1
|
Kuri PR, Goswami P. Development of a Molecular Beacon-Based Genosensor for Detection of Human Rotavirus A. Mol Biotechnol 2024:10.1007/s12033-024-01362-9. [PMID: 39739192 DOI: 10.1007/s12033-024-01362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
The rotavirus-led fatal infantile gastroenteritis in the globe demands a portable, specific, and low-cost diagnostic tool for its timely detection and effective surveillance in a mass population. Consequently, the design and development of an advanced biosensing technique for its detection is of paramount importance. A highly conserved 23-nucleotide sequence, 5' GCTAGGGATAAGATTGTTGAAGG 3', was identified by a human rotavirus A VP6 gene sequence analysis and designated as the target. A molecular beacon of 33 nucleotides was designed with the sequence 5'[Fluorescein] ATAGTCCTTCAACAATCTTATCCCTAGCACTAT[Dabcyl]3', incorporating stem and loop regions. Secondary and tertiary structure characterizations confirmed the desired stem-loop structure without internal secondary structures. The thermal stability of the molecular beacon-target complex was studied using a temperature vs. Gibbs free energy change plot, melting curve analysis based on absorbance vs. temperature, and an experimental fluorescence resonance energy transfer melting assay. The melting temperature of the molecular beacon-target complex was experimentally determined to be 62 °C. The spectral analysis showed fluorescence restoration in the presence of the synthetic VP6 target. The assay conditions were optimized with an excitation wavelength of 470 nm and a 10-min incubation time. The assay demonstrated a linear correlation between fluorescence intensity restoration and target concentration, with a limit of detection of 18.8 nM. Interference studies with single mismatch, double mismatch, and scrambled targets revealed that the molecular beacon has strong specificity for the VP6 target, effectively discriminating against non-target sequences. This work demonstrates the molecular beacon's potential as a sensitive and specific tool for detecting rotavirus A VP6 gene, with promising applications in diagnostic assays for the rotavirus disease management.
Collapse
Affiliation(s)
- Pooja Rani Kuri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Zhang L, Bai H, Zou J, Zhang C, Zhuang W, Hu J, Yao Y, Hu WW. Immuno-Rolling Circle Amplification (Immuno-RCA): Biosensing Strategies, Practical Applications, and Future Perspectives. Adv Healthc Mater 2024; 13:e2402337. [PMID: 39252654 DOI: 10.1002/adhm.202402337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/25/2024] [Indexed: 09/11/2024]
Abstract
In the rapidly evolving field of life sciences and biomedicine, detecting low-abundance biomolecules, and ultraweak biosignals presents significant challenges. This has spurred a rapid development of analytical techniques aiming for increased sensitivity and specificity. These advancements, including signal amplification strategies and the integration of biorecognition events, mark a transformative era in bioanalytical precision and accuracy. A prominent method among these innovations is immuno-rolling circle amplification (immuno-RCA) technology, which effectively combines immunoassays with signal amplification via RCA. This process starts when a targeted biomolecule, such as a protein or cell, binds to an immobilized antibody or probe on a substrate. The introduction of a circular DNA template triggers RCA, leading to exponential amplification and significantly enhanced signal intensity, thus the target molecule is detectable and quantifiable even at the single-molecule level. This review provides an overview of the biosensing strategy and extensive practical applications of immuno-RCA in detecting biomarkers. Furthermore, it scrutinizes the limitations inherent to these sensors and sets forth expectations for their future trajectory. This review serves as a valuable reference for advancing immuno-RCA in various domains, such as diagnostics, biomarker discovery, and molecular imaging.
Collapse
Affiliation(s)
- Limei Zhang
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hao Bai
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Zou
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chuyan Zhang
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weihua Zhuang
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Hu
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchao Yao
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenchuang Walter Hu
- Precision Medicine Translational Research Center (PMTRC), Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Tanriver M, Müller M, Levasseur MD, Richards D, Majima S, DeMello A, Yamauchi Y, Bode JW. Peptide-Directed Attachment of Hydroxylamines to Specific Lysines of IgG Antibodies for Bioconjugations with Acylboronates. Angew Chem Int Ed Engl 2024; 63:e202401080. [PMID: 38421342 DOI: 10.1002/anie.202401080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
The role of monoclonal antibodies as vehicles to deliver payloads has evolved as a powerful tool in cancer therapy in recent years. The clinical development of therapeutic antibody conjugates with precise payloads holds great promise for targeted therapeutic interventions. The use of affinity-peptide mediated functionalization of native off-the-shelf antibodies offers an effective approach to selectively modify IgG antibodies with a drug-antibody ratio (DAR) of 2. Here, we report the traceless, peptide-directed attachment of two hydroxylamines to native IgGs followed by chemoselective potassium acyltrifluoroborate (KAT) ligation with quinolinium acyltrifluoroborates (QATs), which provide enhanced ligation rates with hydroxylamines under physiological conditions. By applying KAT ligation to the modified antibodies, conjugation of small molecules, proteins, and oligonucleotides to off-the-shelf IgGs proceeds efficiently, in good yields, and with simultaneous cleavage of the affinity peptide-directing moiety.
Collapse
Affiliation(s)
- Matthias Tanriver
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Marco Müller
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Mikail D Levasseur
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Daniel Richards
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Sohei Majima
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Andrew DeMello
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Yohei Yamauchi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jeffrey W Bode
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
4
|
Lehot V, Lidický O, Most J, Erb S, Dovgan I, Osypenko A, Koniev O, Kolodych S, Kotrchová L, Chaubet G, Cianférani S, Etrych T, Wagner A. Reinvestigation of the Automated Synthesis of Stoichiometrically Conjugated Antibodies to Access High Molecular Weight Payloads and Multiplexed Conjugation via an In-Solution Trans-Tagging Process. ACS OMEGA 2023; 8:40508-40516. [PMID: 37929096 PMCID: PMC10620776 DOI: 10.1021/acsomega.3c05206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 11/07/2023]
Abstract
Protein conjugates have found applications in a wide variety of fields, ranging from therapeutics to imaging and detection. However, robust control over the parameters of the conjugation process (such as sites and degree of conjugation) remains challenging. Previously, our group introduced Equimolar NAtive Chemical Tagging (ENACT), a method which allows for the monofunctionalization of proteins by combining an iterative low-conversion bioconjugation, an automated process, and a bioorthogonal trans-tagging reaction. However, while the automated ENACT was dimensioned to achieve monoconjugation at the mg scale, in early stage research, because of the rarity and cost of the starting materials, it is often necessary to prepare conjugates at the lower, μg, scale. Here, we introduce modified ENACT protocols, as well as a new ENACT conjugation reagent, which allow for the monofunctionalization of proteins on the micrograms scale, using minimal quantities of payload.
Collapse
Affiliation(s)
- Victor Lehot
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Ondřej Lidický
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czechia
| | - Julien Most
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Igor Dovgan
- Syndivia SAS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Artem Osypenko
- Syndivia SAS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | | | - Sergii Kolodych
- Syndivia SAS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Lenka Kotrchová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czechia
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czechia
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
5
|
Jin Y, Huang Z, Xu B, Chen J. Localization of multiple DNAzymes as a branchedzyme-powered nanodevice for the immunoassay of tumor biomarkers. Anal Chim Acta 2023; 1274:341580. [PMID: 37455088 DOI: 10.1016/j.aca.2023.341580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Traditional immunoassay methods often face challenges due to the labeling procedure of protein enzymes, the use of multiple antibodies, and severe conditions. To address these limitations, we propose the concept of incorporating branchedzyme-powered nanodevices into immunoassays. In this strategy, multiple DNAzymes are localized onto gold nanoparticles (AuNPs) along with substrates. The localization format facilitates intramolecular reactions between DNAzymes and substrates, leading to accelerated kinetics of the nanodevice. Upon the formation of an immunocomplex with an antibody on a 96-well plate, the branchedzyme-powered nanodevice catalytically releases multiple fluorescent signals under ambient temperature, eliminating the need for secondary antibodies. The branched DNAzymes exhibit catalytic properties similar to those of protein enzymes, thus simplifying the assay procedure and achieving isothermal detection. Furthermore, the detection process can be controlled by the addition or deletion of cofactors. Additionally, the affinity ligand can be easily modified to construct nanodevices specific to different targets without requiring extensive redesign. This strategy has demonstrated successful quantification of tumor biomarkers such as alpha-fetoprotein (AFP) and prostate-specific antigen (PSA) at subpicomolar concentrations, showcasing its suitability for clinical applications. Consequently, the branchedzyme-powered nanodevice represents a valuable addition to the immunoassay toolbox, opening new possibilities for clinical diagnostics.
Collapse
Affiliation(s)
- Yanwen Jin
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan Universtity, Chengdu, Sichuan, 610064, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan Universtity, Chengdu, Sichuan, 610064, China
| | - Bingyan Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan Universtity, Chengdu, Sichuan, 610064, China
| | - Junbo Chen
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
6
|
Kurian ASN, Gurukandure A, Dovgan I, Kolodych S, Easley CJ. Thermofluorimetric Analysis (TFA) using Probes with Flexible Spacers: Application to Direct Antibody Sensing and to Antibody-Oligonucleotide (AbO) Conjugate Valency Monitoring. Anal Chem 2023; 95:11680-11686. [PMID: 37490525 PMCID: PMC10421636 DOI: 10.1021/acs.analchem.3c01590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Antibodies have long been recognized as clinically relevant biomarkers of disease. The onset of a disease often stimulates antibody production in low quantities, making it crucial to develop sensitive, specific, and easy-to-use antibody assay platforms. Antibodies are also extensively used as probes in bioassays, and there is a need for simpler methods to evaluate specialized probes, such as antibody-oligonucleotide (AbO) conjugates. Previously, we demonstrated that thermofluorimetric analysis (TFA) of analyte-driven DNA assembly can be leveraged to detect protein biomarkers using AbO probes. A key advantage of this technique is its ability to circumvent autofluorescence arising from biological samples, which otherwise hampers homogeneous assays. The analysis of differential DNA melt curves (dF/dT) successfully distinguishes the signal from the background and interferences. Expanding the applicability of TFA further, herein we demonstrate a unique proximity based TFA assay for antibody quantification that is functional in 90% human plasma. We show that the conformational flexibility of the DNA-based proximity probes is critically important for optimal performance in these assays. To promote stable, proximity-induced hybridization of the short DNA strands, substitution of poly(ethylene glycol) (PEG) spacers in place of ssDNA segments led to improved conformational flexibility and sensor performance. Finally, by applying these flexible spacers to study AbO conjugates directly, we validate this modified TFA approach as a novel tool to elucidate the probe valency, clearly distinguishing between monovalent and multivalent AbOs and reducing the reagent amounts by 12-fold.
Collapse
Affiliation(s)
- Amanda S. N. Kurian
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849
| | - Asanka Gurukandure
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849
| | | | | | | |
Collapse
|
7
|
Zhang J, Lu Y, Gao W, Yang P, Cheng N, Jin Y, Chen J. Structure-switching locked hairpin triggered rolling circle amplification for ochratoxin A (OTA) detection by ICP-MS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Safenkova IV, Burkin KM, Bodulev OL, Razo SC, Ivanov AV, Zherdev AV, Dzantiev BB, Sakharov IY. Comparative study of magnetic beads and microplates as supports in heterogeneous amplified assay of miRNA-141 by using mismatched catalytic hairpin assembly reaction. Talanta 2022; 247:123535. [DOI: 10.1016/j.talanta.2022.123535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
|
9
|
Emerging affinity ligands and support materials for the enrichment of monoclonal antibodies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Bialy RM, Mainguy A, Li Y, Brennan JD. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem Soc Rev 2022; 51:9009-9067. [DOI: 10.1039/d2cs00613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional nucleic acids regulate rolling circle amplification to produce multiple detection outputs suitable for the development of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Roger M. Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Alexa Mainguy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
11
|
Evtugyn G, Belyakova S, Porfireva A, Hianik T. Electrochemical Aptasensors Based on Hybrid Metal-Organic Frameworks. SENSORS 2020; 20:s20236963. [PMID: 33291498 PMCID: PMC7729924 DOI: 10.3390/s20236963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Metal-organic frameworks (MOFs) offer a unique variety of properties and morphology of the structure that make it possible to extend the performance of existing and design new electrochemical biosensors. High porosity, variable size and morphology, compatibility with common components of electrochemical sensors, and easy combination with bioreceptors make MOFs very attractive for application in the assembly of electrochemical aptasensors. In this review, the progress in the synthesis and application of the MOFs in electrochemical aptasensors are considered with an emphasis on the role of the MOF materials in aptamer immobilization and signal generation. The literature information of the use of MOFs in electrochemical aptasensors is classified in accordance with the nature and role of MOFs and a signal mode. In conclusion, future trends in the application of MOFs in electrochemical aptasensors are briefly discussed.
Collapse
Affiliation(s)
- Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (S.B.); (A.P.)
- Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
- Correspondence: (G.E.); (T.H.); Tel.: +7-843-2337491 (G.E.); +421-2-6029-5683 (T.H.)
| | - Svetlana Belyakova
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (S.B.); (A.P.)
| | - Anna Porfireva
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (S.B.); (A.P.)
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, 842 48 Bratislava, Slovakia
- Correspondence: (G.E.); (T.H.); Tel.: +7-843-2337491 (G.E.); +421-2-6029-5683 (T.H.)
| |
Collapse
|
12
|
Bialy RM, Ali MM, Li Y, Brennan JD. Protein-Mediated Suppression of Rolling Circle Amplification for Biosensing with an Aptamer-Containing DNA Primer. Chemistry 2020; 26:5085-5092. [PMID: 32096262 DOI: 10.1002/chem.202000245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/21/2020] [Indexed: 12/22/2022]
Abstract
We report a method to detect proteins via suppression of rolling circle amplification (RCA) by using an appropriate aptamer as the linear primer (denoted as an aptaprimer) to initiate RCA. In the absence of a protein target, the aptaprimer is free to initiate RCA, which can produce long DNA products that are detected via binding of a fluorescent intercalating dye. Introduction of a target causes the primer region within the aptamer to become unavailable for binding to the circular template, inhibiting RCA. Using SYBR Gold or QuantiFluor dyes as fluorescent probes to bind to the RCA reaction product, it is possible to produce a generic protein-modulated RCA assay system that does not require fluorophore- or biotin-modified DNA species, substantially reducing complexity and cost of reagents. Based on this modulation of RCA, we demonstrate the ability to produce both solution and paper-based assays for rapid and quantitative detection of proteins including platelet derived growth factor and thrombin.
Collapse
Affiliation(s)
- Roger M Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Monsur M Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|
13
|
Lombardo D, Calandra P, Pasqua L, Magazù S. Self-assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1048. [PMID: 32110877 PMCID: PMC7084717 DOI: 10.3390/ma13051048] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
In this paper, we survey recent advances in the self-assembly processes of novel functional platforms for nanomaterials and biomaterials applications. We provide an organized overview, by analyzing the main factors that influence the formation of organic nanostructured systems, while putting into evidence the main challenges, limitations and emerging approaches in the various fields of nanotechology and biotechnology. We outline how the building blocks properties, the mutual and cooperative interactions, as well as the initial spatial configuration (and environment conditions) play a fundamental role in the construction of efficient nanostructured materials with desired functional properties. The insertion of functional endgroups (such as polymers, peptides or DNA) within the nanostructured units has enormously increased the complexity of morphologies and functions that can be designed in the fabrication of bio-inspired materials capable of mimicking biological activity. However, unwanted or uncontrollable effects originating from unexpected thermodynamic perturbations or complex cooperative interactions interfere at the molecular level with the designed assembly process. Correction and harmonization of unwanted processes is one of the major challenges of the next decades and requires a deeper knowledge and understanding of the key factors that drive the formation of nanomaterials. Self-assembly of nanomaterials still remains a central topic of current research located at the interface between material science and engineering, biotechnology and nanomedicine, and it will continue to stimulate the renewed interest of biologist, physicists and materials engineers by combining the principles of molecular self-assembly with the concept of supramolecular chemistry.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
| | - Pietro Calandra
- Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy;
| | - Luigi Pasqua
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende, Italy;
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, 98166 Messina, Italy;
| |
Collapse
|
14
|
Cheng YH, Tang H, Yu RQ, Jiang JH. DNA-Programmed plasmonic ELISA for the ultrasensitive detection of protein biomarkers. Analyst 2020; 145:4860-4866. [DOI: 10.1039/d0an00656d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a novel DNA-programmed plasmonic enzyme-linked immunosorbent assay (ELISA) for the ultrasensitive detection of protein biomarkers with the naked eye.
Collapse
Affiliation(s)
- Yu-Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Hao Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
15
|
Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody-Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug Chem 2019; 30:2483-2501. [PMID: 31339691 DOI: 10.1021/acs.bioconjchem.9b00306] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-oligonucleotide conjugates (AOCs) are a novel class of synthetic chimeric biomolecules that has been continually gaining traction in different fields of modern biotechnology. This is mainly due to the unique combination of the properties of their two constituents, exceptional targeting abilities and antibody biodistribution profiles, in addition to an extensive scope of oligonucleotide functional and structural roles. Combining these two classes of biomolecules in one chimeric construct has therefore become an important milestone in the development of numerous biotechnological applications, including imaging (DNA-PAINT), detection (PLA, PEA), and therapeutics (targeted siRNA/antisense delivery). Numerous synthetic approaches have been developed to access AOCs ranging from stochastic chemical bioconjugation to site-specific conjugation with reactive handles, introduced into antibody sequences through protein engineering. This Review gives a general overview of the current status of AOC applications with a specific emphasis on the synthetic methods used for their preparation. The reported synthetic techniques are discussed in terms of their practical aspects and limitations. The importance of the development of novel methods for the facile generation of AOCs possessing a defined constitution is highlighted as a priority in AOC research to ensure the advance of their new applications.
Collapse
Affiliation(s)
- Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| | - Oleksandr Koniev
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Sergii Kolodych
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| |
Collapse
|
16
|
Methodological aspects of Universal immuno-PCR on standard tubes. Anal Biochem 2019; 570:56-61. [DOI: 10.1016/j.ab.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 11/20/2022]
|
17
|
Song KS, Nimse SB, Warkad SD, Oh AC, Kim T, Hong YJ. Quantification of CYFRA 21-1 and a CYFRA 21-1–anti-CYFRA 21-1 autoantibody immune complex for detection of early stage lung cancer. Chem Commun (Camb) 2019; 55:10060-10063. [DOI: 10.1039/c9cc03620b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Population-based screening of stage 0–I lung cancer is crucial for saving lives. The CIC/CYFRA 21-1 ratio allows the detection of stage I lung cancer with 76.0% sensitivity and 87.5% specificity.
Collapse
Affiliation(s)
- Keum-Soo Song
- Institute of Applied Chemistry and Department of Chemistry
- Hallym University
- Chuncheon
- South Korea
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry
- Hallym University
- Chuncheon
- South Korea
| | | | - Ae-Chin Oh
- Departments of Laboratory Medicine
- Korea Cancer Center Hospital
- Seoul
- South Korea
| | - Taisun Kim
- Institute of Applied Chemistry and Department of Chemistry
- Hallym University
- Chuncheon
- South Korea
| | - Young Jun Hong
- Departments of Laboratory Medicine
- Korea Cancer Center Hospital
- Seoul
- South Korea
| |
Collapse
|
18
|
Song KS, Nimse SB, Sonawane MD, Lin Y, Zhou Z, Kim T. A glass fibre membrane platform for ultra-sensitive detection of cardiac troponin T. Analyst 2018; 142:3816-3821. [PMID: 28952616 DOI: 10.1039/c7an01389b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A glass fibre membrane platform that allows quantification of circulating cTnT with a LoD of 0.87 pg mL-1 is described. The proposed platform uses a glass fibre membrane, DNA-guided detection method, and antibody-conjugated fluorescent beads for the quantification of cTnT in the analytical detection range of 1-120 pg mL-1 at room temperature in 30 min. Glass fibre membranes were chemically modified to immobilize the oligonucleotide probes that catch a biomolecular complex (FB-dAB-cTnT-cAB-DNA) containing complementary oligonucleotides. There were no interferences from human cTnI, cTnC, skTnT, biotin, and hemoglobin (each 1 μg mL-1). The linearity in the serial dilution test of plasma samples indicates that this platform is highly applicable for regular health check-up to assess the risk of AMI and HF.
Collapse
Affiliation(s)
- Keum-Soo Song
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon, 200-702, Korea.
| | | | | | | | | | | |
Collapse
|
19
|
Microplate Chemiluminescent Assay for DNA Detection Using Apoperoxidase-Oligonucleotide as Capture Conjugate and HRP-Streptavidin Signaling System. SENSORS 2018; 18:s18041289. [PMID: 29690600 PMCID: PMC5948693 DOI: 10.3390/s18041289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
A covalent conjugate of horseradish apoperoxidase and amino-containing oligonucleotide was synthesized for the first time. Using the obtained conjugate as a capture reagent chemiluminescent microtiter plate-based assay for detection of 35-mer fragment of hepatitis B virus (HBV) DNA (proof-of-concept analyte) was developed. To detect the target DNA, a signaling system consisted of biotinylated reporter oligonucleotide and HRP-streptavidin conjugate was used. The high sensitivity of the assay was due to the enhanced chemiluminescence reaction, where 3-(10′-phenothiazinyl)propane-1-sulfonate/N-morpholinopyridine pair was used as an enhancer. Under the optimized conditions the limit of detection and a working range of the assay were 3 pM and 6⁻100 pM, respectively. The assay sensitivity was 1.6 × 10⁵ RLU/pM of target. The coefficient of variation (CV) for determination of HBV DNA within the working range was lower than 6%.
Collapse
|
20
|
Bodulev OL, Gribas AV, Sakharov IY. Microplate chemiluminescent assay for HBV DNA detection using 3-(10'-phenothiazinyl)propionic acid/N-morpholinopyridine pair as enhancer of HRP-catalyzed chemiluminescence. Anal Biochem 2017; 543:33-36. [PMID: 29203136 DOI: 10.1016/j.ab.2017.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/15/2023]
Abstract
A sensitive sandwich assay for hepatitis B virus (HBV) DNA detection based on use of commercial CL-ELISA microplates was developed. To reveal the target the covalent conjugate of reporter oligonucleotide and horseradish peroxidase (HRP) was synthesized. An employment of enhanced chemiluminescence reaction, where 3-(10'-phenothiazinyl)propionic acid/N-morpholinopyridine pair was used as enhancer of HRP-catalyzed chemiluminescence, permitted to measure the enzyme activity of the conjugate with high sensitivity. Under the favorable conditions the limit of detection and a linear range of the assay were 3 pM and 0.07-2.0 nM, respectively. The coefficient of variation (CV) for determination of HBV DNA concentrations within the working range was lower than 4%. The obtained results demonstrated that the developed assay had high sensitivity and precision.
Collapse
Affiliation(s)
- Oleg L Bodulev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Moscow 119991, Russia
| | - Anastasia V Gribas
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Moscow 119991, Russia
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Moscow 119991, Russia.
| |
Collapse
|
21
|
Song KS, Nimse SB, Sonawane MD, Warkad SD, Kim T. Ultra-Sensitive NT-proBNP Quantification for Early Detection of Risk Factors Leading to Heart Failure. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2116. [PMID: 28906476 PMCID: PMC5620655 DOI: 10.3390/s17092116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 12/02/2022]
Abstract
Cardiovascular diseases such as acute myocardial infarction and heart failure accounted for the death of 17.5 million people (31% of all global deaths) in 2015. Monitoring the level of circulating N-terminal proBNP (NT-proBNP) is crucial for the detection of people at risk of heart failure. In this article, we describe a novel ultra-sensitive NT-proBNP test (us-NT-proBNP) that allows the quantification of circulating NT-proBNP in 30 min at 25 °C in the linear detection range of 7.0-600 pg/mL. It is a first report on the application of a fluorescence bead labeled detection antibody, DNA-guided detection method, and glass fiber membrane platform for the quantification of NT-proBNP in clinical samples. Limit of blank, limit of detection, and limit of quantification were 2.0 pg/mL, 3.7 pg/mL, and 7 pg/mL, respectively. The coefficient of variation was found to be less than 10% in the entire detection range of 7-600 pg/mL. The test demonstrated specificity for NT-proBNP without interferences from bilirubin, intra-lipid, biotin, and hemoglobin. The serial dilution test for plasma samples containing various NT-proBNP levels showed the linear decrement in concentration with the regression coefficient of 0.980-0.998. These results indicate that us-NT-proBNP test does not suffer from the interference of the plasma components for the measurement of NT-proBNP in clinical samples.
Collapse
Affiliation(s)
- Keum-Soo Song
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Satish Balasaheb Nimse
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Mukesh Digambar Sonawane
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Shrikant Dashrath Warkad
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Taisun Kim
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| |
Collapse
|
22
|
Anderson CE, Shah KG, Yager P. Sensitive Protein Detection and Quantification in Paper-Based Microfluidics for the Point of Care. Methods Enzymol 2017; 589:383-411. [PMID: 28336071 DOI: 10.1016/bs.mie.2017.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The design of appropriate diagnostic assays for the point of care requires development of suitable biosensors, detection methods, and diagnostic platforms for sensitive, quantitative detection of biological analytes. Protein targets in particular are especially challenging to detect quantitatively and sensitively due to the lack of amplification strategies akin to nucleic acid amplification. However, recent advances in transducer and biosensor design, new detection labels, and paper-based microfluidics may realize the goal of sensitive, fast, portable, and low-cost protein detection. In this review, we discuss the biochemistry, optics, and engineering advances that may be leveraged to design such a sensitive protein diagnostic assay. The binding kinetics, mechanisms of binding in porous networks, and potential transducers are explained in detail. We discuss the relative merits of various optical detection strategies, potential detection labels, optical readout approaches, and image-processing techniques that are amenable to point-of-care use. To conclude, we present a systematic analysis of potential approaches to enhance the sensitivity of paper-based assays. The assay development framework presented here provides bioassay developers a strategy to methodically enhance the sensitivity and point-of-care suitability of protein diagnostics.
Collapse
Affiliation(s)
| | - Kamal G Shah
- University of Washington, Seattle, WA, United States
| | - Paul Yager
- University of Washington, Seattle, WA, United States.
| |
Collapse
|
23
|
|
24
|
Alnabulsi A, Murray GI. Integrative analysis of the colorectal cancer proteome: potential clinical impact. Expert Rev Proteomics 2016; 13:917-927. [PMID: 27598033 DOI: 10.1080/14789450.2016.1233062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the common types of cancer that affects a significant proportion of the population and is a major contributor to cancer related mortality. The relatively poor survival rate of CRC could be improved through the identification of clinically useful biomarkers. Areas covered: This review highlights the need for biomarkers and discusses recent proteomics discoveries in the aspects of CRC clinical practice including diagnosis, prognosis, therapy, screening and molecular pathological epidemiology (MPE). Studies have been evaluated in relation to biomarker target, methodology, sample selection, limitations, and potential impact. Finally, the progress in proteomic approaches is briefly discussed and the main difficulties facing the translation of proteomics biomarkers into the clinical practice are highlighted. Expert commentary: The establishment of specific guidelines, best practice recommendations and the improvement in proteomic strategies will significantly improve the prospects for developing clinically useful biomarkers.
Collapse
Affiliation(s)
- Abdo Alnabulsi
- a Pathology, School of Medicine, Medical Sciences and Nutrition , University of Aberdeen , Aberdeen , UK.,b Zoology Building , Vertebrate Antibodies , Aberdeen , UK
| | - Graeme I Murray
- a Pathology, School of Medicine, Medical Sciences and Nutrition , University of Aberdeen , Aberdeen , UK
| |
Collapse
|
25
|
Spengler M, Adler M, Niemeyer CM. Highly sensitive ligand-binding assays in pre-clinical and clinical applications: immuno-PCR and other emerging techniques. Analyst 2016. [PMID: 26196036 DOI: 10.1039/c5an00822k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinant DNA technology and corresponding innovations in molecular biology, chemistry and medicine have led to novel therapeutic biomacromolecules as lead candidates in the pharmaceutical drug development pipelines. While monoclonal antibodies and other proteins provide therapeutic potential beyond the possibilities of small molecule drugs, the concomitant demand for supportive bioanalytical sample testing creates multiple novel challenges. For example, intact macromolecules can usually not be quantified by mass-spectrometry without enzymatic digestion and isotopically labeled internal standards are costly and/or difficult to prepare. Classical ELISA-type immunoassays, on the other hand, often lack the sensitivity required to obtain pharmacokinetics of low dosed drugs or pharmacodynamics of suitable biomarkers. Here we summarize emerging state-of-the-art ligand-binding assay technologies for pharmaceutical sample testing, which reveal enhanced analytical sensitivity over classical ELISA formats. We focus on immuno-PCR, which combines antibody specificity with the extremely sensitive detection of a tethered DNA marker by quantitative PCR, and alternative nucleic acid-based technologies as well as methods based on electrochemiluminescence or single-molecule counting. Using case studies, we discuss advantages and drawbacks of these methods for preclinical and clinical sample testing.
Collapse
Affiliation(s)
- Mark Spengler
- Chimera Biotec GmbH, Emil-Figge-Str. 76 A, D-44227 Dortmund, Germany.
| | | | | |
Collapse
|
26
|
Abstract
Polymerase chain reaction-amplified immunoassay (immuno-PCR, iPCR) is a method that combines the specificity of an immunological detection method and the sensitivity of a nucleic acid amplification method. In this way, immuno-PCR uses a minimum amount of sample, and allows the detection of rare diseases and those diseases in very early stage (i.e. infectious diseases, degenerative disorders, or neoplastic diseases). The present review was aimed to describe this new methodology and applications to the early detection of cancer and non-cancer related diseases, and discuss about the possibility to detect diverse biomarkers of oncology disorders, such as breast, gastric, colorectal and nasopharynx cancer, and other factors related to the growth of the neoplastic disease.
Collapse
Affiliation(s)
- Anna Luiza F V Assumpção
- a Department of Pathobiological Science, School of Veterinary Medicine , University of Wisconsin-Madison , Madison , WI , USA
| | - Rodrigo C da Silva
- b Department of Pathobiology and Population Medicine, College of Veterinary Medicine , Mississippi State University , Mississippi State , MS , USA
| |
Collapse
|
27
|
Liu M, Hui CY, Zhang Q, Gu J, Kannan B, Jahanshahi-Anbuhi S, Filipe CDM, Brennan JD, Li Y. Target-Induced and Equipment-Free DNA Amplification with a Simple Paper Device. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509389] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Meng Liu
- Departments of Biochemistry and Biomedical Sciences and Chemistry & Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Christy Y. Hui
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Qiang Zhang
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Jimmy Gu
- Departments of Biochemistry and Biomedical Sciences and Chemistry & Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Balamurali Kannan
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton ON L8S 4L7 Canada
| | - Carlos D. M. Filipe
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton ON L8S 4L7 Canada
| | - John D. Brennan
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Yingfu Li
- Departments of Biochemistry and Biomedical Sciences and Chemistry & Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| |
Collapse
|
28
|
Liu M, Hui CY, Zhang Q, Gu J, Kannan B, Jahanshahi-Anbuhi S, Filipe CDM, Brennan JD, Li Y. Target-Induced and Equipment-Free DNA Amplification with a Simple Paper Device. Angew Chem Int Ed Engl 2016; 55:2709-13. [PMID: 26748431 DOI: 10.1002/anie.201509389] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/02/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Meng Liu
- Departments of Biochemistry and Biomedical Sciences and Chemistry & Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Christy Y. Hui
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Qiang Zhang
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Jimmy Gu
- Departments of Biochemistry and Biomedical Sciences and Chemistry & Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Balamurali Kannan
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton ON L8S 4L7 Canada
| | - Carlos D. M. Filipe
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton ON L8S 4L7 Canada
| | - John D. Brennan
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Yingfu Li
- Departments of Biochemistry and Biomedical Sciences and Chemistry & Chemical Biology; McMaster University; 1280 Main Street West Hamilton ON L8S 4K1 Canada
- Biointerfaces Institute; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| |
Collapse
|
29
|
Peters G, Coussement P, Maertens J, Lammertyn J, De Mey M. Putting RNA to work: Translating RNA fundamentals into biotechnological engineering practice. Biotechnol Adv 2015; 33:1829-44. [PMID: 26514597 DOI: 10.1016/j.biotechadv.2015.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022]
Abstract
Synthetic biology, in close concert with systems biology, is revolutionizing the field of metabolic engineering by providing novel tools and technologies to rationally, in a standardized way, reroute metabolism with a view to optimally converting renewable resources into a broad range of bio-products, bio-materials and bio-energy. Increasingly, these novel synthetic biology tools are exploiting the extensive programmable nature of RNA, vis-à-vis DNA- and protein-based devices, to rationally design standardized, composable, and orthogonal parts, which can be scaled and tuned promptly and at will. This review gives an extensive overview of the recently developed parts and tools for i) modulating gene expression ii) building genetic circuits iii) detecting molecules, iv) reporting cellular processes and v) building RNA nanostructures. These parts and tools are becoming necessary armamentarium for contemporary metabolic engineering. Furthermore, the design criteria, technological challenges, and recent metabolic engineering success stories of the use of RNA devices are highlighted. Finally, the future trends in transforming metabolism through RNA engineering are critically evaluated and summarized.
Collapse
Affiliation(s)
- Gert Peters
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Pieter Coussement
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jeroen Lammertyn
- BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Louvain, Belgium
| | - Marjan De Mey
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
30
|
Dixon AR, Bathany C, Tsuei M, White J, Barald KF, Takayama S. Recent developments in multiplexing techniques for immunohistochemistry. Expert Rev Mol Diagn 2015; 15:1171-86. [PMID: 26289603 PMCID: PMC4810438 DOI: 10.1586/14737159.2015.1069182] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Methods to detect immunolabeled molecules at increasingly higher resolutions, even when present at low levels, are revolutionizing immunohistochemistry (IHC). These technologies can be valuable for the management and examination of rare patient tissue specimens, and for improved accuracy of early disease detection. The purpose of this article is to highlight recent multiplexing methods that are candidates for more prevalent use in clinical research and potential translation to the clinic. Multiplex IHC methods, which permit identification of at least 3 and up to 30 discrete antigens, have been divided into whole-section staining and spatially-patterned staining categories. Associated signal enhancement technologies that can enhance performance and throughput of multiplex IHC assays are also discussed. Each multiplex IHC technique, detailed herein, is associated with several advantages as well as tradeoffs that must be taken into consideration for proper evaluation and use of the methods.
Collapse
Affiliation(s)
- Angela R Dixon
- Biomedical Engineering Department, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cell and Developmental Biology Department, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cédric Bathany
- Biomedical Engineering Department, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea
| | - Michael Tsuei
- Biomedical Engineering Department, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joshua White
- Biomedical Engineering Department, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kate F Barald
- Biomedical Engineering Department, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cell and Developmental Biology Department, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shuichi Takayama
- Biomedical Engineering Department, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Macromolecular Science and Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
31
|
Fischer SK, Joyce A, Spengler M, Yang TY, Zhuang Y, Fjording MS, Mikulskis A. Emerging technologies to increase ligand binding assay sensitivity. AAPS JOURNAL 2014; 17:93-101. [PMID: 25331105 DOI: 10.1208/s12248-014-9682-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/02/2014] [Indexed: 02/07/2023]
Abstract
Ligand binding assays (LBAs) have been the method of choice for protein analyte measurements for more than four decades. Over the years, LBA methods have improved in sensitivity and achieved larger dynamic ranges by using alternative detection systems and new technologies. As a consequence, the landscape and application of immunoassay platforms has changed dramatically. The introduction of bead-based methods, coupled with single molecule detection standardization and the ability to amplify assay signals, has improved the sensitivity of many immunoassays, in some cases by several logs of magnitude. Three promising immunoassay platforms are described in this article: Single Molecule Counting (SMC™) from Singulex Inc, Single Molecule Arrays (Simoa™) from Quanterix Corporation, and Immuno-PCR (Imperacer®) from Chimera Biotec GmbH. These platforms have the potential to significantly improve immunoassay sensitivity and thereby address the bioanalytical needs and challenges faced during biopharmaceutical drug development.
Collapse
Affiliation(s)
- Saloumeh K Fischer
- Department of BioAnalytical Sciences, Genentech, 1 DNA Way, South San Francisco, California, 94080-4990, USA,
| | | | | | | | | | | | | |
Collapse
|
32
|
Tus-Ter-lock immuno-PCR assays for the sensitive detection of tropomyosin-specific IgE antibodies. Bioanalysis 2014; 6:465-76. [PMID: 24568350 DOI: 10.4155/bio.13.315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The increasing prevalence of food allergies requires development of specific and sensitive tests capable of identifying the allergen responsible for the disease. The development of serologic tests that can detect specific IgE antibodies to allergenic proteins would, therefore, be highly received. RESULTS Here we present two new quantitative immuno-PCR assays for the sensitive detection of antibodies specific to the shrimp allergen tropomyosin. Both assays are based on the self-assembling Tus-Ter-lock protein-DNA conjugation system. Significantly elevated levels of tropomyosin-specific IgE were detected in sera from patients allergic to shrimp. CONCLUSION This is the first time an allergenic protein has been fused with Tus to enable specific IgE antibody detection in human sera by quantitative immuno-PCR.
Collapse
|
33
|
Takahashi S, Watahiki R, Tomida K, Wang B, Anzai JI. Voltammetric Studies on Gold Electrodes Coated with Chitosan-Containing Layer-by-Layer Films. MATERIALS (BASEL, SWITZERLAND) 2013; 6:5427-5439. [PMID: 28788399 PMCID: PMC5452795 DOI: 10.3390/ma6115427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/11/2013] [Accepted: 11/15/2013] [Indexed: 11/29/2022]
Abstract
Gold (Au) electrodes coated with layer-by-layer (LbL) thin films composed of chitosan (CHI) were prepared to evaluate the redox properties of hexaammine ruthenium ions, Ru(NH₃)₆3+, and ferricyanide ions, Fe(CN)₆3- LbL films were prepared on an Au electrode by electrostatic LbL deposition using polycationic CHI and poly(vinyl sulfate) (PVS) or poly(acrylic acid) (PAA) as anionic component. Redox peak current in cyclic voltammetry of Ru(NH₃)₆3+ on the CHI/PVS and CHI/PAA film-coated electrodes increased with increasing thickness of the films. Interestingly, the cyclic voltammograms showed two pair of redox peaks, originating from Ru(NH₃)₆3+ diffusing across the LbL layers and from those confined in the film. The results were rationalized in terms of the electrostatic interactions between Ru(NH₃)₆3+ and excess negative charges in the LbL films originating from PVS and PAA. In contrast, Fe(CN)₆3- was not confined in the LbL films due to electrostatic repulsion of Fe(CN)₆3- and excess negative charges. Significant amounts of Ru(NH₃)₆3+ were confined in the films at pH 7.0, whereas few ions were bound at pH 3.0 due to the reduced net negative charge in the films. The results suggest a potential use of the CHI-containing LbL films as scaffold for immobilizing positively charged ionic species on the electrode surface.
Collapse
Affiliation(s)
- Shigehiro Takahashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Ryota Watahiki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Kohji Tomida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Baozhen Wang
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 WenhuaXilu, Jinan, Shandong 250012, China.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
34
|
Pourhassan-Moghaddam M, Rahmati-Yamchi M, Akbarzadeh A, Daraee H, Nejati-Koshki K, Hanifehpour Y, Joo SW. Protein detection through different platforms of immuno-loop-mediated isothermal amplification. NANOSCALE RESEARCH LETTERS 2013; 8:485. [PMID: 24237767 PMCID: PMC3835475 DOI: 10.1186/1556-276x-8-485] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/05/2013] [Indexed: 05/14/2023]
Abstract
Different immunoassay-based methods have been devised to detect protein targets. These methods have some challenges that make them inefficient for assaying ultra-low-amounted proteins. ELISA, iPCR, iRCA, and iNASBA are the common immunoassay-based methods of protein detection, each of which has specific and common technical challenges making it necessary to introduce a novel method in order to avoid their problems for detection of target proteins. Here we propose a new method nominated as 'immuno-loop-mediated isothermal amplification' or 'iLAMP'. This new method is free from the problems of the previous methods and has significant advantages over them. In this paper we also offer various configurations in order to improve the applicability of this method in real-world sample analyses. Important potential applications of this method are stated as well.
Collapse
Affiliation(s)
- Mohammad Pourhassan-Moghaddam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656, Iran
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Mohammad Rahmati-Yamchi
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 51656, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656, Iran
| | - Hadis Daraee
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656, Iran
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kazem Nejati-Koshki
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51656, Iran
| | - Younes Hanifehpour
- School of Mechanical Engineering, WCU Nanoresearch Center, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, WCU Nanoresearch Center, Yeungnam University, Gyeongsan 712-749, South Korea
| |
Collapse
|