1
|
Kadan-Jamal K, Jog A, Sophocleous M, Dotan T, Frumin P, Kuperberg Goshen T, Schuster S, Avni A, Shacham-Diamand Y. Sensing of gene expression in live cells using electrical impedance spectroscopy and DNA-functionalized gold nanoparticles. Biosens Bioelectron 2024; 252:116041. [PMID: 38401280 DOI: 10.1016/j.bios.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
A novel electrical impedance spectroscopy-based method for non-destructive sensing of gene expression in living cells is presented. The approach used takes advantage of the robustness and responsiveness of electrical impedance spectroscopy and the highly specific and selective nature of DNA hybridization. The technique uses electrical impedance spectroscopy and gold nanoparticles functionalized with single-stranded DNA complementary to an mRNA of interest to provide reliable, real-time, and quantifiable data on gene expression in live cells. The system was validated by demonstrating specific detection of the uidA mRNA, which codes for the β-glucuronidase (GUS) enzyme, in Solanum lycopersicum MsK8 cells. Gold nanoparticles were functionalized with single-stranded DNA oligonucleotides consisting of either a sequence complementary to uidA mRNA or an arbitrary sequence. The DNA-functionalized gold nanoparticles were mixed with cell suspensions, allowing the gold nanoparticles to penetrate into the cells. The impedance spectra of suspensions of cells with gold nanoparticles inserted within them were then studied. In suspensions of uidA-expressing cells and gold nanoparticles functionalized with the complementary single-stranded DNA oligonucleotide, the impedance magnitude in the frequency range of interest was significantly higher (146 %) in comparison to all other controls. Due to its highly selective nature, the methodology has the potential to be used as a precision agricultural sensing system for accurate and real-time detection of markers of stress, viral infection, disease, and normal physiological activities.
Collapse
Affiliation(s)
- Kian Kadan-Jamal
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Aakash Jog
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
| | - Marios Sophocleous
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Research & Development Department, eBOS Technologies Ltd., Nicosia, Cyprus
| | - Tali Dotan
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Polina Frumin
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | | | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Yosi Shacham-Diamand
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Scojen Institute of Synthetic Biology, Reichmann University, Herzliya, Israel
| |
Collapse
|
2
|
Wahab MRA, Palaniyandi T, Ravi M, Viswanathan S, Baskar G, Surendran H, Gangadharan SGD, Rajendran BK. Biomarkers and biosensors for early cancer diagnosis, monitoring and prognosis. Pathol Res Pract 2023; 250:154812. [PMID: 37741139 DOI: 10.1016/j.prp.2023.154812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Cancers continue to be of major concern due to their serious global socioeconomic impact, apart from the continued increase in the incidence of various cancer types. A major challenge that this disease poses is due to the low "early detection" rates which limit the therapeutic outcomes for the affected individuals. Current research has highlighted the discovering biomarkers that help in early cancer detection and the development of technologies for the detection and quantification of such biomarkers. Biomarkers range from proteins to nucleic acids, and can be specific to a particular cancer type. Detection and quantification of such biomarkers at low levels from biological samples is being made possible by the advent of developing biosensors and by using biomedical engineering technologies such as tumor-on-a-chip models. Here, we present biomarkers that can be helpful for the early detection of breast, colorectal, esophageal, lung, liver, ovarian, and prostate cancer. In addition, we discuss the potential of circulating tumor cell DNA (ctDNA) as an early diagnostic marker. Finally, biosensors available for the detection of cancer biomarkers, which is a recent advancement in this area of research, are discussed.
Collapse
Affiliation(s)
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, Tamil Nadu, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095
| | - S G D Gangadharan
- Department of Medical Oncology, Madras Medical College, R. G. G. G. H., Chennai, Tamil Nadu, India
| | | |
Collapse
|
3
|
Richard YA, Lincy SA, Piraman S, Dharuman V. Label-free electrochemical detection of cancer biomarkers DNA and anti-p53 at tin oxide quantum dot-gold-DNA nanoparticle modified electrode. Bioelectrochemistry 2023; 150:108371. [PMID: 36640456 DOI: 10.1016/j.bioelechem.2023.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Lung cancer is one of the deadliest types of cancer and accounts for 8.1% of all cancer related deaths. To prevent a growing death rate, it is crucial to identify lung cancer at an early stage by single polynucleotide morphism detection. In this paper, we present a novel label-free electrochemical biosensor based on composites of tin oxide quantum dots and gold nanoparticles (SnO2-QD-Au) for the sensitive and precise detection of lung cancer DNA. The SnO2-QD and SnO2-QD-Au nanoparticles were characterized using Scanning and Transmission Electron Microscopes (SEM and TEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy (UV), Fourier transmission infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Gold thiol covalent bonding was used for immobilising probe DNA on the surface of SnO2-QD-Au nanoparticles followed by target DNA hybridization and detected electrochemically in presence of 1 mM [Fe(CN6)]3-/4-as a redox couple probe. Under ideal circumstances, the sensor showed the lowest detection limit of 3.2 × 10-20 M with a linear range of 1 × 10-6 - 1 × 10-20 M. Additionally, the sensing method was applied to find a cancer biomarker, Anti-P53 antibody.
Collapse
Affiliation(s)
- Yesurajan Allwin Richard
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630 003, India
| | - Sebastinbaskar Aniu Lincy
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630 003, India
| | - Shakkthivel Piraman
- Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi 630 003, India
| | - Venkataraman Dharuman
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630 003, India.
| |
Collapse
|
4
|
Screening of hepatitis B virus DNA in the serum sample by a new sensitive electrochemical genosensor-based Pd-Al LDH substrate. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Ramanathan S, Gopinath SCB, Ismail ZH, Md Arshad MK, Poopalan P. Aptasensing nucleocapsid protein on nanodiamond assembled gold interdigitated electrodes for impedimetric SARS-CoV-2 infectious disease assessment. Biosens Bioelectron 2022; 197:113735. [PMID: 34736114 PMCID: PMC8550887 DOI: 10.1016/j.bios.2021.113735] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
In an aim of developing portable biosensor for SARS-CoV-2 pandemic, which facilitates the point-of-care aptasensing, a strategy using 10 μm gap-sized gold interdigitated electrode (AuIDE) is presented. The silane-modified AuIDE surface was deposited with ∼20 nm diamond and enhanced the detection of SARS-CoV-2 nucleocapsid protein (NCP). The characteristics of chemically modified diamond were evidenced by structural analyses, revealing the cubic crystalline nature at (220) and (111) planes as observed by XRD. XPS analysis denotes a strong interaction of carbon element, composed ∼95% as seen in EDS analysis. The C-C, CC, CO, CN functional groups were well-refuted from XPS spectra of carbon and oxygen elements in diamond. The interrelation between elements through FTIR analysis indicates major intrinsic bondings at 2687-2031 cm-1. The aptasensing was evaluated through electrochemical impedance spectroscopy measurements, using NCP spiked human serum. With a good selectivity the lower detection limit was evidenced as 0.389 fM, at a linear detection range from 1 fM to 100 pM. The stability, and reusability of the aptasensor were demonstrated, showing ∼30% and ∼33% loss of active state, respectively, after ∼11 days. The detection of NCP was evaluated by comparing anti-NCP aptamer and antibody as the bioprobes. The determination coefficients of R2 = 0.9759 and R2 = 0.9772 were obtained for aptamer- and antibody-based sensing, respectively. Moreover, the genuine interaction of NCP aptamer and protein was validated by enzyme linked apta-sorbent assay. The aptasensing strategy proposed with AuIDE/diamond enhanced sensing platform is highly recommended for early diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Santheraleka Ramanathan
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia; Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| | - Zool Hilmi Ismail
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - M K Md Arshad
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia; Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Pauh Putra, Perlis, Malaysia
| | - Prabakaran Poopalan
- Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Pauh Putra, Perlis, Malaysia
| |
Collapse
|
6
|
Urso M, Tumino S, Bruno E, Bordonaro S, Marletta D, Loria GR, Avni A, Shacham-Diamand Y, Priolo F, Mirabella S. Ultrasensitive Electrochemical Impedance Detection of Mycoplasma agalactiae DNA by Low-Cost and Disposable Au-Decorated NiO Nanowall Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50143-50151. [PMID: 33078934 DOI: 10.1021/acsami.0c14679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanostructured electrodes detecting bacteria or viruses through DNA hybridization represent a promising method, which may be useful in on-field applications where PCR-based methods are very expensive, time-consuming, and require trained personnel. Indeed, electrochemical sensors combine disposability, fast response, high sensitivity, and portability. Here, a low-cost and high-surface-area electrode, based on Au-decorated NiO nanowalls, demonstrates a highly sensitive PCR-free detection of a real sample of Mycoplasma agalactiae (Ma) DNA. NiO nanowalls, synthesized by aqueous methods, thermal annealing, and Au decoration, by electroless deposition, ensure a high-surface-area platform for successful immobilization of Ma thiolated probe DNA. The morphological, chemical, and electrochemical properties of the electrode were characterized, and a reproducible detection of synthetic Ma DNA was observed and investigated by impedance measurements. Electrochemical impedance spectroscopy (EIS) ascribed the origin of impedance signal to the Ma DNA hybridization with its probe immobilized onto the electrode. The electrode successfully discriminates between DNA extracted from healthy and infected sheep milk, showing the ability to detect Ma DNA in concentrations as low as 53 ± 2 copy number μL-1. The Au-decorated NiO nanowall electrode represents a promising route toward PCR-free, disposable, rapid, and molecular detection.
Collapse
Affiliation(s)
- Mario Urso
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, and IMM-CNR, via S. Sofia 64, 95123 Catania, Italy
| | - Serena Tumino
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, via Valdisavoia 5, 95123 Catania, Italy
- OIE Reference Laboratory for Contagious Agalactia-Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Elena Bruno
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, and IMM-CNR, via S. Sofia 64, 95123 Catania, Italy
| | - Salvo Bordonaro
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, via Valdisavoia 5, 95123 Catania, Italy
| | - Donata Marletta
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, via Valdisavoia 5, 95123 Catania, Italy
| | - Guido Ruggero Loria
- OIE Reference Laboratory for Contagious Agalactia-Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Yosi Shacham-Diamand
- Department of Physical Electronics, School of Electrical Engineering and Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978, Israel
- TAU/TiET Food Security Centre of Excellence (T2FSCOE), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Francesco Priolo
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, and IMM-CNR, via S. Sofia 64, 95123 Catania, Italy
| | - Salvo Mirabella
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, and IMM-CNR, via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
7
|
Billur CA, Şahin G, Güneri E, Saatçi B, Soylu MÇ. The effect of films thickness on structural and optical properties of amorphous Sn2O thin films deposited by ink jet printing method. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Yuhana Ariffin E, Heng LY, Tan LL, Abd Karim NH, Hasbullah SA. A Highly Sensitive Impedimetric DNA Biosensor Based on Hollow Silica Microspheres for Label-Free Determination of E. coli. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1279. [PMID: 32111092 PMCID: PMC7085554 DOI: 10.3390/s20051279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/28/2023]
Abstract
A novel label-free electrochemical DNA biosensor was constructed for the determination of Escherichia coli bacteria in environmental water samples. The aminated DNA probe was immobilized onto hollow silica microspheres (HSMs) functionalized with 3-aminopropyltriethoxysilane and deposited onto a screen-printed electrode (SPE) carbon paste with supported gold nanoparticles (AuNPs). The biosensor was optimized for higher specificity and sensitivity. The label-free E. coli DNA biosensor exhibited a dynamic linear response range of 1 × 10-10 µM to 1 × 10-5 µM (R2 = 0.982), with a limit of detection at 1.95 × 10-15 µM, without a redox mediator. The sensitivity of the developed DNA biosensor was comparable to the non-complementary and single-base mismatched DNA. The DNA biosensor demonstrated a stable response up to 21 days of storage at 4 ℃ and pH 7. The DNA biosensor response was regenerable over three successive regeneration and rehybridization cycles.
Collapse
Affiliation(s)
- Eda Yuhana Ariffin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia; (E.Y.A.); (N.H.A.K.); (S.A.H.)
| | - Lee Yook Heng
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia; (E.Y.A.); (N.H.A.K.); (S.A.H.)
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia;
| | - Nurul Huda Abd Karim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia; (E.Y.A.); (N.H.A.K.); (S.A.H.)
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia; (E.Y.A.); (N.H.A.K.); (S.A.H.)
| |
Collapse
|
9
|
Deshmukh R, Prusty AK, Roy U, Bhand S. A capacitive DNA sensor for sensitive detection ofEscherichia coliO157:H7 in potable water based on thez3276genetic marker: fabrication and analytical performance. Analyst 2020; 145:2267-2278. [DOI: 10.1039/c9an02291k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report a label-free biosensor for the detection ofEscherichia coliO157:H7 ATCC 43895 in potable water using a newly designed DNA sensing probe targeting thez3276genetic marker.
Collapse
Affiliation(s)
- Rehan Deshmukh
- Birla institute of Technology and Science
- Pilani
- Department of Biological Sciences
- India
| | - Arun Kumar Prusty
- Birla institute of Technology and Science
- Pilani
- Department of Chemistry
- India
| | - Utpal Roy
- Birla institute of Technology and Science
- Pilani
- Department of Biological Sciences
- India
| | - Sunil Bhand
- Birla institute of Technology and Science
- Pilani
- Department of Chemistry
- India
| |
Collapse
|
10
|
Aptasensors for pesticide detection. Biosens Bioelectron 2019; 130:174-184. [PMID: 30738246 DOI: 10.1016/j.bios.2019.01.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/05/2019] [Accepted: 01/12/2019] [Indexed: 12/16/2022]
Abstract
Pesticide contamination has become one of the most serious problems of public health in the world, due to their wide application in agriculture industry to guarantee the crop yield and quality. The detection of pesticide residues plays an important role in food safety management and environment protection. However, the conventional detection methodologies cannot realize highly sensitive, selective and on-site detection, which limits their applications. Aptamers are short single-stranded oligonucleotides (RNA or DNA) selected by SELEX method, which can selectively bind to their targets with high affinity. Compared with the commonly used antibodies or enzymes in designing biosensors, aptamers exhibit better stability, low molecular weight, easy modification and low cost, and were regarded as excellent candidates for developing aptasensors for pesticide detection. In this review, application of aptamers for pesticide detection was reviewed. Firstly, aptamers specifically bind to various pesticides were first summarized. Secondly, the progresses and highlights of developing aptasensors for highly-sensitive and selective detection of pesticide residues were systematically provided. Finally, the present challenges and future perspectives for developing novel highly-effective aptasensor for the detection of pesticide residues were discussed.
Collapse
|
11
|
Demes T, Morisot F, Legallais M, Calais A, Pernot E, Pignot-Paintrand I, Ternon C, Stambouli V. DNA grafting on silicon nanonets using an eco-friendly functionalization process based on epoxy silane. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2018.10.427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Hijazi M, Rieu M, Stambouli V, Tournier G, Viricelle JP, Pijolat C. Modified SnO2-APTES gas sensor for selective ammonia detection at room temperature. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.matpr.2018.10.424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Electrically nanowired-enzymes for probe modification and sensor fabrication. Biosens Bioelectron 2018; 121:223-235. [DOI: 10.1016/j.bios.2018.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 11/23/2022]
|
14
|
Ultrasensitive Electrochemical Detection of Clostridium perfringens DNA Based Morphology-Dependent DNA Adsorption Properties of CeO₂ Nanorods in Dairy Products. SENSORS 2018; 18:s18061878. [PMID: 29890646 PMCID: PMC6022109 DOI: 10.3390/s18061878] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023]
Abstract
Foodborne pathogens such as Clostridium perfringens can cause diverse illnesses and seriously threaten to human health, yet far less attention has been given to detecting these pathogenic bacteria. Herein, two morphologies of nanoceria were synthesized via adjusting the concentration of NaOH, and CeO₂ nanorod has been utilized as sensing material to achieve sensitive and selective detection of C. perfringens DNA sequence due to its strong adsorption ability towards DNA compared to nanoparticle. The DNA probe was tightly immobilized on CeO₂/chitosan modified electrode surface via metal coordination, and the DNA surface density was 2.51 × 10−10 mol/cm². Under optimal experimental conditions, the electrochemical impedance biosensor displays favorable selectivity toward target DNA in comparison with base-mismatched and non-complementary DNA. The dynamic linear range of the proposed biosensor for detecting oligonucleotide sequence of Clostridium perfringens was from 1.0 × 10−14 to 1.0 × 10−7 mol/L. The detection limit was 7.06 × 10−15 mol/L. In comparison, differential pulse voltammetry (DPV) method quantified the target DNA with a detection limit of 1.95 × 10−15 mol/L. Moreover, the DNA biosensor could detect C. perfringens extracted DNA in dairy products and provided a potential application in food quality control.
Collapse
|
15
|
Rashid JIA, Yusof NA. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.09.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Wang B, Akiba U, Anzai JI. Recent Progress in Nanomaterial-Based Electrochemical Biosensors for Cancer Biomarkers: A Review. Molecules 2017; 22:E1048. [PMID: 28672780 PMCID: PMC6152304 DOI: 10.3390/molecules22071048] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023] Open
Abstract
This article reviews recent progress in the development of nanomaterial-based electrochemical biosensors for cancer biomarkers. Because of their high electrical conductivity, high affinity to biomolecules, and high surface area-to-weight ratios, nanomaterials, including metal nanoparticles, carbon nanotubes, and graphene, have been used for fabricating electrochemical biosensors. Electrodes are often coated with nanomaterials to increase the effective surface area of the electrodes and immobilize a large number of biomolecules such as enzymes and antibodies. Alternatively, nanomaterials are used as signaling labels for increasing the output signals of cancer biomarker sensors, in which nanomaterials are conjugated with secondary antibodies and redox compounds. According to this strategy, a variety of biosensors have been developed for detecting cancer biomarkers. Recent studies show that using nanomaterials is highly advantageous in preparing high-performance biosensors for detecting lower levels of cancer biomarkers. This review focuses mainly on the protocols for using nanomaterials to construct cancer biomarker sensors and the performance characteristics of the sensors. Recent trends in the development of cancer biomarker sensors are discussed according to the nanomaterials used.
Collapse
Affiliation(s)
- Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
| | - Uichi Akiba
- Graduate School of Engineering and Science, Akita University, 1-1 Tegatagakuen-machi, Akita 010-8502, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
17
|
Jin S, Ye Z, Wang Y, Ying Y. A Novel Impedimetric Microfluidic Analysis System for Transgenic Protein Cry1Ab Detection. Sci Rep 2017; 7:43175. [PMID: 28251986 PMCID: PMC5333080 DOI: 10.1038/srep43175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 01/23/2017] [Indexed: 01/07/2023] Open
Abstract
Impedimetric analysis method is an important tool for food safety detection. In this work, a novel impedimetric microfluidic analysis system consisted of a printed gold electrode chip and a microfluidic flow cell was developed for sensitive and selective detection of transgenic protein Cry1Ab. Anti-Cry1Ab aptamer coated magnetic beads were used to recognize transgenic protein Cry1Ab and form Cry1Ab-aptamer modified magnetic beads. After separation, the obtained Cry1Ab-aptamer modified magnetic beads were dissolved in 0.01 M mannitol and followed by injection into the microfluidic flow cell for impedimetric measurement. At the frequency of 358.3 Hz, the impedance signal shows a good linearity with the concentrations of Cry1Ab protein at a range from 0 to 0.2 nM, and the detection limit is 0.015 nM. The results demonstrate that the impedimetric microfluidic analysis system provides an alternative way to enable sensitive, rapid and specific detection of transgenic protein Cry1Ab.
Collapse
Affiliation(s)
- Shunru Jin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zunzhong Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yixian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
18
|
Akiba U, Anzai JI. Recent Progress in Electrochemical Biosensors for Glycoproteins. SENSORS (BASEL, SWITZERLAND) 2016; 16:E2045. [PMID: 27916961 PMCID: PMC5191026 DOI: 10.3390/s16122045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.
Collapse
Affiliation(s)
- Uichi Akiba
- Graduate School of Engineering and Science, Akita University, 1-1 Tegatagaluenn-machi, Akita 010-8502, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramakim, Sendai 980-8578, Japan.
| |
Collapse
|
19
|
Manzanares-Palenzuela C, Fernandes E, Lobo-Castañón M, López-Ruiz B, Zucolotto V. Impedance sensing of DNA hybridization onto nanostructured phthalocyanine-modified electrodes. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|