1
|
Chen X, Yang X, Han X, Ruan Z, Xu J, Huang F, Zhang K. Advanced Thermoelectric Textiles for Power Generation: Principles, Design, and Manufacturing. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300023. [PMID: 38356682 PMCID: PMC10862169 DOI: 10.1002/gch2.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Indexed: 02/16/2024]
Abstract
Self-powered wearable thermoelectric (TE) devices significantly reduce the inconvenience caused to users, especially in daily use of portable devices and monitoring personal health. The textile-based TE devices (TETs) exhibit the excellent flexibility, deformability, and light weight, which fulfill demands of long-term wearing for the human body. In comparison to traditional TE devices with their longstanding research history, TETs are still in an initial stage of growth. In recent years, TETs to provide electricity for low-power wearable electronics have attracted increasing attention. This review summarizes the recent progress of TETs from the points of selecting TE materials, scalable fabrication methods of TE fibers/yarns and TETs, structure design of TETs and reported high-performance TETs. The key points to develop TETs with outstanding TE properties and mechanical performance and better than available optimization strategies are discussed. Furthermore, remaining challenges and perspectives of TETs are also proposed to suggest practical applications for heat harvesting from human body.
Collapse
Affiliation(s)
- Xinyi Chen
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| | - Xiaona Yang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| | - Xue Han
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| | - Zuping Ruan
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| | - Jinchuan Xu
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| | - Fuli Huang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| | - Kun Zhang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| |
Collapse
|
2
|
Teklu T. Oxidative Polymerization of Aniline on the Surface of Sisal Fibers (SFs) as Defluoridation Media for Groundwater. Int J Anal Chem 2024; 2024:6941567. [PMID: 38333412 PMCID: PMC10853025 DOI: 10.1155/2024/6941567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Chemical modification of sisal fibers via in situ oxidative polymerization of aniline was conducted to examine their defluoridation capacity for fluoride from drinking water. The effects of polyaniline modifications have shown significant changes on the chemical moieties and defluoridation capacity of sisal fibers (SFs). FTIR peaks at 1440 cm-1 and 1560 cm-1 revealed the presence of benzoid and quinoid structures together with sisal fiber (SF). Thermal profiles confirmed the enhancement of thermal stability of polyaniline-modified sisal fibers (PAniMSFs). SEM microstructure also proved the surface roughening of SFs as a result of polyaniline modifications. Optimal batch adsorption parameters (pH, contact time, adsorbent dose, and initial concentration) were found to be 5, 60 min, 1 g, and 10 mg/L, respectively. Adsorption kinetics proved that the removal of fluoride follows pseudo-second-order model (K2 = 0.18 g. (mg·min)-1), while the adsorption isotherm well described by the Langmuir and Freundlich model with an experimental adsorption capacity of 2.49 mg/g. Hence, modifications and improvements are required to reduce the amount of fluoride to a permissible level and enhance the longevity and activity of adsorbent materials.
Collapse
Affiliation(s)
- Tesfamariam Teklu
- Department of Chemistry, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
3
|
Qi P, Chen F, Li Y, Jiang Y, Zhu T, Sun J, Li H, Gu X, Zhang S. Environmental benign foam finishing with a hyperbranched polyphosphonate flame retardant for polyethylene terephthalate fabric. CHEMOSPHERE 2023; 317:137892. [PMID: 36657581 DOI: 10.1016/j.chemosphere.2023.137892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
It is still a big challenge for textile industry in improving fire resistance and reducing melt dripping with minimal loss on the physical properties of polyethylene terephthalate (PET) fabrics. In this work, a highly-effective hyperbranched flame retardant (DT) was first synthesized by ester exchange without using any organic solvent. Then, the DT foam was prepared and blade coated on PET fabric to improve the fire performance. The prepared PET fabric with only 2.7% weight gain of DT was self-extinguished and did not produce any molten dripping during the vertical flammable test. The peak heat release rate and total heat release of the PET fabric sample with 19.4% DT were decreased by 42.0% and 57.1%, respectively compared with that of the control PET. Besides, the as-prepared PET fabric sample showed better physical properties such as breaking strength, vapor permeability, air permeability, antistatic property, and softness than the control PET fabric sample. The DT foam finishing process did not involve any organic solvent and consumed less water and energy compared with conventional fabric treatments. It is expected that this work provides a facile and eco-friendly strategy for fabricating flame retardant PET fabric with excellent comprehensive performances.
Collapse
Affiliation(s)
- Peng Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Yuchun Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Yichong Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Tao Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China.
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 100029, PR China.
| |
Collapse
|
4
|
Repon MR, Mikučionienė D. Progress in Flexible Electronic Textile for Heating Application: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6540. [PMID: 34772066 PMCID: PMC8585370 DOI: 10.3390/ma14216540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023]
Abstract
Intelligent textiles are predicted to see a 'surprising' development in the future. The consequence of this revived interest has been the growth of industrial goods and the improvement of innovative methods for the incorporation of electrical features into textiles materials. Conductive textiles comprise conductive fibres, yarns, fabrics, and finished goods produced using them. Present perspectives to manufacture electrically conductive threads containing conductive substrates, metal wires, metallic yarns, and intrinsically conductive polymers. This analysis concentrates on the latest developments of electro-conductivity in the area of smart textiles and heeds especially to materials and their assembling processes. The aim of this work is to illustrate a potential trade-off between versatility, ergonomics, low energy utilization, integration, and heating properties.
Collapse
Affiliation(s)
- Md. Reazuddin Repon
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu 56, LT-51424 Kaunas, Lithuania;
| | | |
Collapse
|
5
|
Tailoring of Durable Conductive and UV-Shielding Properties on Cotton and Polyester Fabrics by PEDOT:PSS Screen-Printing. Polymers (Basel) 2020; 12:polym12102356. [PMID: 33066558 PMCID: PMC7602213 DOI: 10.3390/polym12102356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
In the present study, cotton (Co) and polyester (PES) fabrics were screen-printed with a conductive poly3,4-ethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) printing paste along with a commercially-available screen-printing binder (SFXC) or waterborne polyurethane resin (WPU), in order to enhance wash and wear durability, and to improve some functional properties, without essentially influencing the physical–mechanical properties of the base material, as well as the introduced fabrics’ conductivity. The application of a conductive polymer coating reduced transmittance in the whole UV region drastically, indicating good UV-shielding ability in the treated fabrics. Moreover, the employed binders improved the fabrics’ protection against harmful solar UV radiation significantly, depending on the type of fibre and binder. Furthermore, the SFXC binder intensified the hydrophobicity of Co as compared to the WPU binder, and, on the other hand, WPU reduced the hydrophobicity of PES. Finally, the screen-printed fabrics were washed up to 20 cycles and rubbed up to 20,000 cycles, and characterised by means of mass loss determination and electrical resistivity measurement. Both binders enlarged polymer stability against the effect of washing and rubbing, depending on the number of cycles, the type and amount of employed binder, the type of fibres, and the thickness and uniformity of coatings.
Collapse
|
6
|
Optical Analysis and UV-Blocking Filter of Cadmium Iodide-Doped Polyvinyl Alcohol Polymeric Composite Films: Synthesis and Dielectric Properties. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01534-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Flexible Textile Strain Sensor Based on Copper-Coated Lyocell Type Cellulose Fabric. Polymers (Basel) 2019; 11:polym11050784. [PMID: 31052509 PMCID: PMC6572669 DOI: 10.3390/polym11050784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022] Open
Abstract
Integration of sensors in textile garments requires the development of flexible conductive structures. In this work, cellulose-based woven lyocell fabrics were coated with copper during an electroless step, produced at 0.0284 M copper sulfate pentahydrate, 0.079 M potassium hydrogen L-tartrate, and 0.94 M formaldehyde concentrations. High concentrations led to high homogeneous copper reaction rates and the heterogeneous copper deposition process was diffusion controlled. Thus, the rate of copper deposition did not increase on the cellulose surface. Conductivity of copper coatings was investigated by the resistance with a four probe technique during fabric deformation. In cyclic tensile tests, the resistance of coated fabric (19 × 1.5 cm2) decreased from 13.2–3.7 Ω at 2.2% elongation. In flex tests, the resistance increased from 5.2–6.6 Ω after 5000 bending cycles. After repeated wetting and drying cycles, the resistance increased by 2.6 × 105. The resistance raised from 11–23 Ω/square with increasing relative humidity from 20–80%, which is likely due to hygroscopic expansion of fibers. This work improves the understanding of conductive copper coating on textiles and shows their applicability in flexible strain sensors.
Collapse
|
8
|
Volkov AG. Signaling in electrical networks of the Venus flytrap (Dionaea muscipula Ellis). Bioelectrochemistry 2019; 125:25-32. [DOI: 10.1016/j.bioelechem.2018.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022]
|
9
|
Dhineshbabu NR, Sekhar Behera S, Bose S. Smart Textile Fabrics for Screening Millimeter Wavelength Radiations: Challenges and Future Perspectives. ChemistrySelect 2018. [DOI: 10.1002/slct.201801125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- N. R. Dhineshbabu
- Department of Materials Engineering; Indian Institute of Science; Bangalore- 560012
| | | | - Suryasarathi Bose
- Department of Materials Engineering; Indian Institute of Science; Bangalore- 560012
| |
Collapse
|
10
|
Ayad MM, Amer WA, Zaghlol S, Minisy IM, Bober P, Stejskal J. Polypyrrole-coated cotton textile as adsorbent of methylene blue dye. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0442-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Tissera ND, Wijesena RN, Rathnayake S, de Silva RM, de Silva KMN. Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: Improved electrical conductivity, electrical switching, and tuning properties. Carbohydr Polym 2018; 186:35-44. [PMID: 29455996 DOI: 10.1016/j.carbpol.2018.01.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/26/2017] [Accepted: 01/10/2018] [Indexed: 11/28/2022]
Abstract
Electrically conductive cotton fabric was fabricated by in situ one pot oxidative polymerization of aniline. Using a simple heterogeneous polymerization method, polyaniline (PANI) nano fibers with an average fiber diameter of 40-75 nm were grafted in situ onto cotton fabric. The electrical conductivity of the PANI nanofiber grafted fabric was improved 10 fold compared to fabric grafted with PANI nanoclusters having an average cluster size of 145-315 nm. The surface morphology of the cotton fibers was characterized using SEM and AFM. Electrical conductivity of PANI nanofibers on the cotton textile was further improved from 76 kΏ/cm to 1 kΏ/cm by increasing the HCl concentration from 1 M to 3 M in the polymerization medium. PANI grafted cotton fabrics were analyzed using FTIR, and the data showed the presence of polyaniline functional groups on the treated fabric. Further evidence was present for the chemical interaction of PANI with cellulose. Dopant level and morphology dependent electron transition behavior of PANI nanostructures grafted on cotton fabric was further characterized using UV-vis spectroscopy. The electrical conductivity of the PANI nano fiber grafted cotton fabric can be tuned by immersing the fabric in pH 2 and pH 6 solutions for multiple cycles.
Collapse
Affiliation(s)
- Nadeeka D Tissera
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama 10206, Sri Lanka; Department of Chemistry, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka
| | - Ruchira N Wijesena
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama 10206, Sri Lanka; Department of Chemistry, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka
| | - Samantha Rathnayake
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama 10206, Sri Lanka
| | - Rohini M de Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka
| | - K M Nalin de Silva
- Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology & Science Park, Mahenwatte, Pitipana, Homagama 10206, Sri Lanka; Department of Chemistry, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka.
| |
Collapse
|