1
|
Xue X, Tang X, Hu C, Sun J, Li X, Yang S, Kerman S, Xie S, Xu X, Ji R, Chen C. High-uniformity, low-cost, ultra-dense arrays of Au-capped plastic nanopillars fabricated via nanoimprint lithography as reliable SERS substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125989. [PMID: 40058086 DOI: 10.1016/j.saa.2025.125989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/11/2025] [Accepted: 03/03/2025] [Indexed: 03/24/2025]
Abstract
Nanoimprint lithography (NIL) is gradually becoming a powerful tool for the fabrication of periodic nanostructures. This method can offer a more cost-effective solution for large-scale manufacturing compared to methods that only rely on deep ultraviolet (DUV) immersion, since the product of DUV immersion can be utilized as a Si mold to fabricate a reusable plastic stamp mold. In this work, arrays of plastic nanopillars coated with nanostructured gold film exhibiting ultra density prepared through NIL and Au sputtering are successfully developed. The obtained plastic nanopillar substrate is templated from Si nanopillar substrate with a pitch of 90 nm. As a result, the plastic nanopillar features a similar pitch size. Besides, benzenedithiol (BDT) was used as the standard analyte to evaluate the uniformity of the substrates as well as the SERS enhancement effect. Eventually, it is demonstrated that the substrate constituted of Au-capped plastic nanopillar shows a low coefficient of variation (CV) at 5.46 % along with a strong SERS enhancement effect. These performances match with the Si based SERS substrate manufactured via DUV immersion reported in our previous work.
Collapse
Affiliation(s)
- Xingmei Xue
- School of Microelectronics, Shanghai University, Shanghai 201800, China; Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Photonic View Technology Co., Ltd, Shanghai 200444, China
| | - Xiaohui Tang
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunrui Hu
- Shanghai Photonic View Technology Co., Ltd, Shanghai 200444, China
| | - Junjie Sun
- Qingdao Germanlitho Co., Ltd, Qingdao 266100, China
| | - Xiao Li
- Shanghai Photonic View Technology Co., Ltd, Shanghai 200444, China
| | - Sen Yang
- School of Microelectronics, Shanghai University, Shanghai 201800, China; Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Photonic View Technology Co., Ltd, Shanghai 200444, China
| | - Sarp Kerman
- Shanghai Photonic View Technology Co., Ltd, Shanghai 200444, China
| | - Sijia Xie
- School of Microelectronics, Shanghai University, Shanghai 201800, China; Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | - Ran Ji
- Qingdao Germanlitho Co., Ltd, Qingdao 266100, China.
| | - Chang Chen
- School of Microelectronics, Shanghai University, Shanghai 201800, China; Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Photonic View Technology Co., Ltd, Shanghai 200444, China.
| |
Collapse
|
2
|
Park JE, Nam H, Hwang JS, Kim S, Kim SJ, Kim S, Jeon JS, Yang M. Label-Free Exosome Analysis by Surface-Enhanced Raman Scattering Spectroscopy with Laser-Ablated Silver Nanoparticle Substrate. Adv Healthc Mater 2024; 13:e2402038. [PMID: 39318105 DOI: 10.1002/adhm.202402038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Early diagnostics of breast cancer is crucial to reduce the risk of cancer metastasis and late relapse. Exosome, which contains distinct information of its origin, can be the target object as a liquid biopsy. However, its low sensitivity and inadequate diagnostic tools interfere with the point-of-care testing (POCT) of the exosome. Recently, Surface-enhanced Raman Scattering (SERS) spectroscopy, which amplifies the Raman scattering, has been proved as a promising tool for exosome detection. However, the fabrication process of SERS probe or substrate is still inefficient and far from large-scale production. This study proposes rapid and label-free detection of breast cancer-derived exosomes by statistical analysis of SERS spectra using silver-nanoparticle-based SERS substrate fabricated by selective laser ablation and melting (SLAM). Employing silver nanowires and optimizing laser process parameters enable rapid and low-energy fabrication of SERS substrate. The functionalities including sensitivity, reproducibility, stability, and renewability are evaluated using rhodamine 6G as a probe molecule. Then, the feasibility of POCT is examined by the statistical analysis of SERS spectra of exosomes from malignant breast cancer cells and non-tumorigenic breast epithelial cells. The presented framework is anticipated to be utilized in other biomedical applications, facilitating cost-effective and large-scale production performance.
Collapse
Affiliation(s)
- Jong-Eun Park
- Department of Mechanical Engineering, The State University of New York, Korea (SUNY Korea), Incheon, 21985, Republic of Korea
| | - Hyeono Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - June Sik Hwang
- Department of Mechanical Engineering, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seunggyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seong Jae Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanha Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minyang Yang
- Department of Mechanical Engineering, The State University of New York, Korea (SUNY Korea), Incheon, 21985, Republic of Korea
| |
Collapse
|
3
|
Visbal CA, Cervantes WR, Marín L, Betancourt J, Pérez A, Diosa JE, Rodríguez LA, Mosquera-Vargas E. The Fabrication of Gold Nanostructures as SERS Substrates for the Detection of Contaminants in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1525. [PMID: 39330680 PMCID: PMC11434667 DOI: 10.3390/nano14181525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Gold nanostructures (AuNSs) were used to fabricate surface-enhanced Raman spectroscopy (SERS) substrates. These AuNSs were produced using the solid-state dewetting method from thin films. The fragmentation process was studied at 300 °C, with durations of thermal treatment of 1, 3, 6, and 12 h. These SERS substrates were then employed to detect Rhodamine B (RhB) as the model analyte, simulating a contaminant in the water at a concentration of 5 ppm. The morphology of the AuNSs was examined using SEM, which revealed a spheroidal shape that began to coalesce at 12 h. The size of the AuNSs was estimated to range from 22 ± 7 to 24 ± 6 nm, depending on the annealing time. The localized surface plasmon resonance of the AuNSs was determined using absorption spectroscopy, showing a shift as the annealing time increased. The SERS signals of RhB adsorbed on the AuNS substrates were validated by performing a 10 × 10 point map scan over each sample surface (1, 3, 6, and 12 h), and a comparative analysis showed no significant differences in the positions of the bands; however, variations in intensity enhancement ranged from 5 to 123 times at 6 and 1 h, respectively.
Collapse
Affiliation(s)
- Cristhian A. Visbal
- Grupo de Películas Delgadas, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia; (C.A.V.); (J.B.)
| | - Wilkendry Ramos Cervantes
- Institución Educativa Número Dos, Maicao 442001, Colombia;
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
| | - Lorena Marín
- Grupo de Películas Delgadas, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia; (C.A.V.); (J.B.)
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
| | - John Betancourt
- Grupo de Películas Delgadas, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia; (C.A.V.); (J.B.)
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
| | - Angélica Pérez
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
- Grupo de Óptica Cuántica, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
| | - Jesús E. Diosa
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
- Grupo de Transiciones de Fase y Materiales Funcionales, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
| | - Luis Alfredo Rodríguez
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
- Grupo de Transiciones de Fase y Materiales Funcionales, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
| | - Edgar Mosquera-Vargas
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia; (A.P.); (J.E.D.); (L.A.R.); (E.M.-V.)
- Grupo de Transiciones de Fase y Materiales Funcionales, Departamento de Física, Universidad del Valle, Santiago de Cali 760032, Colombia
| |
Collapse
|
4
|
Yasin HM, Ahmed W, Rehman NU, Majd A, Alkhedher M, Tag El Din EM. Plasma-Assisted Synthesis of Surfactant-Free and D-Fructose-Coated Gold Nanoparticles for Multiple Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7579. [PMID: 36363167 PMCID: PMC9659035 DOI: 10.3390/ma15217579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The excellent optical properties of gold nanoparticles (AuNPs) make them promising for numerous applications. Herein, we present a facile synthesis of both surfactant-free (SF-AuNPs) and non-toxic D-fructose (DF)-coated gold nanoparticles (DF-AuNPs) via the plasma-liquid interactions (PLIs) method. Moreover, we demonstrate that both SF-AuNPs and DF-AuNPs are potential candidates for trace detection via surface-enhanced Raman scattering (SERS) and catalytic degradation of toxic dyes. However, SF-AuNPs have superior SERS and catalytic performance compared to the DF-AuNPs due to their surfactant-free nature. Moreover, SF-AuNPs have also been shown to quench the fluorescence of analyte molecules, making their SERS-based trace detection more efficient. In particular, SERS enhancement of rhodamine 6G (R6G) and catalytic reduction of a toxic dye methylene blue (MB) have been explored.
Collapse
Affiliation(s)
- Hafiz M. Yasin
- Plasma Physics Laboratory, Department of Physics, COMSATS University, Islamabad 45550, Pakistan
| | - W. Ahmed
- Materials Laboratory, Department of Physics, COMSATS University, Islamabad 45550, Pakistan
| | - N. U. Rehman
- Plasma Physics Laboratory, Department of Physics, COMSATS University, Islamabad 45550, Pakistan
| | - Abdul Majd
- Department of Physics, University of Gujrat, Gujrat 50700, Pakistan
| | - Mohammad Alkhedher
- Mechanical and Industrial Engineering Department, Abu Dhabi University, Abu Dhabi 111188, United Arab Emirates
| | - ElSayed M. Tag El Din
- Electrical Engineering Department, Faculty of Engineering & Technology, Future University in Egypt, New Cairo 11835, Egypt
| |
Collapse
|
5
|
A Study on Fabrication Process of Gold Microdisk Arrays by the Direct Imprinting Method Using a PET Film Mold. CRYSTALS 2021. [DOI: 10.3390/cryst11121452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, an efficient nanofabrication process of metal microdisk arrays using direct imprinting was developed. This process was comprised of three steps; sputter etching on the quartz glass substrate, gold thin film deposition on an etched surface of a substrate, and transfer imprinting using a polyethylene terephthalate (PET) film mold on the Au thin film. A new idea to utilize a PET film mold for disk patterning by the nano transfer imprinting was examined. The PET film mold was prepared by thermally embossing the pillar pattern of a master mold on the PET film. The master mold was prepared from a silicon wafer. The PET film mold was used for transfer imprinting on a metal film deposited on a quartz substrate. The experimental results revealed that the PET film mold can effectively form gold micro-disk arrays on the Au film despite the PET film mold being softer than the Au film. This method can control the distribution and orientation of the nano-arrays on the disk. The plasmonic properties of the gold micro-disk arrays are studied and the absorbance spectrum exhibit depends on the distribution and orientation of gold micro-disk patterns. The nano-transfer imprinting technique is useful for fabricating metallic microdisk arrays on substrate as a plasmonic device.
Collapse
|
6
|
Jonker D, Jafari Z, Winczewski JP, Eyovge C, Berenschot JW, Tas NR, Gardeniers JGE, De Leon I, Susarrey-Arce A. A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars. NANOSCALE ADVANCES 2021; 3:4926-4939. [PMID: 34485816 PMCID: PMC8386417 DOI: 10.1039/d1na00316j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Access to nanofabrication strategies for crafting three-dimensional plasmonic structures is limited. In this work, a fabrication strategy to produce 3D plasmonic hollow nanopillars (HNPs) using Talbot lithography and I-line photolithography is introduced. This method is named subtractive hybrid lithography (SHL), and permits intermixed usage of nano-and-macroscale patterns. Sputter-redeposition of gold (Au) on the SHL resist pattern yields large areas of dense periodic Au-HNPs. These Au-HNPs are arranged in a square unit cell with a 250 nm pitch. The carefully controlled fabrication process resulted in Au-HNPs with nanoscale dimensions over the Au-HNP dimensions such as an 80 ± 2 nm thick solid base with a 133 ± 4 nm diameter, and a 170 ± 10 nm high nano-rim with a 14 ± 3 nm sidewall rim-thickness. The plasmonic optical response is assessed with FDTD-modeling and reveals that the highest field enhancement is at the top of the hollow nanopillar rim. The modeled field enhancement factor (EF) is compared to the experimental analytical field enhancement factor, which shows to pair up with ca. 103 < EF < 104 and ca. 103 < EF < 105 for excitation wavelengths of 633 and 785 nm. From a broader perspective, our results can stimulate the use of Au-HNPs in the fields of plasmonic sensors and spectroscopy.
Collapse
Affiliation(s)
- D Jonker
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - Z Jafari
- School of Engineering and Sciences, Tecnologico de Monterrey Monterrey Nuevo Leon 64849 Mexico
| | - J P Winczewski
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - C Eyovge
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - J W Berenschot
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - N R Tas
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - J G E Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - I De Leon
- School of Engineering and Sciences, Tecnologico de Monterrey Monterrey Nuevo Leon 64849 Mexico
| | - A Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| |
Collapse
|
7
|
Kim SJ, Hwang JS, Park JE, Yang M, Kim S. Exploring SERS from complex patterns fabricated by multi-exposure laser interference lithography. NANOTECHNOLOGY 2021; 32:315303. [PMID: 33892481 DOI: 10.1088/1361-6528/abfb32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Designing uniform plasmonic surfaces in a large area is highly recommended for surface-enhanced Raman scattering (SERS). As periodic morphologies exhibit uniform SERS and optical tunability, diverse fabrication methods of periodic nanostructures have been reported for SERS applications. Laser interference lithography (LIL) is one of the most versatile tools since it can rapidly fabricate periodic patterns without the usage of photomasks. Here, we explore complex interference patterns for spatially uniform SERS sensors and its cost-effective fabrication method termed multi-exposure laser interference lithography (MELIL). MELIL can produce nearly periodic profiles along every direction confirmed by mathematical background, and in virtue of periodicity, we show that highly uniform Raman scattering (relative standard deviation <6%) can also be achievable in complex geometries as the conventional hole patterns. We quantitatively characterize the Raman enhancement of the MELIL complex patterns after two different metal deposition processes, Au e-beam evaporation and Ag electroplating, which results in 0.387 × 105and 1.451 × 105in enhancement factor respectively. This alternative, vacuum-free electroplating method realizes an even more cost-effective process with enhanced performance. We further conduct the optical simulation for MELIL complex patterns which exhibits the broadened and shifted absorption peaks. This result supports the potential of the expanded optical tunability of the suggested process.
Collapse
Affiliation(s)
- Seong Jae Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - June Sik Hwang
- Department of Mechanical & Materials Engineering Education, Chungnam National University (CNU), Daejeon, Republic of Korea
| | - Jong-Eun Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Minyang Yang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Mechanical Engineering, The State University of New York Korea (SUNY Korea), Incheon, Republic of Korea
| | - Sanha Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
8
|
Park JE, Oh N, Nam H, Park JH, Kim S, Jeon JS, Yang M. Efficient Capture and Raman Analysis of Circulating Tumor Cells by Nano-Undulated AgNPs-rGO Composite SERS Substrates. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5089. [PMID: 32906807 PMCID: PMC7570931 DOI: 10.3390/s20185089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022]
Abstract
The analysis of circulating tumor cells (CTCs) in the peripheral blood of cancer patients is critical in clinical research for further investigation of tumor progression and metastasis. In this study, we present a novel surface-enhanced Raman scattering (SERS) substrate for the efficient capture and characterization of cancer cells using silver nanoparticles-reduced graphene oxide (AgNPs-rGO) composites. A pulsed laser reduction of silver nanowire-graphene oxide (AgNW-GO) mixture films induces hot-spot formations among AgNPs and artificial biointerfaces consisting of rGOs. We also use in situ electric field-assisted fabrication methods to enhance the roughness of the SERS substrate. The AgNW-GO mixture films, well suited for the proposed process due to its inherent electrophoretic motion, is adjusted between indium tin oxide (ITO) transparent electrodes and the nano-undulated surface is generated by applying direct-current (DC) electric fields during the laser process. As a result, MCF7 breast cancer cells are efficiently captured on the AgNPs-rGO substrates, about four times higher than the AgNWs-GO films, and the captured living cells are successfully analyzed by SERS spectroscopy. Our newly designed bifunctional substrate can be applied as an effective system for the capture and characterization of CTCs.
Collapse
Affiliation(s)
- Jong-Eun Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
| | - Nuri Oh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (N.O.); (J.-H.P.)
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyeono Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (N.O.); (J.-H.P.)
| | - Sanha Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
| | - Jessie S. Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
| | - Minyang Yang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (J.-E.P.); (H.N.); (S.K.)
- Department of Mechanical Engineering, State University of New York Korea, Incheon 21985, Korea
| |
Collapse
|
9
|
Zhang W, Tian Q, Chen Z, Zhao C, Chai H, Wu Q, Li W, Chen X, Deng Y, Song Y. Arrayed nanopore silver thin films for surface-enhanced Raman scattering. RSC Adv 2020; 10:23908-23915. [PMID: 35517352 PMCID: PMC9055119 DOI: 10.1039/d0ra03803b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Active substrates are crucial for surface-enhanced Raman scattering (SERS). Among these substrates, large uniform area arrayed nanoporous silver thin films have been developed as active substrates. Arrayed nanoporous silver thin films with unique anisotropic morphologies and nanoporous structures can be fabricated onto the nanoporous anodic aluminum oxide (AAO) of controlled pore size and interspacing by precisely tuning the sputtering parameters. These thin films preserve locally enhanced electromagnetic fields by exciting the surface plasmon resonance, which is beneficial for SERS. In this study, nanoporous silver thin films were transferred into polymethylmethacrylate (PMMA) and polydimethylsiloxane (PDMS) substrates using our recently invented template-assisted sol-gel phase inverse-imprinting process to form two different nanopore thin films. The as-formed Ag nanoporous thin films on PMMA and PDMS exhibited intensively enhanced SERS signals using Rhodamine 6G (R6G) as the model molecule. The two nanopore thin films exhibited opposite pore size-dependent SERS tendencies, which were elucidated by the different enhancement tendencies of the electric field around pores of different diameters. In particular, the Ag nanoporous thin film on PMMA exhibited an R6G detection limit of as low as 10-6 mol L-1, and the SERS enhancement factor (EF) was more than 106. The low detection limit and large EF demonstrated the high sensitivity of the as-prepared SERS substrates for label-free detection of biomolecules. Compared with conventional smooth films, this nanopore structure can facilitate future application in biomolecular sensors, which allows the detection of single molecules via an electronic readout without requirement for amplification or labels.
Collapse
Affiliation(s)
- Weiwei Zhang
- Centre for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology, Beijing Xueyuan Road 30, Haidian District Beijing 100083 China
- Shunde Graduate School of University of Science and Technology Beijing Daliang Zhihui Road 2, Shunde Distinct Foshan 528399 China
| | - Qingkun Tian
- Centre for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology, Beijing Xueyuan Road 30, Haidian District Beijing 100083 China
| | - Zhanghua Chen
- Centre for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology, Beijing Xueyuan Road 30, Haidian District Beijing 100083 China
| | - Cuicui Zhao
- Centre for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology, Beijing Xueyuan Road 30, Haidian District Beijing 100083 China
| | - Haishuai Chai
- Centre for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology, Beijing Xueyuan Road 30, Haidian District Beijing 100083 China
| | - Qiong Wu
- Centre for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology, Beijing Xueyuan Road 30, Haidian District Beijing 100083 China
| | - Wengang Li
- Xiangan Affiliated Hospital, Xiamen University Siming North Road 422, Siming District Xiamen Fujian 361005 China
| | - Xinhua Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang University Hangzhou 310003 China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University Weijin Road 92, Nankai District Tianjin 300350 China
| | - Yujun Song
- Centre for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology, Beijing Xueyuan Road 30, Haidian District Beijing 100083 China
| |
Collapse
|
10
|
Abstract
Plasmonics is one of the most used domains for applications to optical devices, biological and chemical sensing, and non-linear optics, for instance. Indeed, plasmonics enables confining the electromagnetic field at the nanoscale. The resonances of plasmonic systems can be set in a given domain of a spectrum by adjusting the geometry, the spatial arrangement, and the nature of the materials. Moreover, symmetry breaking can be used for the further improvement of the optical properties of the plasmonic systems. In the last three years, great advances in or insights into the use of symmetry breaking in plasmonics have occurred. In this mini-review, we present recent insights and advances on the use of symmetry breaking in plasmonics for applications to chemistry, sensing, devices, non-linear optics, and chirality.
Collapse
|
11
|
Calligraphed Selective Plasmonic Arrays on Paper Platforms for Complementary Dual Optical "ON/OFF Switch" Sensing. NANOMATERIALS 2020; 10:nano10061025. [PMID: 32471140 PMCID: PMC7352805 DOI: 10.3390/nano10061025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022]
Abstract
Designing innovative (nano)detection platforms, respecting their low-cost and fabrication simplicity, capable to chemically detect multiple target analytes by employing the same engineered device, is still a great challenge in the multiplexed biosensor development. In this scientific context, in the current manuscript, we exploit the low-cost plasmonic calligraphy as a versatile approach to directly draw continuous plasmonic lines on Whatman paper using a regular ballpoint pen successively filled with two different anisotropic nanoparticles shapes (gold bipyramids—AuBPs and gold nanorods—AuNRs) as colloidal inks. After the efficient immobilization of the positively-charged AuBPs and AuNRs onto the paper fibres, proved by Scanning Electron Microscopy (SEM) investigations, the specificity of our as-calligraphed-paper platform is ensured by coating the selected lines with a thin layer of anionic poly(styrene sulfonate) polyelectrolyte, creating, consequently, a well-defined plasmonic array of charge-selective regions. Finally, the functionality of the well-isolated and as-miniaturized active plasmonic array is, subsequently, tested using the anionic Rose-Bengal and cationic Rhodamine 6G target analytes and proved by complementary dual optical “ON/OFF Switch” sensing (i.e. Surface-enhanced Raman Scattering sensing/metal-enhanced fluorescence sensing) onto the same plasmonic line, developing thus a simple multiplexed plasmonic array platform, which could further facilitate the well-desired biomarker detection in complex mixtures.
Collapse
|
12
|
Barbillon G, Ivanov A, Sarychev AK. Hybrid Au/Si Disk-Shaped Nanoresonators on Gold Film for Amplified SERS Chemical Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1588. [PMID: 31717468 PMCID: PMC6915542 DOI: 10.3390/nano9111588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 11/17/2022]
Abstract
We present here the amplification of the surface-enhanced Raman scattering (SERS) signal of nanodisks on a gold film for SERS sensing of small molecules (thiophenol) with an excellent sensitivity. The enhancement is achieved by adding a silicon underlayer for the composition of the nanodisks. We experimentally investigated the sensitivity of the suggested Au/Si disk-shaped nanoresonators for chemical sensing by SERS. We achieved values of enhancement factors of 5 × 10 7 - 6 × 10 7 for thiophenol sensing. Moreover, we remarked that the enhancement factor (EF) values reached experimentally behave qualitatively as those evaluated with the E 4 model.
Collapse
Affiliation(s)
| | - Andrey Ivanov
- Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia; (A.I.); (A.K.S.)
| | - Andrey K. Sarychev
- Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia; (A.I.); (A.K.S.)
| |
Collapse
|
13
|
Formation of Interstitial Hot-Spots Using the Reduced Gap-Size between Plasmonic Microbeads Pattern for Surface-Enhanced Raman Scattering Analysis. SENSORS 2019; 19:s19051046. [PMID: 30823667 PMCID: PMC6427690 DOI: 10.3390/s19051046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022]
Abstract
To achieve an effective surface-enhanced Raman scattering (SERS) sensor with periodically distributed "hot spots" on wafer-scale substrates, we propose a hybrid approach combining physical nano-imprint lithography and a chemical deposition method to form a silver microbead array. Nano-imprint lithography (NIL) can lead to mass-production and high throughput, but is not appropriate for generating strong "hot-spots." However, when we apply electrochemical deposition to an NIL substrate and the reaction time was increased to 45 s, periodical "hot-spots" between the microbeads were generated on the substrates. It contributed to increasing the enhancement factor (EF) and lowering the detection limit of the substrates to 4.40 × 10⁶ and 1.0 × 10-11 M, respectively. In addition, this synthetic method exhibited good substrate-to-substrate reproducibility (RSD < 9.4%). Our research suggests a new opportunity for expanding the SERS application.
Collapse
|