897-908. [PMID: 35867813 DOI: 10.1093/glycob/cwac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a malignant tumor that is resistant to androgen deprivation therapy. Treatments for CRPC are limited, and no diagnostic markers are currently available. O-glycans are known to play an important role in cell proliferation, migration, invasion, and metastasis of cancer cells. However, the differences in the O-glycan expression profiles for normal prostate cancer (PCa) cells compared to CRPC cells have not yet been investigated. In this study, the saccharide primer method was employed to analyze the O-glycans expressed in CRPC cells. Expression levels of core 4-type O-glycans were significantly increased in CRPC cells. Furthermore, the expression level of N-Acetylglucosaminyltransferase 3 (GCNT3), a core 4-type O-glycan synthase gene, was increased in CRPC cells. The expression of core 4-type O-glycans and GCNT3 was presumed to be regulated by androgen deprivation. GCNT3 knockdown induced cell migration and epithelial-mesenchymal transition (EMT). These observations elucidate the mechanism of acquisition of castration resistance in PCa and offer new possibilities for the development of diagnostic markers and therapeutic targets in the treatment of PCa.
Collapse
Affiliation(s)
- Daiki Yamamoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Katsumasa Sasaki
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| |
Collapse
|
5
|
Deciphering Biomarkers for Leptomeningeal Metastasis in Malignant Hemopathies (Lymphoma/Leukemia) Patients by Comprehensive Multipronged Proteomics Characterization of Cerebrospinal Fluid. Cancers (Basel) 2022; 14:cancers14020449. [PMID: 35053611 PMCID: PMC8773653 DOI: 10.3390/cancers14020449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The early diagnosis of leptomeningeal disease is a challenge because it is asymptomatic in the early stages. Consequently, it is important to identify a panel of biomarkers to help in its diagnosis and/or prognosis. For this purpose, we explored a multipronged proteomics approach in cerebrospinal fluid (CSF) to determine a potential panel of biomarkers. Thus, a systematic and exhaustive characterization of more than 300 CSF samples was performed by an integrated approach by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) and functional proteomics analysis to establish protein profiles, which were useful for developing a panel of biomarkers validated by in silico approaches. Abstract In the present work, leptomeningeal disease, a very destructive form of systemic cancer, was characterized from several proteomics points of view. This pathology involves the invasion of the leptomeninges by malignant tumor cells. The tumor spreads to the central nervous system through the cerebrospinal fluid (CSF) and has a very grim prognosis; the average life expectancy of patients who suffer it does not exceed 3 months. The early diagnosis of leptomeningeal disease is a challenge because, in most of the cases, it is an asymptomatic pathology. When the symptoms are clear, the disease is already in the very advanced stages and life expectancy is low. Consequently, there is a pressing need to determine useful CSF proteins to help in the diagnosis and/or prognosis of this disease. For this purpose, a systematic and exhaustive proteomics characterization of CSF by multipronged proteomics approaches was performed to determine different protein profiles as potential biomarkers. Proteins such as PTPRC, SERPINC1, sCD44, sCD14, ANPEP, SPP1, FCGR1A, C9, sCD19, and sCD34, among others, and their functional analysis, reveals that most of them are linked to the pathology and are not detected on normal CSF. Finally, a panel of biomarkers was verified by a prediction model for leptomeningeal disease, showing new insights into the research for potential biomarkers that are easy to translate into the clinic for the diagnosis of this devastating disease.
Collapse
|
6
|
Dyubo D, Tsybin OY. Computer Simulation of a Surface Charge Nanobiosensor with Internal Signal Integration. BIOSENSORS 2021; 11:bios11100397. [PMID: 34677353 PMCID: PMC8533784 DOI: 10.3390/bios11100397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The ionized states of molecular analytes located on solid surfaces require profound investigation and better understanding for applications in the basic sciences in general, and in the design of nanobiosensors, in particular. Such ionized states are induced by the interactions of molecules between them in the analyzed substance and with the target surface. Here, computer simulations using COMSOL Multiphysics software show the effect of surface charge density and distribution on the output generation in a dynamic PIN diode with gate control. This device, having built-in potential barriers, has a unique internal integration of output signal generation. The identified interactions showed the possibility of a new design for implementing a nanobiosensor based on a dynamic PIN diode in a mode with surface charge control.
Collapse
|
7
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
8
|
Hallingström M, Zedníková P, Tambor V, Barman M, Vajrychová M, Lenčo J, Viklund F, Tancred L, Rabe H, Jonsson D, Kachikis A, Nilsson S, Kacerovský M, Adams Waldorf KM, Jacobsson B. Mid-trimester amniotic fluid proteome's association with spontaneous preterm delivery and gestational duration. PLoS One 2020; 15:e0232553. [PMID: 32379834 PMCID: PMC7205297 DOI: 10.1371/journal.pone.0232553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/16/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amniotic fluid is clinically accessible via amniocentesis and its protein composition may correspond to birth timing. Early changes in the amniotic fluid proteome could therefore be associated with the subsequent development of spontaneous preterm delivery. OBJECTIVE The main objective of this study was to perform unbiased proteomics analysis of the association between mid-trimester amniotic fluid proteome and spontaneous preterm delivery and gestational duration, respectively. A secondary objective was to validate and replicate the findings by enzyme-linked immunosorbent assay using a second independent cohort. METHODS Women undergoing a mid-trimester genetic amniocentesis at Sahlgrenska University Hospital/Östra between September 2008 and September 2011 were enrolled in this study, designed in three analytical stages; 1) an unbiased proteomic discovery phase using LC-MS analysis of 22 women with subsequent spontaneous preterm delivery (cases) and 37 women who delivered at term (controls), 2) a validation phase of proteins of interest identified in stage 1, and 3) a replication phase of the proteins that passed validation using a second independent cohort consisting of 20 cases and 40 matched controls. RESULTS Nine proteins were nominally significantly associated with both spontaneous preterm delivery and gestational duration, after adjustment for gestational age at sampling, but none of the proteins were significant after correction for multiple testing. Several of these proteins have previously been described as being associated with spontaneous PTD etiology and six of them were thus validated using enzyme linked immunosorbent assay. Two of the proteins passed validation; Neutrophil gelatinase-associated lipocalin and plasminogen activator inhibitor 1, but the results could not be replicated in a second cohort. CONCLUSIONS Neutrophil gelatinase-associated lipocalin and Plasminogen activator inhibitor 1 are potential biomarkers of spontaneous preterm delivery and gestational duration but the findings could not be replicated. The negative findings are supported by the fact that none of the nine proteins from the exploratory phase were significant after correction for multiple testing.
Collapse
Affiliation(s)
- Maria Hallingström
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Petra Zedníková
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Biological and Biochemical Science, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Vojtěch Tambor
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Malin Barman
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Marie Vajrychová
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
| | - Juraj Lenčo
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Felicia Viklund
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Stockholm South General Hospital, Stockholm, Sweden
| | - Linda Tancred
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Biobank Väst, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hardis Rabe
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Jonsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alisa Kachikis
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marian Kacerovský
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Obstetrics and Gynecology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kristina M. Adams Waldorf
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Area of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| |
Collapse
|
9
|
Bajgiran KR, Dorman JA, Melvin AT. Dipole-Modulated Downconversion Nanoparticles as Label-Free Biological Sensors. ACS Sens 2020; 5:29-33. [PMID: 31904223 DOI: 10.1021/acssensors.9b02204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ultrasensitive detection of proteins and biomolecules has been previously achieved by optical nanoparticles (NPs) using the principles of Förster resonance energy transfer (FRET). However, the inherent need for labeling the target analyte in these assays hinders their applicability in point-of-use (POU) diagnostics. In this work, a label-free NP-based sensor has been developed that utilizes downconversion luminescence and surface electric dipoles as a novel approach for the detection of avidin. The long-lived luminescence of Eu3+-doped biotinylated NPs was effectively quenched in the presence of avidin in a concentration-dependent manner. The NPs exhibited high avidin selectivity and sensitivity with a limit of detection (LOD) of 7.8 nM and a wide dynamic range spanning 1 nM to 10 μM in deionized (DI) water. The application of the assay in a complex biological matrix consisting of cell growth medium supplemented with 10% v/v serum was verified with minor effects on avidin sensitivity exhibited by an LOD of 34.7 nM. The performance of the system was evaluated by comparing the photoluminescence (PL) intensities of known avidin concentration and the values predicted by the generated calibration curve. The new biosensing strategy has the potential to be extended to the detection of other disease biomarkers or pathogens with LOD and limited matrix effects in POU settings.
Collapse
Affiliation(s)
- Khashayar R. Bajgiran
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - James A. Dorman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Adam T. Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Alarfaj NA, El-Tohamy MF, Oraby HF. New Immunosensing-Fluorescence Detection of Tumor Marker Cytokeratin-19 Fragment (CYFRA 21-1) Via Carbon Quantum Dots/Zinc Oxide Nanocomposite. NANOSCALE RESEARCH LETTERS 2020; 15:12. [PMID: 31940100 PMCID: PMC6962423 DOI: 10.1186/s11671-020-3247-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/05/2020] [Indexed: 05/10/2023]
Abstract
The rapid detection of lung cancer in early stages using the antigen cytokeratin-19 fragment (CYFRA 21-1) as a tumor marker in human serum plays an important role in the survival of patients and taking a fast surgical reaction. This study aimed to employ the green synthesized carbon quantum dots conjugated zinc oxide nanocomposite as a highly sensitive fluorescence immunosensing solution for fast determination of CYFRA 21-1 antigen in human serum. The suggested method was conducted by applying a hydrothermal method to prepare carbon quantum dots using Citrus lemon pericarp. The formed carbon quantum dots were used in the reduction and stabilization of zinc acetate to synthesize carbon quantum dots-zinc oxide nanocomposite. To form a sandwich capping antibody-antigen-antibody immunosensing system, a CYFRA 21-1 antigen was trapped by immobilizing a non-conjugated monoclonal antibody BM 19.21 on the surface of carbon quantum dots-zinc oxide nanocomposite and another monoclonal antibody KS 19.1, which was coated on the microtiter well surface. This system has a tunable fluorescence feature recorded at excitation and emission of λex = 470 and λem = 520 nm, respectively. The suggested nanocomposite fluorescence immunosensing system displayed a linear relationship of 0.01-100 ng mL-1 with a limit of detection of 0.008 ng mL-1. The suggested immunosensing system based on carbon quantum dots-zinc oxide nanocomposite provides a promising approach for rapid diagnoses of lung cancer by detecting CYFRA 21-1 in human serum.
Collapse
Affiliation(s)
- Nawal Ahmed Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495 Saudi Arabia
| | - Maha Farouk El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495 Saudi Arabia
| | - Hesham Farouk Oraby
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
11
|
Mishra S, Sharma S, Javed MN, Pottoo FH, Barkat MA, Harshita, Alam MS, Amir M, Sarafroz M. Bioinspired Nanocomposites: Applications in Disease Diagnosis and Treatment. Pharm Nanotechnol 2019; 7:206-219. [PMID: 31030662 DOI: 10.2174/2211738507666190425121509] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/03/2018] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Recent advancement in the field of synthesis and application of nanomaterials provided holistic approach for both diagnosis as well as treatment of diseases. Briefly, three-dimensional scaffold and geometry of bioinspired nanocarriers modulate bulk properties of loaded drug at molecular/ atomic structures in a way to conjointly modulate pathological as well as altered metabolic states of diseases, in very predictable and desired manners at a specific site of the target. While, from the pharmacotechnical point of views, the bioinspired nanotechnology processes carriers either favor to enhance the solubility of poorly aqueous soluble drugs or enable well-controlled sustained release profiles, to reduce the frequency of drug regimen. Consequently, from biopharmaceutical point of view, these composite materials, not only minimize first pass metabolism but also significantly enhance in-vivo biodistribution, permeability, bio-adhesion and diffusivity. In lieu of the above arguments, the nano-processed materials exhibit an important role for diagnosis and treatments. In the diagnostic center, recent emergences and advancement in the tools and techniques to diagnose the unrevealed diseases with the help of instruments such as, computed tomography, magnetic resonance imaging etc; heavily depend upon nanotechnology-based materials. In this paper, a brief introduction and recent application of different types of nanomaterials in the field of tissue engineering, cancer treatment, ocular therapy, orthopedics, and wound healing as well as drug delivery system are thoroughly discussed.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Pharmacy, Raj Kumar Goel Institute of Technology, Abdul Kalam Technical University, Lucknow, India
| | - Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research SPER (Formerly, Faculty of Pharmacy), Jamia Hamdard, New- Delhi, India
- School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Harshita
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurgaon, Haryana, India
| | - Md Amir
- Department of Natural Product & Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Md Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
12
|
A Systematic Analysis Workflow for High-Density Customized Protein Microarrays in Biomarker Screening. Methods Mol Biol 2019; 1871:107-122. [PMID: 30276735 DOI: 10.1007/978-1-4939-8814-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
High-density protein microarrays constitute a promising high-throughput platform for the characterization of protein expression patterns, biomarker discovery, and validation. Different types of protein microarrays have been described according to several features (such as content, format, and detection system) presenting advantages and disadvantages which are relevant for the specific application and purposes. Therefore, an experimental design is key for any screening based on protein microarrays assays; in fact, the data analysis strategy is directly related to the experimental design, type of protein microarray and consequently the final outcome, the data and results interpretation, is also directly linked. Here, it is proposed a systematic workflow for biomarker discovery based on tailor-made protein microarrays platforms which obtain comprehensively info for the functional protein characterization in high-throughput format.
Collapse
|
13
|
|
14
|
Innovative methods for biomarker discovery in the evaluation and development of cancer precision therapies. Cancer Metastasis Rev 2018; 37:125-145. [PMID: 29392535 DOI: 10.1007/s10555-017-9710-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of biomarkers able to detect cancer at an early stage, to evaluate its aggressiveness, and to predict the response to therapy remains a major challenge in clinical oncology and precision medicine. In this review, we summarize recent achievements in the discovery and development of cancer biomarkers. We also highlight emerging innovative methods in biomarker discovery and provide insights into the challenges faced in their evaluation and validation.
Collapse
|
15
|
Tagit O, Hildebrandt N. Fluorescence Sensing of Circulating Diagnostic Biomarkers Using Molecular Probes and Nanoparticles. ACS Sens 2017; 2:31-45. [PMID: 28722447 DOI: 10.1021/acssensors.6b00625] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interplay of photonics, nanotechnology, and biochemistry has significantly improved the identification and characterization of multiple types of biomarkers by optical biosensors. Great achievements in fluorescence-based technologies have been realized, for example, by the advancement of multiplexing techniques or the introduction of nanoparticles to biochemical and clinical research. This review presents a concise overview of recent advances in fluorescence sensing techniques for the detection of circulating disease biomarkers. Detection principles of representative approaches, including fluorescence detection using molecular fluorophores, quantum dots, and metallic and silica nanoparticles, are explained and illustrated by pertinent examples from the recent literature. Advanced detection technologies and material development play a major role in modern biosensing and consistently provide significant improvements toward robust, sensitive, and versatile platforms for early detection of circulating diagnostic biomarkers.
Collapse
Affiliation(s)
- Oya Tagit
- NanoBioPhotonics
(nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay, France
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Niko Hildebrandt
- NanoBioPhotonics
(nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay, France
| |
Collapse
|
16
|
Bravo K, Ortega FG, Messina GA, Sanz MI, Fernández-Baldo MA, Raba J. Integrated bio-affinity nano-platform into a microfluidic immunosensor based on monoclonal bispecific trifunctional antibodies for the electrochemical determination of epithelial cancer biomarker. Clin Chim Acta 2017; 464:64-71. [DOI: 10.1016/j.cca.2016.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/23/2016] [Accepted: 11/07/2016] [Indexed: 01/14/2023]
|
17
|
Hallingström M, Lenco J, Vajrychova M, Link M, Tambor V, Liman V, Bullarbo M, Nilsson S, Tsiartas P, Cobo T, Kacerovsky M, Jacobsson B. Proteomic Analysis of Early Mid-Trimester Amniotic Fluid Does Not Predict Spontaneous Preterm Delivery. PLoS One 2016; 11:e0155164. [PMID: 27214132 PMCID: PMC4876998 DOI: 10.1371/journal.pone.0155164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/25/2016] [Indexed: 11/23/2022] Open
Abstract
Objective The aim of this study was to identify early proteomic biomarkers of spontaneous preterm delivery (PTD) in mid-trimester amniotic fluid from asymptomatic women. Methods This is a case-cohort study. Amniotic fluid from mid-trimester genetic amniocentesis (14–19 weeks of gestation) was collected from 2008 to 2011. The analysis was conducted in 24 healthy women with subsequent spontaneous PTD (cases) and 40 randomly selected healthy women delivering at term (controls). An exploratory phase with proteomics analysis of pooled samples was followed by a verification phase with ELISA of individual case and control samples. Results The median (interquartile range (IQR: 25th; 75th percentiles) gestational age at delivery was 35+5 (33+6–36+6) weeks in women with spontaneous PTD and 40+0 (39+1–40+5) weeks in women who delivered at term. In the exploratory phase, the most pronounced differences were found in C-reactive protein (CRP) levels, that were approximately two-fold higher in the pooled case samples than in the pooled control samples. However, we could not verify these differences with ELISA. The median (25th; 75th IQR) CRP level was 95.2 ng/mL (64.3; 163.5) in women with spontaneous PTD and 86.0 ng/mL (51.2; 145.8) in women delivering at term (p = 0.37; t-test). Conclusions Proteomic analysis with mass spectrometry of mid-trimester amniotic fluid suggests CRP as a potential marker of spontaneous preterm delivery, but this prognostic potential was not verified with ELISA.
Collapse
Affiliation(s)
- Maria Hallingström
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Juraj Lenco
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
| | - Marie Vajrychova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czech Republic
| | - Vojtech Tambor
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Victor Liman
- Department of Neurochemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Bullarbo
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Panagiotis Tsiartas
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Teresa Cobo
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
- BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Centro de Investigaciones Biomedicas en Enfermedades Raras (CIBER-ER), Barcelona, Spain
| | - Marian Kacerovsky
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Department of Obstetrics and Gynecology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Area of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| |
Collapse
|
18
|
Díez P, Lorenzo S, Dégano RM, Ibarrola N, González-González M, Nieto W, Almeida J, González M, Orfao A, Fuentes M. Multipronged functional proteomics approaches for global identification of altered cell signalling pathways in B-cell chronic lymphocytic leukaemia. Proteomics 2016; 16:1193-203. [PMID: 26910488 DOI: 10.1002/pmic.201500372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/04/2015] [Accepted: 02/09/2016] [Indexed: 11/11/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) is a malignant B cell disorder characterized by its high heterogeneity. Although genomic alterations have been broadly reported, protein studies are still in their early stages. Herein, a 224-antibody microarray has been employed to study the intracellular signalling pathways in a cohort of 14 newly diagnosed B-CLL patients as a preliminary study for further investigations. Several protein profiles were differentially identified across the cytogenetic and molecular alterations presented in the samples (deletion 13q14 and 17p13.1, trisomy 12, and NOTCH1 mutations) by a combination of affinity and MS/MS proteomics approaches. Among others altered cell signalling pathways, PKC family members were identified as down-regulated in nearly 75% of the samples tested with the antibody arrays. This might explain the rapid progression of the disease when showing p53, Rb1, or NOTCH1 mutations due to PKC-proteins family plays a critical role favouring the slowly progressive indolent behaviour of CLL. Additionally, the antibody microarray results were validated by a LC-MS/MS quantification strategy and compared to a transcriptomic CLL database. In summary, this research displays the usefulness of proteomic strategies to globally evaluate the protein alterations in CLL cells and select the possible biomarkers to be further studied with larger sample sizes.
Collapse
Affiliation(s)
- Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain.,Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Seila Lorenzo
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Rosa M Dégano
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Nieves Ibarrola
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - María González-González
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain.,Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Wendy Nieto
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Julia Almeida
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Marcos González
- Service of Haematology, IBMCC, IBSAL, University Hospital of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain.,Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, Spain
| |
Collapse
|
19
|
Díez P, Jara-Acevedo R, González-González M, Casado-Vela J, Dasilva N, Lécrevisse Q, Bartolomé R, Claros JC, González A, López R, Orfao A, Fuentes M. High-throughgput phage-display screening in array format. Enzyme Microb Technol 2015; 79-80:34-41. [DOI: 10.1016/j.enzmictec.2015.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 10/23/2022]
|
20
|
Díez P, González-González M, Lourido L, Dégano RM, Ibarrola N, Casado-Vela J, LaBaer J, Fuentes M. NAPPA as a Real New Method for Protein Microarray Generation. MICROARRAYS 2015; 4:214-27. [PMID: 27600221 PMCID: PMC4996395 DOI: 10.3390/microarrays4020214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/30/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
Nucleic Acid Programmable Protein Arrays (NAPPA) have emerged as a powerful and innovative technology for the screening of biomarkers and the study of protein-protein interactions, among others possible applications. The principal advantages are the high specificity and sensitivity that this platform offers. Moreover, compared to conventional protein microarrays, NAPPA technology avoids the necessity of protein purification, which is expensive and time-consuming, by substituting expression in situ with an in vitro transcription/translation kit. In summary, NAPPA arrays have been broadly employed in different studies improving knowledge about diseases and responses to treatments. Here, we review the principal advances and applications performed using this platform during the last years.
Collapse
Affiliation(s)
- Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - María González-González
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - Lucía Lourido
- Rheumatology Division, ProteoRed/ISCIII Proteomics Group, INIBIC, Hospital Universitario de A Coruña, A Coruña 15006, Spain.
| | - Rosa M Dégano
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - Nieves Ibarrola
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| | - Juan Casado-Vela
- Biotechnology National Centre, Spanish National Research Council (CSIC), Madrid 28049, Spain.
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287, USA.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca 37007, Spain.
| |
Collapse
|
21
|
Hudler P, Videtič Paska A, Komel R. Contemporary proteomic strategies for clinical epigenetic research and potential impact for the clinic. Expert Rev Proteomics 2015; 12:197-212. [PMID: 25719543 DOI: 10.1586/14789450.2015.1019479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novel proteomic methods are revealing the intricacy of the epigenetic landscape affecting gene regulation and improving our knowledge of the pathogenesis of complex diseases. Despite the enormous amount of data regarding epigenetic modifications present in DNA and histones, deciphering their biological relevance in the context of the disease and health is currently still an ongoing process. Here, we consider the relationship between epigenetic research in tumorigenesis and the prospect of knowledge transfer to clinical use, focusing primarily on the epigenetic histone post-translational modifications, which could be used as biomarkers. We additionally focus on the use of proteomic techniques in research and evaluate their usefulness in clinical setting.
Collapse
Affiliation(s)
- Petra Hudler
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
22
|
Sánchez-Paradinas S, Pérez-Andrés M, Almendral-Parra MJ, Rodríguez-Fernández E, Millán Á, Palacio F, Orfao A, Criado JJ, Fuentes M. Enhanced cytotoxic activity of bile acid cisplatin derivatives by conjugation with gold nanoparticles. J Inorg Biochem 2014; 131:8-11. [DOI: 10.1016/j.jinorgbio.2013.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 01/13/2023]
|
23
|
Guo S, Zou J, Wang G. Advances in the proteomic discovery of novel therapeutic targets in cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1259-71. [PMID: 24187485 PMCID: PMC3810204 DOI: 10.2147/dddt.s52216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed.
Collapse
Affiliation(s)
- Shanchun Guo
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Clark Atlanta University, Atlanta, GA, USA
| | | | | |
Collapse
|
24
|
Protein arrays as tool for studies at the host-pathogen interface. J Proteomics 2013; 94:387-400. [PMID: 24140974 DOI: 10.1016/j.jprot.2013.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 09/06/2013] [Accepted: 10/08/2013] [Indexed: 01/10/2023]
Abstract
Pathogens and parasites encode a wide spectrum of multifunctional proteins interacting to and modifying proteins in host cells. However, the current lack of a reliable method to unveil the protein-protein interactions (PPI) at the host-pathogen interface is retarding our understanding of many important pathogenic processes. Thus, the identification of proteins involved in host-pathogen interactions is important for the elucidation of virulence determinants, mechanisms of infection, host susceptibility and/or disease resistance. In this sense, proteomic technologies have experienced major improvements in recent years and protein arrays are a powerful and modern method for studying PPI in a high-throughput format. This review focuses on these techniques analyzing the state-of-the-art of proteomic technologies and their possibilities to diagnose and explore host-pathogen interactions. Major technical advancements, applications and protocol concerns are presented, so readers can appreciate the immense progress achieved and the current technical options available for studying the host-pathogen interface. Finally, future uses of this kind of array-based proteomic tools in the fight against infectious and parasitic diseases are discussed.
Collapse
|
25
|
Pleil JD, Stiegel MA. Evolution of Environmental Exposure Science: Using Breath-Borne Biomarkers for “Discovery” of the Human Exposome. Anal Chem 2013; 85:9984-90. [DOI: 10.1021/ac402306f] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Joachim D. Pleil
- National Exposure Research Laboratory,
Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Matthew A. Stiegel
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, 27599, United States
| |
Collapse
|
26
|
Kacerovsky M, Lenco J, Musilova I, Tambor V, Lamont R, Torloni MR, Menon R. Proteomic biomarkers for spontaneous preterm birth: a systematic review of the literature. Reprod Sci 2013; 21:283-95. [PMID: 24060632 DOI: 10.1177/1933719113503415] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review aimed to identify, synthesize, and analyze the findings of studies on proteomic biomarkers for spontaneous preterm birth (PTB). Three electronic databases (Medline, Embase, and Scopus) were searched for studies in any language reporting the use of proteomic biomarkers for PTB published between January 1994 and December 2012. Retrieved citations were screened, and relevant studies were selected for full-text reading, in triplicate. The search yielded 529 citations, 51 were selected for full-text reading and 8 studies were included in the review. A total of 64 dysregulated proteins were reported. Only 14-3-3 protein sigma, annexin A5, protein S100-A8, protein S100-A12, and inter-α-trypsin inhibitor heavy chain H4 were reported in more than 1 study, but results could not be combined due to heterogeneity in type of sample and analytical platform. In conclusion, according to the existing literature, there are no specific proteomic biomarkers capable of accurately predicting PTB.
Collapse
Affiliation(s)
- Marian Kacerovsky
- 1Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lochmanová G, Jedličková L, Potěšil D, Tomancová A, Verner J, Pospíšilová S, Doubek M, Mayer J, Zdráhal Z. Potential biomarkers for early detection of acute graft-versus-host disease. Proteomics Clin Appl 2013; 6:351-63. [PMID: 22927351 DOI: 10.1002/prca.201100104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is the main complication of allogeneic hematopoietic stem cell transplantation (HCT), resulting in considerable morbidity and mortality. Currently, the diagnosis of aGVHD is largely made based on clinical parameters and invasive biopsies. For the past 20 years, researchers have been trying to find reliable biomarkers to enable early and accurate diagnosis of aGVHD. Although a number of potential aGVHD biomarkers have been published, as yet, no validated diagnostic test is available. Proteomics encompasses a broad range of rapidly developing technologies, which have shown tremendous promise for early detection of aGVHD. In this article, we review the current state of aGVHD biomarker discovery, provide a summary of the key proteins of interest and the most common analytical procedures for the clinic, as well as outlining the significant challenges faced in their use.
Collapse
Affiliation(s)
- Gabriela Lochmanová
- Core Facility-Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Agrawal GK, Timperio AM, Zolla L, Bansal V, Shukla R, Rakwal R. Biomarker discovery and applications for foods and beverages: proteomics to nanoproteomics. J Proteomics 2013; 93:74-92. [PMID: 23619387 DOI: 10.1016/j.jprot.2013.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/17/2013] [Accepted: 04/01/2013] [Indexed: 12/18/2022]
Abstract
Foods and beverages have been at the heart of our society for centuries, sustaining humankind - health, life, and the pleasures that go with it. The more we grow and develop as a civilization, the more we feel the need to know about the food we eat and beverages we drink. Moreover, with an ever increasing demand for food due to the growing human population food security remains a major concern. Food safety is another growing concern as the consumers prefer varied foods and beverages that are not only traded nationally but also globally. The 21st century science and technology is at a new high, especially in the field of biological sciences. The availability of genome sequences and associated high-throughput sensitive technologies means that foods are being analyzed at various levels. For example and in particular, high-throughput omics approaches are being applied to develop suitable biomarkers for foods and beverages and their applications in addressing quality, technology, authenticity, and safety issues. Proteomics are one of those technologies that are increasingly being utilized to profile expressed proteins in different foods and beverages. Acquired knowledge and protein information have now been translated to address safety of foods and beverages. Very recently, the power of proteomic technology has been integrated with another highly sensitive and miniaturized technology called nanotechnology, yielding a new term nanoproteomics. Nanoproteomics offer a real-time multiplexed analysis performed in a miniaturized assay, with low-sample consumption and high sensitivity. To name a few, nanomaterials - quantum dots, gold nanoparticles, carbon nanotubes, and nanowires - have demonstrated potential to overcome the challenges of sensitivity faced by proteomics for biomarker detection, discovery, and application. In this review, we will discuss the importance of biomarker discovery and applications for foods and beverages, the contribution of proteomic technology in this process, and a shift towards nanoproteomics to suitably address associated issues. This article is part of a Special Issue entitled: Translational plant proteomics.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal.
| | | | | | | | | | | |
Collapse
|
29
|
Kočevar N, Hudler P, Komel R. The progress of proteomic approaches in searching for cancer biomarkers. N Biotechnol 2013; 30:319-26. [PMID: 23165098 DOI: 10.1016/j.nbt.2012.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 12/28/2022]
|
30
|
|
31
|
Label-free microcavity biosensors: steps towards personalized medicine. SENSORS 2012; 12:17262-94. [PMID: 23443397 PMCID: PMC3571837 DOI: 10.3390/s121217262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 01/20/2023]
Abstract
Personalized medicine has the potential to improve our ability to maintain health and treat disease, while ameliorating continuously rising healthcare costs. Translation of basic research findings to clinical applications within regulatory compliance is required for personalized medicine to become the new foundation for practice of medicine. Deploying even a few of the thousands of potential diagnostic biomarkers identified each year as part of personalized treatment workflows requires clinically efficient biosensor technologies to monitor multiple biomarkers in patients in real time. This paper discusses a critical component of a regulatory system, a microcavity optical biosensor for label-free monitoring of biomolecular interactions at physiologically-relevant concentrations. While most current biosensor research focuses on improving sensitivity, this paper emphasizes other characteristics a biosensor technology requires to be practical in a clinical setting, presenting robust microcavity biosensors which are easy to manufacture and integrate with microfluidics into flexible and redesignable platforms making the microcavity biosensors deployable for continuous monitoring of biomarkers in body fluids in the clinic, in dense 2D random arrays for high-throughput applications like drug-library screening in interactomics, and of the secretory behavior of single cells in the laboratory.
Collapse
|
32
|
Nicolini C, Bragazzi N, Pechkova E. Nanoproteomics enabling personalized nanomedicine. Adv Drug Deliv Rev 2012; 64:1522-31. [PMID: 22820526 DOI: 10.1016/j.addr.2012.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 02/01/2023]
Abstract
Nucleic Acid Programmable Protein Arrays utilize a complex mammalian cell free expression system to produce proteins in situ. In alternative to fluorescent-labeled approaches a new label free method, emerging from the combined utilization of three independent and complementary nanotechnological approaches, appears capable to analyze protein function and protein-protein interaction in studies promising for personalized medicine. Quartz Micro Circuit nanogravimetry, based on frequency and dissipation factor, mass spectrometry and anodic porous alumina overcomes indeed the limits of correlated fluorescence detection plagued by the background still present after extensive washes. This could be further optimized by a homogeneous and well defined bacterial cell free expression system capable to realize the ambitious objective to quantify the regulatory protein networks in humans. Implications for personalized medicine of the above label free protein array using different test genes proteins are reported.
Collapse
|
33
|
Díez P, Dasilva N, González-González M, Matarraz S, Casado-Vela J, Orfao A, Fuentes M. Data Analysis Strategies for Protein Microarrays. MICROARRAYS 2012; 1:64-83. [PMID: 27605336 PMCID: PMC5003438 DOI: 10.3390/microarrays1020064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/13/2012] [Accepted: 07/31/2012] [Indexed: 01/22/2023]
Abstract
Microarrays constitute a new platform which allows the discovery and characterization of proteins. According to different features, such as content, surface or detection system, there are many types of protein microarrays which can be applied for the identification of disease biomarkers and the characterization of protein expression patterns. However, the analysis and interpretation of the amount of information generated by microarrays remain a challenge. Further data analysis strategies are essential to obtain representative and reproducible results. Therefore, the experimental design is key, since the number of samples and dyes, among others aspects, would define the appropriate analysis method to be used. In this sense, several algorithms have been proposed so far to overcome analytical difficulties derived from fluorescence overlapping and/or background noise. Each kind of microarray is developed to fulfill a specific purpose. Therefore, the selection of appropriate analytical and data analysis strategies is crucial to achieve successful biological conclusions. In the present review, we focus on current algorithms and main strategies for data interpretation.
Collapse
Affiliation(s)
- Paula Díez
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain.
| | - Noelia Dasilva
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain.
| | - María González-González
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain.
| | - Sergio Matarraz
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain.
| | - Juan Casado-Vela
- Translational Oncology Unit, Instituto de Investigaciones Biomédicas 'Alberto Sols', Spanish National Research Council (CSIC-UAM), 28029 Madrid, Spain.
| | - Alberto Orfao
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain.
| | - Manuel Fuentes
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), IBSAL, Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain.
| |
Collapse
|