1
|
Li Y, Wang X, Wang X, Qin Z, Li C, Yang J, Cao M. Electrochemical biosensor based on composite of gold nanoparticle/reduced-graphene oxide/graphitic carbon nitride and a caprolactone polymer for highly sensitive detection of CEA. Bioelectrochemistry 2025; 163:108897. [PMID: 39764934 DOI: 10.1016/j.bioelechem.2024.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 02/12/2025]
Abstract
Carcinoembryonic antigen (CEA) is a broad-spectrum biomarker, and its accurate detection and analysis is important for early clinical diagnosis and treatment. This study aimed to develop a highly sensitive and selective sandwich-type immunosensor based on electrochemical impedance spectroscopy (EIS) for the accurate detection of CEA. A novel composite material, gold nanoparticle/reduced-graphene oxide/graphitic carbon nitride (AuNPs/rGO/g-C3N4), was synthesized with excellent electrical conductivity and a large specific surface area to immobilize biological probes. And ab1-CEA-ab2 formed a sandwich structure of 'antibody-antigen-antibody', which ensured the high selectivity of the biosensor. Furthermore, the introduction of caprolactone polymer (DMPA-PCL) significantly amplifies the impedance signal and improves the sensitivity of the analytical method. Scanning electron microscopy, x-ray diffraction, transmission electron microscopy Fourier transform infrared spectroscopy, and ultraviolet-visible spectrophotometry were used to characterise the prepared AuNPs/rGO/g-C3N4 and DMPA-PCL. Under the optimal conditions, the sensor showed good analytical performance for the detection of CEA with a linear range of 100 fg mL-1-100 ng mL-1 and a detection limit of 83.2 fg mL-1. And the sandwich-type immunosensor showed good selectivity and stability for the recognition of CEA in real samples.
Collapse
Affiliation(s)
- Yunpeng Li
- Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Xia Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| | - Xinling Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| | - Zhe Qin
- Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Chong Li
- Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Jing Yang
- Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Mengmeng Cao
- Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| |
Collapse
|
2
|
Mollarasouli F, Bahrani S, Amrollahimiyandeh Y, Paimard G. Nanomaterials-based immunosensors for avian influenza virus detection. Talanta 2024; 279:126591. [PMID: 39059066 DOI: 10.1016/j.talanta.2024.126591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Avian influenza viruses (AIV) are capable of infecting a considerable proportion of the world's population each year, leading to severe epidemics with high rates of morbidity and mortality. The methods now used to diagnose influenza virus A include the Western blot test (WB), hemagglutination inhibition (HI), and enzyme-linked immunosorbent assays (ELISAs). But because of their labor-intensiveness, lengthy procedures, need for costly equipment, and inexperienced staff, these approaches are considered inappropriate. The present review elucidates the recent advancements in the field of avian influenza detection through the utilization of nanomaterials-based immunosensors between 2014 and 2024. The classification of detection techniques has been taken into account to provide a comprehensive overview of the literature. The review encompasses a detailed illustration of the commonly employed detection mechanisms in immunosensors, namely, colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), electrochemical detection, quartz crystal microbalance (QCM) piezoelectric, and field-effect transistor (FET). Furthermore, the challenges and future prospects for the immunosensors have been deliberated upon. The present review aims to enhance the understanding of immunosensors-based sensing platforms for virus detection and to stimulate the development of novel immunosensors by providing novel ideas and inspirations. Therefore, the aim of this paper is to provide an updated information about biosensors, as a recent detection technique of influenza with its details regarding the various types of biosensors, which can be used for this review.
Collapse
Affiliation(s)
| | - Sonia Bahrani
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yousef Amrollahimiyandeh
- Borjobaru Fars Company, Nanotechnology Department, Fars Science and Technology Park, Shiraz, 7197687811, Iran
| | - Giti Paimard
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, State Key Laboratory of Ophthalmology Optometry, and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
3
|
Ghaedamini H, Khalaf K, Kim DS, Tang Y. A novel ACE2-Based electrochemical biosensor for sensitive detection of SARS-CoV-2. Anal Biochem 2024; 689:115504. [PMID: 38458306 DOI: 10.1016/j.ab.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
SARS-CoV-2 emerged in late 2019 and quickly spread globally, resulting in significant morbidity, mortality, and socio-economic disruptions. As of now, collaborative global efforts in vaccination and the advent of novel diagnostic tools have considerably curbed the spread and impact of the virus in many regions. Despite this progress, the demand remains for low-cost, accurate, rapid and scalable diagnostic tools to reduce the influence of SARS-CoV-2. Herein, the angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2, was immobilized on two types of electrodes, a screen-printed gold electrode (SPGE) and a screen-printed carbon electrode (SPCE), to develop electrochemical biosensors for detecting SARS-CoV-2 with high sensitivity and selectivity. This was achieved by using 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) and aryl diazonium salt serving as linkers for SPGEs and SPCEs, respectively. Once SARS-CoV-2 was anchored onto the ACE2, the interaction of the virus with the redox probe was analyzed using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Aryl diazonium salt was observed as a superior linker compared to PFDT due to its consistent performance in the modification of the SPCEs and effective ACE2 enzyme immobilization. A distinct pair of redox peaks in the cyclic voltammogram of the biosensor modified with aryl diazonium salt highlighted the redox reaction between the functional groups of SARS-CoV-2 and the redox probe. The sensor presented a linear relationship between the redox response and the logarithm of SARS-CoV-2 concentration, with a detection limit of 1.02 × 106 TCID50/mL (50% tissue culture infectious dose). Furthermore, the biosensor showed remarkable selectivity towards SARS-CoV-2 over H1N1virus.
Collapse
Affiliation(s)
| | - Khalid Khalaf
- Department of Bioengineering, University of Toledo, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, USA
| | - Yuan Tang
- Department of Bioengineering, University of Toledo, USA.
| |
Collapse
|
4
|
Fernández Blanco A, Hernández Pérez M, Moreno Trigos Y, García-Hernández J. Development of Optical Label-Free Biosensor Method in Detection of Listeria monocytogenes from Food. SENSORS (BASEL, SWITZERLAND) 2023; 23:5570. [PMID: 37420736 DOI: 10.3390/s23125570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
The present work describes an alternative method for detecting and identifying Listeria monocytogenes in food samples by developing a nanophotonic biosensor containing bioreceptors and optical transducers. The development of photonic sensors for the detection of pathogens in the food industry involves the implementation of procedures for selecting probes against the antigens of interest and the functionalization of the sensor surfaces on which the said bioreceptors are located. As a previous step to functionalizing the biosensor, an immobilization control of these antibodies on silicon nitride surfaces was carried out to check the effectiveness of in plane immobilization. On the one hand, it was observed that a Listeria monocytogenes-specific polyclonal antibody has a greater binding capacity to the antigen at a wide range of concentrations. A Listeria monocytogenes monoclonal antibody is more specific and has a greater binding capacity only at low concentrations. An assay for evaluating selected antibodies against particular antigens of Listeria monocytogenes bacteria was designed to determine the binding specificity of each probe using the indirect ELISA detection technique. In addition, a validation method was established against the reference method for many replicates belonging to different batches of meat-detectable samples, with a medium and pre-enrichment time that allowed optimal recovery of the target microorganism. Moreover, no cross-reactivity with other nontarget bacteria was observed. Thus, this system is a simple, highly sensitive, and accurate platform for L. monocytogenes detection.
Collapse
Affiliation(s)
| | - Manuel Hernández Pérez
- Centro Avanzado de Microbiología de Alimentos, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Yolanda Moreno Trigos
- Instituto de Ingeniería de Agua y del Medioambiente, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
5
|
Huerta-Miranda GA, García-García WI, Vidal-Limon A, Miranda-Hernández M. Use of simplified models for theoretical prediction of the interactions between available antibodies and the receptor-binding domain of SARS-CoV-2 spike protein. J Biomol Struct Dyn 2023; 41:1018-1027. [PMID: 34935602 DOI: 10.1080/07391102.2021.2019123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The negative impact of infectious diseases like COVID-19 on public health and the global economy is evident. This pandemic represents a significant challenge for the scientific community to develop new practical analytical methods for accurately diagnosing emerging cases. Due to their selectivity and sensitivity, new methodologies based on antigen/antibody interactions to detect COVID-19 biomarkers are necessary. In this context, the theoretical, computational modeling reduces experimental efforts and saves resources for rational biosensor design. This study proposes using molecular dynamics to predict the interactions between the Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein simplified model and a set of highly characterized antibodies. The binding free energy of the antigen/antibody complexes was calculated for the simplified models and compared against the complete SARS-CoV-2 ectodomain to validate the methodology. The structural data derived from our molecular dynamics and end-point free energy calculations showed a positive correlation between both approximations, with a 0.82 Pearson correlation coefficient; t = 3.661, df = 3, p-value = 0.03522, with a 95% confident interval. Furthermore, we identified the interfacial residues that could generate covalent bonds with a specific chemical surface without perturbing the binding dynamics to develop highly sensitive and specific diagnostic devices. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G A Huerta-Miranda
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México
| | - W I García-García
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México
| | - A Vidal-Limon
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México
| | - M Miranda-Hernández
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México
| |
Collapse
|
6
|
Dkhar DS, Kumari R, Mahapatra S, Divya, Kumar R, Tripathi T, Chandra P. Antibody-receptor bioengineering and its implications in designing bioelectronic devices. Int J Biol Macromol 2022; 218:225-242. [PMID: 35870626 DOI: 10.1016/j.ijbiomac.2022.07.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Antibodies play a crucial role in the defense mechanism countering pathogens or foreign antigens in eukaryotes. Its potential as an analytical and diagnostic tool has been exploited for over a century. It forms immunocomplexes with a specific antigen, which is the basis of immunoassays and aids in developing potent biosensors. Antibody-based sensors allow for the quick and accurate detection of various analytes. Though classical antibodies have prolonged been used as bioreceptors in biosensors fabrication due to their increased fragility, they have been engineered into more stable fragments with increased exposure of their antigen-binding sites in the recent era. In biosensing, the formats constructed by antibody engineering can enhance the signal since the resistance offered by a conventional antibody is much more than these fragments. Hence, signal amplification can be observed when antibody fragments are utilized as bioreceptors instead of full-length antibodies. We present the first systematic review on engineered antibodies as bioreceptors with the description of their engineering methods. The detection of various target analytes, including small molecules, macromolecules, and cells using antibody-based biosensors, has been discussed. A comparison of the classical polyclonal, monoclonal, and engineered antibodies as bioreceptors to construct highly accurate, sensitive, and specific sensors is also discussed.
Collapse
Affiliation(s)
- Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rahul Kumar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India.
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
7
|
Lee D, Bhardwaj J, Jang J. Paper-based electrochemical immunosensor for label-free detection of multiple avian influenza virus antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. Sci Rep 2022; 12:2311. [PMID: 35145121 PMCID: PMC8831593 DOI: 10.1038/s41598-022-06101-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Many studies have been conducted on measuring avian influenza viruses and their hemagglutinin (HA) antigens via electrochemical principles; most of these studies have used gold electrodes on ceramic, glass, or silicon substrates, and/or labeling for signal enhancement. Herein, we present a paper-based immunosensor for label-free measurement of multiple avian influenza virus (H5N1, H7N9, and H9N2) antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. These flexible electrodes on a paper substrate can complement the physical weakness of the paper-based sensors when wetted, without affecting flexibility. The relative standard deviation of the peak currents was 1.88% when the electrodes were repeatedly bent and unfolded twenty times with deionized water provided each cycle, showing the stability of the electrodes. For the detection of HA antigens, approximately 10-μl samples (concentration: 100 pg/ml–100 ng/ml) were needed to form the antigen–antibody complexes during 20–30 min incubation, and the immune responses were measured via differential pulse voltammetry. The limits of detections were 55.7 pg/ml (0.95 pM) for H5N1 HA, 99.6 pg/ml (1.69 pM) for H7N9 HA, and 54.0 pg/ml (0.72 pM) for H9N2 HA antigens in phosphate buffered saline, and the sensors showed good selectivity and reproducibility. Such paper-based sensors are economical, flexible, robust, and easy-to-manufacture, with the ability to detect several avian influenza viruses.
Collapse
Affiliation(s)
- Daesoon Lee
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jyoti Bhardwaj
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaesung Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea. .,Department of Urban and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
8
|
Khoris IM, Ganganboina AB, Suzuki T, Park EY. Self-assembled chromogen-loaded polymeric cocoon for respiratory virus detection. NANOSCALE 2021; 13:388-396. [PMID: 33351018 DOI: 10.1039/d0nr06893d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Inspired by the self-assembly approach, in this work, the chromogen, 3,3',5,5'-tetramethylbenzidine (TMB), was successfully co-precipitated in aqueous solution to form collective nanoparticles (NPs) of signal molecules (TMB-NPs). Utilizing poly(lactide-co-glycolide) (PLGA) in the molecular delivery approach, the formed emulsion nanovesicle (TMB-NPs@PLGA) exhibits an enrichment of the collective signal molecules in a single antibody-antigen conjugation. A specific antibody-conjugated TMB-NPs@PLGA forms an immunocomplex sandwich structure upon the addition of influenza virus (IV)/A. The addition of dimethyl sulfoxide (DMSO) dissolves the PLGA nanovesicles, releasing the encapsulated TMB-NPs. Sequentially, the TMB-NPs release TMB molecules upon the addition of DMSO. The released TMB is catalytically oxidized by H2O2 with self-assembled protein-inorganic nanoflowers, where copper nanoflowers (CuNFs) acted as the nanozyme. The developed immunoassay demonstrates high sensitivity for IV/A with a limit of detection (LOD) as low as 32.37 fg mL-1 and 54.97 fg mL-1 in buffer and serum, respectively. For practical needs, a clinically isolated IV/A/H3N2 and spike protein of SARS-CoV-2 were detected with the LODs of 17 pfu mL-1 and 143 fg mL-1, respectively. These results show the applicability of the advanced TMB-NPs@PLGA-based colorimetric sensor for the highly sensitive detection of airborne respiratory viruses.
Collapse
Affiliation(s)
- Indra Memdi Khoris
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | | | | | | |
Collapse
|
9
|
Malecka K, Kaur B, Cristaldi DA, Chay CS, Mames I, Radecka H, Radecki J, Stulz E. Silver or gold? A comparison of nanoparticle modified electrochemical genosensors based on cobalt porphyrin-DNA. Bioelectrochemistry 2020; 138:107723. [PMID: 33360955 DOI: 10.1016/j.bioelechem.2020.107723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/18/2022]
Abstract
We applied a cobalt-porphyrin modified DNA as electrochemical marker, which was attached to nanoparticles, to detect specific DNA sequences. We compare the performance of gold and silver NPs in oligonucleotide sensors to determine if a change in metal will lead to either higher sensitivity or different selectivity, based on the redox behaviour of silver vs. gold. Surprisingly, we find that using either gold or silver NPs yields very similar overall performance. The electrochemical measurements of both types of sensors show the same redox behaviour which is dominated by the cobalt porphyrin, indicating that the electron pathway does not include the NP, but there is direct electron transfer between the porphyrin and the electrode. Both sensors show a linear response in the range of 5 × 10-17-1 × 10-16 M; the limit of detection (LOD) is 3.8 × 10-18 M for the AuNP sensor, and 5.0 × 10-18 M for the AgNP sensor, respectively, which corresponds to the detection of about 20-50 DNA molecules in the analyte. Overall, the silver system results in a better DNA economy and using cheaper starting materials for the NPs, thus shows better cost-effectivness and could be more suitable for the mass-production of highly sensitive DNA sensors.
Collapse
Affiliation(s)
- Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Balwinder Kaur
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - D Andrea Cristaldi
- School of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Clarissa S Chay
- School of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Iwona Mames
- School of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Eugen Stulz
- School of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| |
Collapse
|
10
|
Jalandra R, Yadav AK, Verma D, Dalal N, Sharma M, Singh R, Kumar A, Solanki PR. Strategies and perspectives to develop SARS-CoV-2 detection methods and diagnostics. Biomed Pharmacother 2020; 129:110446. [PMID: 32768943 PMCID: PMC7303646 DOI: 10.1016/j.biopha.2020.110446] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
To develop diagnostics and detection methods, current research is focussed on targeting the detection of coronavirus based on its RNA. Besides the RNA target, research reports are coming to develop diagnostics by targeting structure and other parts of coronavirus. PCR based detection system is widely used and various improvements in the PCR based detection system can be seen in the recent research reports. This review will discuss multiple detection methods for coronavirus for developing appropriate, reliable, and fast alternative techniques. Considering the current scenario of COVID-19 diagnostics around the world and an urgent need for the development of reliable and cheap diagnostic, various techniques based on CRISPR technology, antibody, MIP, LAMP, microarray, etc. should be discussed and tried.
Collapse
Affiliation(s)
- Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India; Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Amit K Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Damini Verma
- Amity Institute of Applied Sciences, Amity University, Uttar Pradesh, 201313, India
| | - Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India; Department of Environmental Science, Satyawati College, Delhi University, New Delhi, 110052, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rajeev Singh
- Department of Environmental Science, Satyawati College, Delhi University, New Delhi, 110052, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Kanyong P, Patil AV, Davis JJ. Functional Molecular Interfaces for Impedance-Based Diagnostics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:183-200. [PMID: 32531184 DOI: 10.1146/annurev-anchem-061318-115600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In seeking to develop and optimize reagentless electroanalytical assays, a consideration of the transducing interface features lies key to any subsequent sensitivity and selectivity. This review briefly summarizes some of the most commonly used receptive interfaces that have been employed within the development of impedimetric molecular sensors. We discuss the use of high surface area carbon, nanoparticles, and a range of bioreceptors that can subsequently be integrated. The review spans the most commonly utilized biorecognition elements, such as antibodies, antibody fragments, aptamers, and nucleic acids, and touches on some novel emerging alternatives such as nanofragments, molecularly imprinted polymers, and bacteriophages. Reference is made to the immobilization chemistries available along with a consideration of both optimal packing density and recognition probe orientation. We also discuss assay-relevant mechanistic details and applications in real sample analysis.
Collapse
Affiliation(s)
- Prosper Kanyong
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Amol V Patil
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Jason J Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| |
Collapse
|
12
|
Nasrin F, Chowdhury AD, Takemura K, Kozaki I, Honda H, Adegoke O, Park EY. Fluorometric virus detection platform using quantum dots-gold nanocomposites optimizing the linker length variation. Anal Chim Acta 2020; 1109:148-157. [PMID: 32252898 DOI: 10.1016/j.aca.2020.02.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/24/2023]
Abstract
In this study, a tunable biosensor using the localized surface plasmon resonance (LSPR), controlling the distance between fluorescent CdZnSeS/ZnSeS quantum dots (QDs) and gold nanoparticles (AuNPs) has been developed for the detection of virus. The distance between the AuNPs and QDs has been controlled by a linkage with a peptide chain of 18 amino acids. In the optimized condition, the fluorescent properties of the QDs have been enhanced due to the surface plasmon effect of the adjacent AuNPs. Successive virus binding on the peptide chain induces steric hindrance on the LSPR behavior and the fluorescence of QDs has been quenched. After analyzing all the possible aspect of the CdZnSeS/ZnSeS QD-peptide-AuNP nanocomposites, we have detected different concentration of influenza virus in a linear range of 10-14 to 10-9 g mL-1 with detection limit of 17.02 fg mL-1. On the basis of the obtained results, this proposed biosensor can be a good alternative for the detection of infectious viruses in the various range of sensing application.
Collapse
Affiliation(s)
- Fahmida Nasrin
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Ankan Dutta Chowdhury
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Kenshin Takemura
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Ikko Kozaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Oluwasesan Adegoke
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Enoch Y Park
- Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
13
|
Shenbagavalli K, Yadav SK, Ananthappan P, Sundaram E, Ponmariappan S, Vasantha VS. A simple and fast protocol for the synthesis of 2-amino-4-(4-formylphenyl)-4 H-chromene-3-carbonitrile to develop an optical immunoassay for the quantification of botulinum neurotoxin type F. NEW J CHEM 2020. [DOI: 10.1039/d0nj04103c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, a novel optical immunoassay platform using (S)-2-amino-4-(4-formylphenyl)-4H-chromene-3-carbonitrile, which was synthesized by an ultra-sonication method, as an optical probe.
Collapse
Affiliation(s)
| | - Shiv Kumar Yadav
- Defence Research and Development Establishment
- Gwalior-474 002
- India
| | | | - Ellairaja Sundaram
- Department of Chemistry
- Vivekanada College Tiruvedakam West
- Madurai 625 234
- India
| | | | | |
Collapse
|
14
|
|
15
|
Xiao Q, Bi Z, Yao L, Lei J, Yan Y, Zhou J, Yan L. Novel protein microarray for the detection of avian influenza virus antibodies and simultaneous distinction of antibodies against H5 and H7 subtypes. Avian Pathol 2019; 48:528-536. [PMID: 31232095 DOI: 10.1080/03079457.2019.1634791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Avian influenza virus (AIV) can cause serious zoonotic disease, thereby threatening the poultry industry and human health. An efficient and rapid detection approach is crucial to prevent and control the spread of avian influenza. In this study, a novel protein microarray was developed. Haemagglutinin proteins of H5 and H7 subtypes and nucleoprotein (NP) were purified and spotted onto the initiator-integrated poly-(dimethylsiloxane) as antigens. Monoclonal antibodies with inhibition effect were screened and utilized for the synchronous detection of three avian influenza antibodies in different species. In the protein microarray, the cut-off values were 40%, 50% and 30% inhibition for H5 antibody detection; 50%, 50% and 20% for NP antibody detection; 40%, 50% and 40% for H7 antibody detection in chicken, peacock and duck sera, respectively. The 95 serum samples were detected by microarray, and results were compared with the findings of AIV antibody test enzyme-linked immunosorbent assay (ELISA) or haemagglutination inhibition (HI) test. NP antibody detection in the microarray showed 100% (55/55) agreement ratio in chicken using ELISA. Compared with HI, H5 antibody detection in the microarray showed 100% (95/95) agreement ratio in chicken, peacock and duck, whilst those of H7 displayed 98.18% (54/55) agreement in chicken, 100% (20/20) in peacock and 90% (18/20) in duck. In conclusion, this novel protein microarray is a high-throughput and specific method for the detection of AIV antibodies and simultaneous distinction of antibodies against H5 and H7 subtypes. It can be applied to the serological diagnosis and epidemiological investigation of AIV. RESEARCH HIGHLIGHTS A novel protein microarray method has been developed. The microarray can detect AIV antibodies and distinguish between H5 and H7 subtypes. The study lays the foundation for simultaneous identification of multiple pathogens.
Collapse
Affiliation(s)
- Qian Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Zhenwei Bi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Lu Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Jing Lei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| | - Yan Yan
- Key Laboratory of Animal Virology and Department of Veterinary Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology and Department of Veterinary Medicine, Zhejiang University , Hangzhou , People's Republic of China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , People's Republic of China
| |
Collapse
|
16
|
Spain E, Carrara S, Adamson K, Ma H, O’Kennedy R, De Cola L, Forster RJ. Cardiac Troponin I: Ultrasensitive Detection Using Faradaic Electrochemical Impedance. ACS OMEGA 2018; 3:17116-17124. [PMID: 31458332 PMCID: PMC6643842 DOI: 10.1021/acsomega.8b01758] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/27/2018] [Indexed: 06/10/2023]
Abstract
An electrochemical biosensor for the detection of cardiac troponin I, cTnI, an important cardiac biomarker, is described. A combination of a novel monoclonal antibody, mAb20B3, and a novel Ir(III)-based metal complex was used for detection using faradaic electrochemical impedance spectroscopy. A limit of detection of 10 ag/mL was achieved, which is significantly lower than established assays. The ability to detect these ultralow concentrations enables rapid and early stage detection of cardiac events and opens up the possibility of developing a point-of-care device.
Collapse
Affiliation(s)
- Elaine Spain
- National
Centre for Sensor Research and School of Biotechnology, Dublin City University, Collins Avenue, D09 Y5N0, 9 Dublin, Ireland
| | - Serena Carrara
- Universitè
de Strasbourg, CNRS, ISIS & icFRC, 8 Allée Gaspard Monge, 67083 Strasbourg, France
| | - Kellie Adamson
- National
Centre for Sensor Research and School of Biotechnology, Dublin City University, Collins Avenue, D09 Y5N0, 9 Dublin, Ireland
- School
of Chemistry, National University of Ireland
Galway, H91 TK33 Galway, Ireland
| | - Hui Ma
- National
Centre for Sensor Research and School of Biotechnology, Dublin City University, Collins Avenue, D09 Y5N0, 9 Dublin, Ireland
| | - Richard O’Kennedy
- National
Centre for Sensor Research and School of Biotechnology, Dublin City University, Collins Avenue, D09 Y5N0, 9 Dublin, Ireland
- Qatar
Biomedical Research Institute, Hamad Bin
Khalifa University, Doha, Qatar
| | - Luisa De Cola
- Universitè
de Strasbourg, CNRS, ISIS & icFRC, 8 Allée Gaspard Monge, 67083 Strasbourg, France
| | - Robert J. Forster
- National
Centre for Sensor Research and School of Biotechnology, Dublin City University, Collins Avenue, D09 Y5N0, 9 Dublin, Ireland
| |
Collapse
|
17
|
Lee T, Ahn JH, Park SY, Kim GH, Kim J, Kim TH, Nam I, Park C, Lee MH. Recent Advances in AIV Biosensors Composed of Nanobio Hybrid Material. MICROMACHINES 2018; 9:E651. [PMID: 30544883 PMCID: PMC6316213 DOI: 10.3390/mi9120651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 11/17/2022]
Abstract
Since the beginning of the 2000s, globalization has accelerated because of the development of transportation systems that allow for human and material exchanges throughout the world. However, this globalization has brought with it the rise of various pathogenic viral agents, such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus, and Dengue virus. In particular, avian influenza virus (AIV) is highly infectious and causes economic, health, ethnical, and social problems to human beings, which has necessitated the development of an ultrasensitive and selective rapid-detection system of AIV. To prevent the damage associated with the spread of AIV, early detection and adequate treatment of AIV is key. There are traditional techniques that have been used to detect AIV in chickens, ducks, humans, and other living organisms. However, the development of a technique that allows for the more rapid diagnosis of AIV is still necessary. To achieve this goal, the present article reviews the use of an AIV biosensor employing nanobio hybrid materials to enhance the sensitivity and selectivity of the technique while also reducing the detection time and high-throughput process time. This review mainly focused on four techniques: the electrochemical detection system, electrical detection method, optical detection methods based on localized surface plasmon resonance, and fluorescence.
Collapse
Affiliation(s)
- Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Jae-Hyuk Ahn
- Department of Electronic Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Sun Yong Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Ga-Hyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Jeonghyun Kim
- Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Inho Nam
- Division of Chemistry & Bio-Environmental Sciences, Seoul Women's University, Seoul 01797, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
18
|
Jiang P, Wang Y, Zhao L, Ji C, Chen D, Nie L. Applications of Gold Nanoparticles in Non-Optical Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E977. [PMID: 30486293 PMCID: PMC6315477 DOI: 10.3390/nano8120977] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
Abstract
Due to their unique properties, such as good biocompatibility, excellent conductivity, effective catalysis, high density, and high surface-to-volume ratio, gold nanoparticles (AuNPs) are widely used in the field of bioassay. Mainly, AuNPs used in optical biosensors have been described in some reviews. In this review, we highlight recent advances in AuNP-based non-optical bioassays, including piezoelectric biosensor, electrochemical biosensor, and inductively coupled plasma mass spectrometry (ICP-MS) bio-detection. Some representative examples are presented to illustrate the effect of AuNPs in non-optical bioassay and the mechanisms of AuNPs in improving detection performances are described. Finally, the review summarizes the future prospects of AuNPs in non-optical biosensors.
Collapse
Affiliation(s)
- Pengfei Jiang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Yulin Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Lan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Chenyang Ji
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| | - Dongchu Chen
- School of Material Science and Energy Engineering, Foshan University, Foshan 528000, China.
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
19
|
Chiriacò MS, Parlangeli I, Sirsi F, Poltronieri P, Primiceri E. Impedance Sensing Platform for Detection of the Food Pathogen Listeria monocytogenes. ELECTRONICS 2018; 7:347. [DOI: 10.3390/electronics7120347] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A great improvement in food safety and quality controls worldwide has been achieved through the development of biosensing platforms. Foodborne pathogens continue to cause serious outbreaks, due to the ingestion of contaminated food. The development of new, sensitive, portable, high-throughput, and automated platforms is a primary objective to allow detection of pathogens and their toxins in foods. Listeria monocytogenes is one common foodborne pathogen. Major outbreaks of listeriosis have been caused by a variety of foods, including milk, soft cheeses, meat, fermented sausages, poultry, seafood and vegetable products. Due to its high sensitivity and easy setup, electrochemical impedance spectroscopy (EIS) has been extensively applied for biosensor fabrication and in particular in the field of microbiology as a mean to detect and quantify foodborne bacteria. Here we describe a miniaturized, portable EIS platform consisting of a microfluidic device with EIS sensors for the detection of L. monocytogenes in milk samples, connected to a portable impedance analyzer for on-field application in clinical and food diagnostics, but also for biosecurity purposes. To achieve this goal microelectrodes were functionalized with antibodies specific for L. monocytogenes. The binding and detection of L. monocytogenes was achieved in the range 2.2 × 103 cfu/mL to 1 × 102 with a Limit of Detection (LoD) of 5.5 cfu/mL.
Collapse
Affiliation(s)
| | | | - Fausto Sirsi
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Palmiro Poltronieri
- CNR-ISPA, Istituto di Scienze delle Produzioni Alimentari-Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | | |
Collapse
|
20
|
Astill J, Dara RA, Fraser EDG, Sharif S. Detecting and Predicting Emerging Disease in Poultry With the Implementation of New Technologies and Big Data: A Focus on Avian Influenza Virus. Front Vet Sci 2018; 5:263. [PMID: 30425995 PMCID: PMC6218608 DOI: 10.3389/fvets.2018.00263] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/02/2018] [Indexed: 01/24/2023] Open
Abstract
Future demands for food will place agricultural systems under pressure to increase production. Poultry is accepted as a good source of protein and the poultry industry will be forced to intensify production in many countries, leading to greater numbers of farms that house birds at elevated densities. Increasing farmed poultry can facilitate enhanced transmission of infectious pathogens among birds, such as avian influenza virus among others, which have the potential to induce widespread mortality in poultry and cause considerable economic losses. Additionally, the capability of some emerging poultry pathogens to cause zoonotic human infection will be increased as greater numbers of poultry operations could increase human contact with poultry pathogens. In order to combat the increased risk of spread of infectious disease in poultry due to intensified systems of production, rapid detection and diagnosis is paramount. In this review, multiple technologies that can facilitate accurate and rapid detection and diagnosis of poultry diseases are highlighted from the literature, with a focus on technologies developed specifically for avian influenza virus diagnosis. Rapid detection and diagnostic technologies allow for responses to be made sooner when disease is detected, decreasing further bird transmission and associated costs. Additionally, systems of rapid disease detection produce data that can be utilized in decision support systems that can predict when and where disease is likely to emerge in poultry. Other sources of data can be included in predictive models, and in this review two highly relevant sources, internet based-data and environmental data, are discussed. Additionally, big data and big data analytics, which will be required in order to integrate voluminous and variable data into predictive models that function in near real-time are also highlighted. Implementing new technologies in the commercial setting will be faced with many challenges, as will designing and operating predictive models for poultry disease emergence. The associated challenges are summarized in this review. Intensified systems of poultry production will require new technologies for detection and diagnosis of infectious disease. This review sets out to summarize them, while providing advantages and limitations of different types of technologies being researched.
Collapse
Affiliation(s)
- Jake Astill
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Rozita A. Dara
- School of Computer Science, University of Guelph, Guelph, ON, Canada
| | - Evan D. G. Fraser
- Arrell Food Institute and Department of Geography, Environment and Geomatics, University of Guelph, Guelph, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Alizadeh Zeinabad H, Ghourchian H, Falahati M, Fathipour M, Azizi M, Boutorabi SM. Ultrasensitive interdigitated capacitance immunosensor using gold nanoparticles. NANOTECHNOLOGY 2018; 29:265102. [PMID: 29629877 DOI: 10.1088/1361-6528/aabca3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Immunosensors based on interdigitated electrodes (IDEs), have recently demonstrated significant improvements in the sensitivity of capacitance detection. Herein, a novel type of highly sensitive, compact and portable immunosensor based on a gold interdigital capacitor has been designed and developed for the rapid detection of hepatitis B surface antigen (HBsAg). To improve the efficiency of antibody immobilization and time-saving, a self-assembled monolayer (SAM) of 2-mercaptoethylamine film was coated on IDEs. Afterwards, carboxyl groups on primary antibodies were activated through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and were immobilized on amino-terminated SAM for better control of the oriented immobilization of antibodies on gold IDEs. In addition, gold nanoparticles conjugated with a secondary antibody were used to enhance the sensitivity. Under optimal conditions, the immunosensor exhibited the sensitivity of 0.22 nF.pg ml-1, the linear range from 5 pg ml-1 to 1 ng ml-1 and the detection limit of 1.34 pg ml-1, at a signal-to-noise ratio of 3.
Collapse
Affiliation(s)
- Hojjat Alizadeh Zeinabad
- Laboratory of Bioanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran. MEMS & NEMS Lab, Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran. Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
22
|
Islam K, Damiati S, Sethi J, Suhail A, Pan G. Development of a Label-Free Immunosensor for Clusterin Detection as an Alzheimer's Biomarker. SENSORS (BASEL, SWITZERLAND) 2018; 18:E308. [PMID: 29361679 PMCID: PMC5795331 DOI: 10.3390/s18010308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/01/2023]
Abstract
Clusterin (CLU) has been associated with the clinical progression of Alzheimer's disease (AD) and described as a potential AD biomarker in blood plasma. Due to the enormous attention given to cerebrospinal fluid (CSF) biomarkers for the past couple of decades, recently found blood-based AD biomarkers like CLU have not yet been reported for biosensors. Herein, we report the electrochemical detection of CLU for the first time using a screen-printed carbon electrode (SPCE) modified with 1-pyrenebutyric acid N-hydroxysuccinimide ester (Pyr-NHS) and decorated with specific anti-CLU antibody fragments. This bifunctional linker molecule contains succinylimide ester to bind protein at one end while its pyrene moiety attaches to the carbon surface by means of π-π stacking. Cyclic voltammetric and square wave voltammetric studies showed the limit of detection down to 1 pg/mL and a linear concentration range of 1-100 pg/mL with good sensitivity. Detection of CLU in spiked human plasma was demonstrated with satisfactory recovery percentages to that of the calibration data. The proposed method facilitates the cost-effective and viable production of label-free point-of-care devices for the clinical diagnosis of AD.
Collapse
Affiliation(s)
- Kamrul Islam
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| | - Jagriti Sethi
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Ahmed Suhail
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Genhua Pan
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| |
Collapse
|
23
|
Radhakrishnan R, Poltronieri P. Fluorescence-Free Biosensor Methods in Detection of Food Pathogens with a Special Focus on Listeria monocytogenes. BIOSENSORS 2017; 7:63. [PMID: 29261134 PMCID: PMC5746786 DOI: 10.3390/bios7040063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
Food pathogens contaminate food products that allow their growth on the shelf and also under refrigerated conditions. Therefore, it is of utmost importance to lower the limit of detection (LOD) of the method used and to obtain the results within hours to few days. Biosensor methods exploit the available technologies to individuate and provide an approximate quantification of the bacteria present in a sample. The main bottleneck of these methods depends on the aspecific binding to the surfaces and on a change in sensitivity when bacteria are in a complex food matrix with respect to bacteria in a liquid food sample. In this review, we introduce surface plasmon resonance (SPR), new advancements in SPR techniques, and electrochemical impedance spectroscopy (EIS), as fluorescence-free biosensing technologies for detection of L. monocytogenes in foods. The application of the two methods has facilitated L. monocytogenes detection with LOD of 1 log CFU/mL. Further advancements are envisaged through the combination of biosensor methods with immunoseparation of bacteria from larger volumes, application of lab-on-chip technologies, and EIS sensing methods for multiplex pathogen detection. Validation efforts are being conducted to demonstrate the robustness of detection, reproducibility and variability in multi-site installations.
Collapse
|
24
|
Moulick A, Richtera L, Milosavljevic V, Cernei N, Haddad Y, Zitka O, Kopel P, Heger Z, Adam V. Advanced nanotechnologies in avian influenza: Current status and future trends - A review. Anal Chim Acta 2017; 983:42-53. [PMID: 28811028 PMCID: PMC7094654 DOI: 10.1016/j.aca.2017.06.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 02/04/2023]
Abstract
In the last decade, the control of avian influenza virus has experienced many difficulties, which have caused major global agricultural problems that have also led to public health consequences. Conventional biochemical methods are not sufficient to detect and control agricultural pathogens in the field due to the growing demand for food and subsidiary products; thus, studies aiming to develop potent alternatives to conventional biochemical methods are urgently needed. In this review, emerging detection systems, their applicability to diagnostics, and their therapeutic possibilities in view of nanotechnology are discussed. Nanotechnology-based sensors are used for rapid, sensitive and cost-effective diagnostics of agricultural pathogens. The application of different nanomaterials promotes interactions between these materials and the virus, which enables researchers to construct portable electroanalytical biosensing analyser that should effectively detect the influenza virus. The present review will provide insights into the guidelines for future experiments to develop better techniques to detect and control influenza viruses.
Collapse
Affiliation(s)
- Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| |
Collapse
|
25
|
Abstract
The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described.
Collapse
|
26
|
Su D, Li H, Li J, Liu Y, Peng M, Feng B, Xu P, Song Y. Magnetic bead-based mimic enzyme-chromogenic substrate and silica nanoparticles signal amplification system for avian influenza A (H7N9) optical immunoassay. RSC Adv 2017. [DOI: 10.1039/c7ra06273g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Schematic illustration of the principle of the (a) colorimetric MB–MEMSCI and (b) optical MB–MEMSCI for rapid detection of H7N9 AIV.
Collapse
Affiliation(s)
- Dan Su
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Hanyun Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Jinlin Li
- Nanchang Institute for Food and Drug Control
- Nanchang 330038
- China
| | - Yali Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Mi Peng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Bingwei Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Pengfei Xu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Yonggui Song
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| |
Collapse
|
27
|
Takemura K, Adegoke O, Takahashi N, Kato T, Li TC, Kitamoto N, Tanaka T, Suzuki T, Park EY. Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. Biosens Bioelectron 2016; 89:998-1005. [PMID: 27825520 DOI: 10.1016/j.bios.2016.10.045] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/08/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
Flu infection, caused by the influenza virus, constitutes a serious threat to human lives worldwide. A rapid, sensitive and specific diagnosis is urgently needed for point-of-care treatment and to control the rapid spread of this disease. In this study, an ultrasensitive, rapid and specific localized surface plasmon resonance (LSPR)-induced immunofluorescence nanobiosensor has been developed for the influenza virus based on a gold nanoparticle (AuNP)-induced quantum dot (QD) fluorescence signal. Alloyed quaternary CdSeTeS QDs were synthesized via the hot-injection organometallic route and were subsequently capped with l-cysteine via a ligand exchange reaction. AuNPs were synthesized in HEPES buffer and thiolated with l-cysteine. The concept of the biosensor involves the conjugation of anti-neuraminidase (NA) antibody (anti-NA Ab) to thiolated AuNPs and the conjugation of anti-hemagglutinin (HA) antibody (anti-HA Ab) to alloyed quaternary l-cysteine-capped CdSeTeS QDs. Interaction of the antigens displaying on the surface of the influenza virus target with anti-NA Ab-conjugated AuNPs and anti-HA Ab-conjugated QDs induces an LSPR signal from adjacent AuNPs to trigger fluorescence-enhancement changes in the QDs in proportion to the concentration of the target virus. The detection limit for influenza H1N1 virus was 0.03pg/mL in deionized water and 0.4pg/mL in human serum; while, for the clinically isolated H3N2, the detection limit was 10PFU/mL. The detection of influenza virus H1N1 was accomplished with high sensitivity. The versatility of the biosensor was demonstrated for the detection of clinically isolated influenza virus H3N2 and norovirus-like particles (NoV-LPs).
Collapse
Affiliation(s)
- Kenshin Takemura
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Oluwasesan Adegoke
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Naoto Takahashi
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Tatsuya Kato
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-Murayama, Tokyo 208-0011, Japan.
| | - Noritoshi Kitamoto
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan.
| | | | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, 1-20-1 Higashi-ku, Handa-yama, Hamamatsu 431-3192, Japan.
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
28
|
Rowland CE, Brown CW, Delehanty JB, Medintz IL. Nanomaterial-based sensors for the detection of biological threat agents. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2016; 19:464-477. [PMID: 32288600 PMCID: PMC7108310 DOI: 10.1016/j.mattod.2016.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The danger posed by biological threat agents and the limitations of modern detection methods to rapidly identify them underpins the need for continued development of novel sensors. The application of nanomaterials to this problem in recent years has proven especially advantageous. By capitalizing on large surface/volume ratios, dispersability, beneficial physical and chemical properties, and unique nanoscale interactions, nanomaterial-based biosensors are being developed with sensitivity and accuracy that are starting to surpass traditional biothreat detection methods, yet do so with reduced sample volume, preparation time, and assay cost. In this review, we start with an overview of bioagents and then highlight the breadth of nanoscale sensors that have recently emerged for their detection.
Collapse
Affiliation(s)
- Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- National Research Council, Washington, DC 20036, USA
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- College of Science, George Mason University, Fairfax, VA 22030, USA
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
29
|
Sun Y, Xu L, Zhang F, Song Z, Hu Y, Ji Y, Shen J, Li B, Lu H, Yang H. A promising magnetic SERS immunosensor for sensitive detection of avian influenza virus. Biosens Bioelectron 2016; 89:906-912. [PMID: 27818055 DOI: 10.1016/j.bios.2016.09.100] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/12/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Avian influenza viruses infect a great number of global populations every year and can lead to severe epidemics with high morbidity and mortality. Facile, rapid and sensitive detection of viruses is very crucial to control the viral spread at its early stage. In this work, we developed a novel magnetic immunosensor based on surface enhanced Raman scattering (SERS) spectroscopy to detect intact but inactivated influenza virus H3N2 (A/Shanghai/4084T/2012) by constructing a sandwich complex consisting of SERS tags, target influenza viruses and highly SERS-active magnetic supporting substrates. The procedure of sample pretreatment could be significantly simplified since the magnetic supporting substrates allowed the enrichment and separation of viruses from a complex matrix. With a portable Raman spectrometer, the immunosensor could detect H3N2 down to 102TCID50/mL (TCID50 refers to tissue culture infection dose at 50% end point), with a good linear relationship from 102 to 5×103 TCID50/mL. Considering its time efficiency, portability and sensitivity, the proposed SERS-based magnetic immunoassay is very promising for a point-of-care (POC) test in clinical and diagnostic praxis.
Collapse
Affiliation(s)
- Yang Sun
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai 200052, China; Shanghai TargetDrug Ltd., Shanghai 201202, China
| | - Li Xu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Fengdi Zhang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Song
- Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yunwen Hu
- Department of Pathogen Diagnosis and Biosafety, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yongjia Ji
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jiayin Shen
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ben Li
- Shanghai TargetDrug Ltd., Shanghai 201202, China
| | - Hongzhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
30
|
Couto C, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles and bioconjugation: a pathway for proteomic applications. Crit Rev Biotechnol 2016; 37:238-250. [DOI: 10.3109/07388551.2016.1141392] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cláudia Couto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,
| | - Rui Vitorino
- Mass Spectrometry Center, Organic Chemistry, Natural and Agro-Food Products Research Unit (QOPNA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,
- Department of Medical Sciences, iBiMED - Institute for Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal and
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana L. Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,
| |
Collapse
|
31
|
Jarocka U, Sawicka R, Stachyra A, Góra-Sochacka A, Sirko A, Zagórski-Ostoja W, Sączyńska V, Porębska A, Dehaen W, Radecki J, Radecka H. A biosensor based on electroactive dipyrromethene-Cu(II) layer deposited onto gold electrodes for the detection of antibodies against avian influenza virus type H5N1 in hen sera. Anal Bioanal Chem 2015; 407:7807-14. [PMID: 26297459 DOI: 10.1007/s00216-015-8949-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/21/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
Abstract
This paper describes the development of a biosensor for the detection of anti-hemagglutinin antibodies against the influenza virus hemagglutinin. The steps of biosensor fabrications are as follows: (i) creation of a mixed layer containing the thiol derivative of dipyrromethene and 4-mercapto-1-butanol, (ii) complexation of Cu(II) ions, (iii) oriented immobilization of the recombinant histidine-tagged hemagglutinin, and (iv) filling free spaces with bovine serum albumin. The interactions between recombinants hemagglutinin from the highly pathogenic avian influenza virus type H5N1 and anti-hemagglutinin H5 monoclonal antibodies were explored with Osteryoung square-wave voltammetry. The biosensor displayed a good detection limit of 2.4 pg/mL, quantification limit of 7.2 pg/mL, and dynamic range from 4.0 to 100.0 pg/mL in buffer. In addition, this analytical device was applied for the detection of antibodies in hen sera from individuals vaccinated and non-vaccinated against the avian influenza virus type H5N1. The limit of detection for the assay was the dilution of sera 1: 7 × 10(6), which is about 200 times better than the enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Urszula Jarocka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Róża Sawicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Anna Stachyra
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Włodzimierz Zagórski-Ostoja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Violetta Sączyńska
- Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland
| | - Anna Porębska
- Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland
| | - Wim Dehaen
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
32
|
Crivianu-Gaita V, Thompson M. Immobilization of Fab’ fragments onto substrate surfaces: A survey of methods and applications. Biosens Bioelectron 2015; 70:167-80. [DOI: 10.1016/j.bios.2015.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
|
33
|
Yang ZH, Zhuo Y, Yuan R, Chai YQ. An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosens Bioelectron 2015; 69:321-7. [DOI: 10.1016/j.bios.2015.01.035] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/05/2015] [Accepted: 01/16/2015] [Indexed: 12/23/2022]
|