1
|
Higgins CM, Vishwanath SH, McCarthy FM, Gordon ML, Peter B, Miller JE. Normative aging results in degradation of gene networks in a zebra finch basal ganglia nucleus dedicated to vocal behavior. Neurobiol Aging 2025; 149:19-33. [PMID: 39983325 PMCID: PMC11987704 DOI: 10.1016/j.neurobiolaging.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Aging increases brain susceptibility to neurodegenerative diseases, but the mechanisms are not clear. Vocal behavior provides an accessible, reliable, and sensitive biomarker to address this because voice changes in middle age can be early indicators of neurodegenerative diseases. The adult male zebra finch is an excellent model organism for these studies due to well-characterized vocal brain circuitry and strong homology to human brain centers. We performed RNA sequencing of song-dedicated basal ganglia nucleus Area X followed by weighted gene co-expression network analyses to examine changes in gene patterns across younger adult, middle, and older ages. Song-correlated gene networks degrade with age, with modules losing their coherence and migrating to different sets of genes, and changes in connection strength particularly for hub genes including those associated with human speech, Parkinson's, and Alzheimer's diseases. Gene pathway enrichment analyses reveal a lack of ongoing metabolic and biogenic processes in older finches. Our findings provide a robust platform for targeting network hubs in the treatment of neurologically driven human vocal disorders.
Collapse
Affiliation(s)
- Charles M Higgins
- Department of Neuroscience, University of Arizona, 1040 E. 4th St., Tucson, AZ 85721, USA; Department of Electrical and Computer Engineering, University of Arizona, 1230 E. Speedway Blvd., Tucson, AZ 85721, USA.
| | - Sri Harsha Vishwanath
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA.
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA.
| | - Michelle L Gordon
- Department of Neuroscience, University of Arizona, 1040 E. 4th St., Tucson, AZ 85721, USA.
| | - Beate Peter
- College of Health Solutions, Arizona State University, 550 N 3rd Street, Phoenix, AZ 85004, USA.
| | - Julie E Miller
- Department of Neuroscience, University of Arizona, 1040 E. 4th St., Tucson, AZ 85721, USA; Department of Speech, Language and Hearing Sciences, 1131 E 2nd St, Tucson, AZ 85721, USA; Department of Neurology, 1501 N Campbell Avenue, Tucson, AZ 85721, USA.
| |
Collapse
|
2
|
Mondol SIMMR, Kim R, Lee S. Advanced optimization strategies for combining acoustic features and speech recognition error rates in multi-stage classification of Parkinson's disease severity. Biomed Eng Lett 2025; 15:497-511. [PMID: 40271398 PMCID: PMC12011695 DOI: 10.1007/s13534-025-00465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 02/06/2025] [Indexed: 04/25/2025] Open
Abstract
Recent research has made significant progress with definitively identifying individuals with Parkinson's disease (PD) using speech analysis techniques. However, these studies have often treated the early and advanced stages of PD as equivalent, overlooking the distinct speech impairments and symptoms that can vary significantly across the various stages. This research aims to enhance diagnostic accuracy by utilizing advanced optimization strategies to combine speech recognition results (character error rates) with the acoustic features of vowels for more rigorous diagnostic precision. The dysphonia features of three sustained Korean vowels /아/ (a), /이/ (i), and /우/ (u) were examined for their diversity and strong correlations. Four recognized machine-learning classifiers: Random Forest, Support Vector Machine, k-Nearest Neighbors, and Multi-Layer Perceptron, were employed for consistent and reliable analysis. By fine-tuning the Whisper model specifically for PD speech recognition and optimizing it for each severity level of PD, we significantly improved the discernibility between PD severity levels. This enhancement, when combined with vowel data, allowed for a more precise classification, achieving an improved detection accuracy of 5.87% for a 3-level severity classification over the PD "ON"-state dataset, and an improved detection accuracy of 7.8% for a 3-level severity classification over the PD "OFF"-state dataset. This comprehensive approach not only evaluates the effectiveness of different feature extraction methods but also minimizes the variance across final classification models, thus detecting varying severity levels of PD more effectively.
Collapse
Affiliation(s)
- S I M M Raton Mondol
- Department of Electrical and Computer Engineering, Inha University, Incheon, Korea
| | - Ryul Kim
- Department of Neurology, SMG - SNU Boramae Medical Center, Seoul, Korea
| | - Sangmin Lee
- Department of Electrical and Computer Engineering, Inha University, Incheon, Korea
| |
Collapse
|
3
|
Meral M, Ozbilgin F, Durmus F. Fine-Tuned Machine Learning Classifiers for Diagnosing Parkinson's Disease Using Vocal Characteristics: A Comparative Analysis. Diagnostics (Basel) 2025; 15:645. [PMID: 40075891 PMCID: PMC11898924 DOI: 10.3390/diagnostics15050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: This paper is significant in highlighting the importance of early and precise diagnosis of Parkinson's Disease (PD) that affects both motor and non-motor functions to achieve better disease control and patient outcomes. This study seeks to assess the effectiveness of machine learning algorithms optimized to classify PD based on vocal characteristics to serve as a non-invasive and easily accessible diagnostic tool. Methods: This study used a publicly available dataset of vocal samples from 188 people with PD and 64 controls. Acoustic features like baseline characteristics, time-frequency components, Mel Frequency Cepstral Coefficients (MFCCs), and wavelet transform-based metrics were extracted and analyzed. The Chi-Square test was used for feature selection to determine the most important attributes that enhanced the accuracy of the classification. Six different machine learning classifiers, namely SVM, k-NN, DT, NN, Ensemble and Stacking models, were developed and optimized via Bayesian Optimization (BO), Grid Search (GS) and Random Search (RS). Accuracy, precision, recall, F1-score and AUC-ROC were used for evaluation. Results: It has been found that Stacking models, especially those fine-tuned via Grid Search, yielded the best performance with 92.07% accuracy and an F1-score of 0.95. In addition to that, the choice of relevant vocal features, in conjunction with the Chi-Square feature selection method, greatly enhanced the computational efficiency and classification performance. Conclusions: This study highlights the potential of combining advanced feature selection techniques with hyperparameter optimization strategies to enhance machine learning-based PD diagnosis using vocal characteristics. Ensemble models proved particularly effective in handling complex datasets, demonstrating robust diagnostic performance. Future research may focus on deep learning approaches and temporal feature integration to further improve diagnostic accuracy and scalability for clinical applications.
Collapse
Affiliation(s)
- Mehmet Meral
- Department of Neurosurgery, Private Erciyes Hospital, Kayseri 38020, Türkiye;
| | - Ferdi Ozbilgin
- Department of Electrical and Electronic Engineering, Giresun University, Giresun 28200, Türkiye
| | - Fatih Durmus
- Department of Electrical and Electronic Engineering, Ondokuz Mayıs University, Samsun 55270, Türkiye;
| |
Collapse
|
4
|
Freire-Álvarez E, Ramírez IL, García-Ramos R, Carrillo F, Santos-García D, Gómez-Esteban JC, Martínez-Castrillo JC, Martínez-Torres I, Madrid-Navarro CJ, Pérez-Navarro MJ, Valero-García F, Vives-Pastor B, Muñoz-Delgado L, Tijero B, Martínez CM, Valls JM, Aler R, Galván IM, Escamilla-Sevilla F. Artificial intelligence for identification of candidates for device-aided therapy in Parkinson's disease: DELIST-PD study. Comput Biol Med 2025; 185:109504. [PMID: 39637457 DOI: 10.1016/j.compbiomed.2024.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION In Parkinson's Disease (PD), despite available treatments focusing on symptom alleviation, the effectiveness of conventional therapies decreases over time. This study aims to enhance the identification of candidates for device-aided therapies (DAT) using artificial intelligence (AI), addressing the need for improved treatment selection in advanced PD stages. METHODS This national, multicenter, cross-sectional, observational study involved 1086 PD patients across Spain. Machine learning (ML) algorithms, including CatBoost, support vector machine (SVM), and logistic regression (LR), were evaluated for their ability to identify potential DAT candidates based on clinical and demographic data. RESULTS The CatBoost algorithm demonstrated superior performance in identifying DAT candidates, with an area under the curve (AUC) of 0.95, sensitivity of 0.91, and specificity of 0.88. It outperformed other ML models in balanced accuracy and negative predictive value. The model identified 23 key features as predictors for suitability for DAT, highlighting the importance of daily "off" time, doses of oral levodopa/day, and PD duration. Considering the 5-2-1 criteria, the algorithm identified a decision threshold for DAT candidates as > 4 times levodopa tablets taken daily and/or ≥1.8 h in daily "off" time. CONCLUSION The study developed a highly discriminative CatBoost model for identifying PD patients candidates for DAT, potentially improving timely and accurate treatment selection. This AI approach offers a promising tool for neurologists, particularly those less experienced with DAT, to optimize referral to Movement Disorder Units.
Collapse
Affiliation(s)
| | | | - Rocio García-Ramos
- Departament of Neurology, Instituto de Neurociencias, Hospital Clínico San Carlos, Madrid, Spain
| | - Fátima Carrillo
- Movement Disorders Unit, Neurology and Clinical Neurophysiology department, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Diego Santos-García
- Departament of Neurology, Complejo Hospitalario Universitario de A Coruña-INIBIC, A Coruña, Spain
| | | | | | | | - Carlos J Madrid-Navarro
- Departament of Neurology, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - María José Pérez-Navarro
- Departament of Neurology, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | | | - Laura Muñoz-Delgado
- Movement Disorders Unit, Neurology and Clinical Neurophysiology department, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Beatriz Tijero
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Department of Neurology, Cruces University Hospital-OSAKIDETZA, Barakaldo, Spain
| | | | - José M Valls
- Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain
| | - Ricardo Aler
- Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain
| | - Inés M Galván
- Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain
| | - Francisco Escamilla-Sevilla
- Departament of Neurology, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|
5
|
Wang X, Li S, Pun CM, Guo Y, Xu F, Gao H, Lu H. A Parkinson's Auxiliary Diagnosis Algorithm Based on a Hyperparameter Optimization Method of Deep Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:912-923. [PMID: 37027659 DOI: 10.1109/tcbb.2023.3246961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Parkinson's disease is a common mental disease in the world, especially in the middle-aged and elderly groups. Today, clinical diagnosis is the main diagnostic method of Parkinson's disease, but the diagnosis results are not ideal, especially in the early stage of the disease. In this paper, a Parkinson's auxiliary diagnosis algorithm based on a hyperparameter optimization method of deep learning is proposed for the Parkinson's diagnosis. The diagnosis system uses ResNet50 to achieve feature extraction and Parkinson's classification, mainly including speech signal processing part, algorithm improvement part based on Artificial Bee Colony algorithm (ABC) and optimizing the hyperparameters of ResNet50 part. The improved algorithm is called Gbest Dimension Artificial Bee Colony algorithm (GDABC), proposing "Range pruning strategy" which aims at narrowing the scope of search and "Dimension adjustment strategy" which is to adjust gbest dimension by dimension. The accuracy of the diagnosis system in the verification set of Mobile Device Voice Recordings at King's College London (MDVR-CKL) dataset can reach more than 96%. Compared with current Parkinson's sound diagnosis methods and other optimization algorithms, our auxiliary diagnosis system shows better classification performance on the dataset within limited time and resources.
Collapse
|
6
|
Wang Q, Zeng W, Dai X. Gait classification for early detection and severity rating of Parkinson's disease based on hybrid signal processing and machine learning methods. Cogn Neurodyn 2024; 18:109-132. [PMID: 38406205 PMCID: PMC10881932 DOI: 10.1007/s11571-022-09925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 12/03/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is one of the cognitive degenerative disorders of the central nervous system that affects the motor system. Gait dysfunction represents the pathology of motor symptom while gait analysis provides clinicians with subclinical information reflecting subtle differences between PD patients and healthy controls (HCs). Currently neurologists usually assess several clinical manifestations of the PD patients and rate the severity level according to some established criteria. This is highly dependent on clinician's expertise which is subjective and ineffective. In the present study we address these issues by proposing a hybrid signal processing and machine learning based gait classification system for gait anomaly detection and severity rating of PD patients. Time series of vertical ground reaction force (VGRF) data are utilized to represent discriminant gait information. First, phase space of the VGRF is reconstructed, in which the properties associated with the nonlinear gait system dynamics are preserved. Then Shannon energy is used to extract the characteristic envelope of the phase space signal. Third, Shannon energy envelope is decomposed into high and low resonance components using dual Q-factor signal decomposition derived from tunable Q-factor wavelet transform. Note that the high Q-factor component consists largely of sustained oscillatory behavior, while the low Q-factor component consists largely of transients and oscillations that are not sustained. Fourth, variational mode decomposition is employed to decompose high and low resonance components into different intrinsic modes and provide representative features. Finally features are fed to five different types of machine learning based classifiers for the anomaly detection and severity rating of PD patients based on Hohen and Yahr (HY) scale. The effectiveness of this strategy is verified using a Physionet gait database consisting of 93 idiopathic PD patients and 73 age-matched asymptomatic HCs. When evaluated with 10-fold cross-validation method for early PD detection and severity rating, the highest classification accuracy is reported to be 98.20 % and 96.69 % , respectively, by using the support vector machine classifier. Compared with other state-of-the-art methods, the results demonstrate superior performance and support the validity of the proposed method.
Collapse
Affiliation(s)
- Qinghui Wang
- School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan, 364012 People’s Republic of China
| | - Wei Zeng
- School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan, 364012 People’s Republic of China
| | - Xiangkun Dai
- School of Physics and Mechanical and Electrical Engineering, Longyan University, Longyan, 364012 People’s Republic of China
| |
Collapse
|
7
|
Chato L, Regentova E. Survey of Transfer Learning Approaches in the Machine Learning of Digital Health Sensing Data. J Pers Med 2023; 13:1703. [PMID: 38138930 PMCID: PMC10744730 DOI: 10.3390/jpm13121703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Machine learning and digital health sensing data have led to numerous research achievements aimed at improving digital health technology. However, using machine learning in digital health poses challenges related to data availability, such as incomplete, unstructured, and fragmented data, as well as issues related to data privacy, security, and data format standardization. Furthermore, there is a risk of bias and discrimination in machine learning models. Thus, developing an accurate prediction model from scratch can be an expensive and complicated task that often requires extensive experiments and complex computations. Transfer learning methods have emerged as a feasible solution to address these issues by transferring knowledge from a previously trained task to develop high-performance prediction models for a new task. This survey paper provides a comprehensive study of the effectiveness of transfer learning for digital health applications to enhance the accuracy and efficiency of diagnoses and prognoses, as well as to improve healthcare services. The first part of this survey paper presents and discusses the most common digital health sensing technologies as valuable data resources for machine learning applications, including transfer learning. The second part discusses the meaning of transfer learning, clarifying the categories and types of knowledge transfer. It also explains transfer learning methods and strategies, and their role in addressing the challenges in developing accurate machine learning models, specifically on digital health sensing data. These methods include feature extraction, fine-tuning, domain adaptation, multitask learning, federated learning, and few-/single-/zero-shot learning. This survey paper highlights the key features of each transfer learning method and strategy, and discusses the limitations and challenges of using transfer learning for digital health applications. Overall, this paper is a comprehensive survey of transfer learning methods on digital health sensing data which aims to inspire researchers to gain knowledge of transfer learning approaches and their applications in digital health, enhance the current transfer learning approaches in digital health, develop new transfer learning strategies to overcome the current limitations, and apply them to a variety of digital health technologies.
Collapse
Affiliation(s)
- Lina Chato
- Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, NV 89154, USA;
| | | |
Collapse
|
8
|
Liu W, Liu J, Peng T, Wang G, Balas VE, Geman O, Chiu HW. Prediction of Parkinson’s disease based on artificial neural networks using speech datasets. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2023; 14:13571-13584. [DOI: 10.1007/s12652-022-03825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 03/10/2022] [Indexed: 02/05/2023]
|
9
|
Idrisoglu A, Dallora AL, Anderberg P, Berglund JS. Applied Machine Learning Techniques to Diagnose Voice-Affecting Conditions and Disorders: Systematic Literature Review. J Med Internet Res 2023; 25:e46105. [PMID: 37467031 PMCID: PMC10398366 DOI: 10.2196/46105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Normal voice production depends on the synchronized cooperation of multiple physiological systems, which makes the voice sensitive to changes. Any systematic, neurological, and aerodigestive distortion is prone to affect voice production through reduced cognitive, pulmonary, and muscular functionality. This sensitivity inspired using voice as a biomarker to examine disorders that affect the voice. Technological improvements and emerging machine learning (ML) technologies have enabled possibilities of extracting digital vocal features from the voice for automated diagnosis and monitoring systems. OBJECTIVE This study aims to summarize a comprehensive view of research on voice-affecting disorders that uses ML techniques for diagnosis and monitoring through voice samples where systematic conditions, nonlaryngeal aerodigestive disorders, and neurological disorders are specifically of interest. METHODS This systematic literature review (SLR) investigated the state of the art of voice-based diagnostic and monitoring systems with ML technologies, targeting voice-affecting disorders without direct relation to the voice box from the point of view of applied health technology. Through a comprehensive search string, studies published from 2012 to 2022 from the databases Scopus, PubMed, and Web of Science were scanned and collected for assessment. To minimize bias, retrieval of the relevant references in other studies in the field was ensured, and 2 authors assessed the collected studies. Low-quality studies were removed through a quality assessment and relevant data were extracted through summary tables for analysis. The articles were checked for similarities between author groups to prevent cumulative redundancy bias during the screening process, where only 1 article was included from the same author group. RESULTS In the analysis of the 145 included studies, support vector machines were the most utilized ML technique (51/145, 35.2%), with the most studied disease being Parkinson disease (PD; reported in 87/145, 60%, studies). After 2017, 16 additional voice-affecting disorders were examined, in contrast to the 3 investigated previously. Furthermore, an upsurge in the use of artificial neural network-based architectures was observed after 2017. Almost half of the included studies were published in last 2 years (2021 and 2022). A broad interest from many countries was observed. Notably, nearly one-half (n=75) of the studies relied on 10 distinct data sets, and 11/145 (7.6%) used demographic data as an input for ML models. CONCLUSIONS This SLR revealed considerable interest across multiple countries in using ML techniques for diagnosing and monitoring voice-affecting disorders, with PD being the most studied disorder. However, the review identified several gaps, including limited and unbalanced data set usage in studies, and a focus on diagnostic test rather than disorder-specific monitoring. Despite the limitations of being constrained by only peer-reviewed publications written in English, the SLR provides valuable insights into the current state of research on ML-based voice-affecting disorder diagnosis and monitoring and highlighting areas to address in future research.
Collapse
Affiliation(s)
- Alper Idrisoglu
- Department of Health, Blekinge Institute of Technology, Karslkrona, Sweden
| | - Ana Luiza Dallora
- Department of Health, Blekinge Institute of Technology, Karslkrona, Sweden
| | - Peter Anderberg
- Department of Health, Blekinge Institute of Technology, Karslkrona, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
| | | |
Collapse
|
10
|
Wen P, Zhang Y, Wen G. Intelligent personalized diagnosis modeling in advanced medical system for Parkinson's disease using voice signals. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:8085-8102. [PMID: 37161187 DOI: 10.3934/mbe.2023351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Currently, machine learning methods have been utilized to realize the early detection of Parkinson's disease (PD) by using voice signals. Because the vocal system of each person is unique, and the same person's pronunciation can be different at different times, the training samples used in machine learning become very different from the speech signal of the patient to be diagnosed, frequently resulting in poor diagnostic performance. On this account, this paper presents a new intelligent personalized diagnosis method (PDM) for Parkinson's disease. The method was designed to begin with constructing new training data by assigning the best classifier to each training sample composed of features from the speech signals of patients. Subsequently, a meta-classifier was trained on the new training data. Finally, for the signal of each test patient, the method used the meta-classifier to select the most appropriate classifier, followed by adopting the selected classifier to classify the signal so that the more accurate diagnosis result of the test patient can be obtained. The novelty of the proposed method is that the proposed method uses different classifiers to perform the diagnosis of PD for diversified patients, whereas the current method uses the same classifier to diagnose all patients to be tested. Results of a large number of experiments show that PDM not only improves the performance but also exceeds the existing methods in speed.
Collapse
Affiliation(s)
- Pengcheng Wen
- College of Intelligent Systems Science and Engineering, Hubei University for Nationalities, Enshi 445000, China
| | - Yuhan Zhang
- Southern Medical University, Affiliated Dongguan Songshan Lake Central Hospital, Dongguan 523000, China
| | - Guihua Wen
- School of Computer Science & Engineering, South China University of Technology, Guangzhou 510000, China
| |
Collapse
|
11
|
Li Y, Liu C, Wang P, Zhang H, Wei A, Zhang Y. Envelope multi-type transformation ensemble algorithm of Parkinson speech samples. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
12
|
Barukab O, Ahmad A, Khan T, Thayyil Kunhumuhammed MR. Analysis of Parkinson's Disease Using an Imbalanced-Speech Dataset by Employing Decision Tree Ensemble Methods. Diagnostics (Basel) 2022; 12:diagnostics12123000. [PMID: 36553007 PMCID: PMC9776735 DOI: 10.3390/diagnostics12123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) currently affects approximately 10 million people worldwide. The detection of PD positive subjects is vital in terms of disease prognostics, diagnostics, management and treatment. Different types of early symptoms, such as speech impairment and changes in writing, are associated with Parkinson disease. To classify potential patients of PD, many researchers used machine learning algorithms in various datasets related to this disease. In our research, we study the dataset of the PD vocal impairment feature, which is an imbalanced dataset. We propose comparative performance evaluation using various decision tree ensemble methods, with or without oversampling techniques. In addition, we compare the performance of classifiers with different sizes of ensembles and various ratios of the minority class and the majority class with oversampling and undersampling. Finally, we combine feature selection with best-performing ensemble classifiers. The result shows that AdaBoost, random forest, and decision tree developed for the RUSBoost imbalanced dataset perform well in performance metrics such as precision, recall, F1-score, area under the receiver operating characteristic curve (AUROC) and the geometric mean. Further, feature selection methods, namely lasso and information gain, were used to screen the 10 best features using the best ensemble classifiers. AdaBoost with information gain feature selection method is the best performing ensemble method with an F1-score of 0.903.
Collapse
Affiliation(s)
- Omar Barukab
- Department of Information Technology, Faculty of Computing and Information Technology in Rabigh (FCITR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | - Amir Ahmad
- College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Tabrej Khan
- Department of Information Systems, Faculty of Computing and Information Technology in Rabigh (FCITR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mujeeb Rahiman Thayyil Kunhumuhammed
- Department of Computer Science, Faculty of Computing and Information Technology in Rabigh (FCITR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Yousif NR, Balaha HM, Haikal AY, El-Gendy EM. A generic optimization and learning framework for Parkinson disease via speech and handwritten records. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2022; 14:1-21. [PMID: 36042792 PMCID: PMC9411848 DOI: 10.1007/s12652-022-04342-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with slow progression whose symptoms can be identified at late stages. Early diagnosis and treatment of PD can help to relieve the symptoms and delay progression. However, this is very challenging due to the similarities between the symptoms of PD and other diseases. The current study proposes a generic framework for the diagnosis of PD using handwritten images and (or) speech signals. For the handwriting images, 8 pre-trained convolutional neural networks (CNN) via transfer learning tuned by Aquila Optimizer were trained on the NewHandPD dataset to diagnose PD. For the speech signals, features from the MDVR-KCL dataset are extracted numerically using 16 feature extraction algorithms and fed to 4 different machine learning algorithms tuned by Grid Search algorithm, and graphically using 5 different techniques and fed to the 8 pretrained CNN structures. The authors propose a new technique in extracting the features from the voice dataset based on the segmentation of variable speech-signal-segment-durations, i.e., the use of different durations in the segmentation phase. Using the proposed technique, 5 datasets with 281 numerical features are generated. Results from different experiments are collected and recorded. For the NewHandPD dataset, the best-reported metric is 99.75% using the VGG19 structure. For the MDVR-KCL dataset, the best-reported metrics are 99.94% using the KNN and SVM ML algorithms and the combined numerical features; and 100% using the combined the mel-specgram graphical features and VGG19 structure. These results are better than other state-of-the-art researches.
Collapse
Affiliation(s)
- Nada R. Yousif
- Computer and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Hossam Magdy Balaha
- Computer and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Amira Y. Haikal
- Computer and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Eman M. El-Gendy
- Computer and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Bao G, Lin M, Sang X, Hou Y, Liu Y, Wu Y. Classification of Dysphonic Voices in Parkinson's Disease with Semi-Supervised Competitive Learning Algorithm. BIOSENSORS 2022; 12:502. [PMID: 35884305 PMCID: PMC9312485 DOI: 10.3390/bios12070502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
This article proposes a novel semi-supervised competitive learning (SSCL) algorithm for vocal pattern classifications in Parkinson’s disease (PD). The acoustic parameters of voice records were grouped into the families of jitter, shimmer, harmonic-to-noise, frequency, and nonlinear measures, respectively. The linear correlations were computed within each acoustic parameter family. According to the correlation matrix results, the jitter, shimmer, and harmonic-to-noise parameters presented as highly correlated in terms of Pearson’s correlation coefficients. Then, the principal component analysis (PCA) technique was implemented to eliminate the redundant dimensions of the acoustic parameters for each family. The Mann−Whitney−Wilcoxon hypothesis test was used to evaluate the significant difference of the PCA-projected features between the healthy subjects and PD patients. Eight dominant PCA-projected features were selected based on the eigenvalue threshold criterion and the statistical significance level (p < 0.05) of the hypothesis test. The SSCL algorithm proposed in this paper included the procedures of the competitive prototype seed selection, K-means optimization, and the nearest neighbor classifications. The pattern classification experimental results showed that the proposed SSCL method can provide the excellent diagnostic performances in terms of accuracy (0.838), recall (0.825), specificity (0.85), precision (0.846), F-score (0.835), Matthews correlation coefficient (0.675), area under the receiver operating characteristic curve (0.939), and Kappa coefficient (0.675), which were consistently better than those results of conventional KNN or SVM classifiers.
Collapse
|
15
|
Tougui I, Jilbab A, Mhamdi JE. Machine Learning Smart System for Parkinson Disease Classification Using the Voice as a Biomarker. Healthc Inform Res 2022; 28:210-221. [PMID: 35982595 PMCID: PMC9388925 DOI: 10.4258/hir.2022.28.3.210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES This study presents PD Predict, a machine learning system for Parkinson disease classification using voice as a biomarker. METHODS We first created an original set of recordings from the mPower study, and then extracted several audio features, such as mel-frequency cepstral coefficient (MFCC) components and other classical speech features, using a windowing procedure. The generated dataset was then divided into training and holdout sets. The training set was used to train two machine learning pipelines, and their performance was estimated using a nested subject-wise cross-validation approach. The holdout set was used to assess the generalizability of the pipelines for unseen data. The final pipelines were implemented in PD Predict and accessed through a prediction endpoint developed using the Django REST Framework. PD Predict is a two-component system: a desktop application that records audio recordings, extracts audio features, and makes predictions; and a server-side web application that implements the machine learning pipelines and processes incoming requests with the extracted audio features to make predictions. Our system is deployed and accessible via the following link: https://pdpredict.herokuapp.com/. RESULTS Both machine learning pipelines showed moderate performance, between 65% and 75% using the nested subject-wise cross-validation approach. Furthermore, they generalized well to unseen data and they did not overfit the training set. CONCLUSIONS The architecture of PD Predict is clear, and the performance of the implemented machine learning pipelines is promising and confirms the usability of smartphone microphones for capturing digital biomarkers of disease.
Collapse
Affiliation(s)
- Ilias Tougui
- E2SN, ENSIAS, Mohammed V University in Rabat, Rabat, Morocco
| | | | - Jamal El Mhamdi
- E2SN, ENSIAS, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
16
|
Movie Recommender Systems: Concepts, Methods, Challenges, and Future Directions. SENSORS 2022; 22:s22134904. [PMID: 35808398 PMCID: PMC9269752 DOI: 10.3390/s22134904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Movie recommender systems are meant to give suggestions to the users based on the features they love the most. A highly performing movie recommendation will suggest movies that match the similarities with the highest degree of performance. This study conducts a systematic literature review on movie recommender systems. It highlights the filtering criteria in the recommender systems, algorithms implemented in movie recommender systems, the performance measurement criteria, the challenges in implementation, and recommendations for future research. Some of the most popular machine learning algorithms used in movie recommender systems such as K-means clustering, principal component analysis, and self-organizing maps with principal component analysis are discussed in detail. Special emphasis is given to research works performed using metaheuristic-based recommendation systems. The research aims to bring to light the advances made in developing the movie recommender systems, and what needs to be performed to reduce the current challenges in implementing the feasible solutions. The article will be helpful to researchers in the broad area of recommender systems as well as practicing data scientists involved in the implementation of such systems.
Collapse
|
17
|
Effect of Process Parameters on Tensile Strength of FDM Printed Carbon Fiber Reinforced Polyamide Parts. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reinforcing the polymer with nanoparticles and fibers improves the mechanical, thermal and electrical properties. Owing to this, the functional parts produced by the FDM process of such materials can be used in industrial applications. However, optimal parameters’ selection is crucial to produce parts with optimal properties, such as mechanical strength. This paper focuses on the analysis of influential process parameters on the tensile strength of FDM printed parts. Two statistical methods, RSM and ANN, were applied to investigate the effect the layer thickness, printing speed, raster angle and wall thickness on the tensile strength of test specimens printed with a short carbon fiber reinforced polyamide composite. The reduced cubic model was developed by the RSM method, and the correlation between the input parameters and the output response was analyzed by ANOVA. The results show that the layer thickness and raster angle have the most significant influence on tensile strength. As for machine learning, among the nine different tested ANN topologies, the best configuration was found based on the lowest MAE and MSE test sample result. The results show that the proposed model could be a useful tool for predicting tensile strength. Its main advantage is the reduction in time needed for experiments with the LOSO (leave one subject out) k-fold cross validation scheme, offering better generalization ability, given the small set of learning examples.
Collapse
|
18
|
Lima AA, Mridha MF, Das SC, Kabir MM, Islam MR, Watanobe Y. A Comprehensive Survey on the Detection, Classification, and Challenges of Neurological Disorders. BIOLOGY 2022; 11:469. [PMID: 35336842 PMCID: PMC8945195 DOI: 10.3390/biology11030469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023]
Abstract
Neurological disorders (NDs) are becoming more common, posing a concern to pregnant women, parents, healthy infants, and children. Neurological disorders arise in a wide variety of forms, each with its own set of origins, complications, and results. In recent years, the intricacy of brain functionalities has received a better understanding due to neuroimaging modalities, such as magnetic resonance imaging (MRI), magnetoencephalography (MEG), and positron emission tomography (PET), etc. With high-performance computational tools and various machine learning (ML) and deep learning (DL) methods, these modalities have discovered exciting possibilities for identifying and diagnosing neurological disorders. This study follows a computer-aided diagnosis methodology, leading to an overview of pre-processing and feature extraction techniques. The performance of existing ML and DL approaches for detecting NDs is critically reviewed and compared in this article. A comprehensive portion of this study also shows various modalities and disease-specified datasets that detect and records images, signals, and speeches, etc. Limited related works are also summarized on NDs, as this domain has significantly fewer works focused on disease and detection criteria. Some of the standard evaluation metrics are also presented in this study for better result analysis and comparison. This research has also been outlined in a consistent workflow. At the conclusion, a mandatory discussion section has been included to elaborate on open research challenges and directions for future work in this emerging field.
Collapse
Affiliation(s)
- Aklima Akter Lima
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - M. Firoz Mridha
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - Sujoy Chandra Das
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - Muhammad Mohsin Kabir
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (A.A.L.); (M.F.M.); (S.C.D.); (M.M.K.)
| | - Md. Rashedul Islam
- Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh
| | - Yutaka Watanobe
- Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan;
| |
Collapse
|
19
|
Ali L, Chakraborty C, He Z, Cao W, Imrana Y, Rodrigues JJPC. A novel sample and feature dependent ensemble approach for Parkinson’s disease detection. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractParkinson’s disease (PD) is a neurological disease that has been reported to have affected most people worldwide. Recent research pointed out that about 90% of PD patients possess voice disorders. Motivated by this fact, many researchers proposed methods based on multiple types of speech data for PD prediction. However, these methods either face the problem of low rate of accuracy or lack generalization. To develop an approach that will be free of these issues, in this paper we propose a novel ensemble approach. These paper contributions are two folds. First, investigating feature selection integration with deep neural network (DNN) and validating its effectiveness by comparing its performance with conventional DNN and other similar integrated systems. Second, development of a novel ensemble model namely EOFSC (Ensemble model with Optimal Features and Sample Dependant Base Classifiers) that exploits the findings of recently published studies. Recent research pointed out that for different types of voice data, different optimal models are obtained which are sensitive to different types of samples and subsets of features. In this paper, we further consolidate the findings by utilizing the proposed integrated system and propose the development of EOFSC. For multiple types of vowel phonations, multiple base classifiers are obtained which are sensitive to different subsets of features. These features and sample-dependent base classifiers are integrated, and the proposed EOFSC model is constructed. To evaluate the final prediction of the EOFSC model, the majority voting methodology is adopted. Experimental results point out that feature selection integration with neural networks improves the performance of conventional neural networks. Additionally, feature selection integration with DNN outperforms feature selection integration with conventional machine learning models. Finally, the newly developed ensemble model is observed to improve PD detection accuracy by 6.5%.
Collapse
|
20
|
Hireš M, Gazda M, Drotár P, Pah ND, Motin MA, Kumar DK. Convolutional neural network ensemble for Parkinson's disease detection from voice recordings. Comput Biol Med 2021; 141:105021. [PMID: 34799077 DOI: 10.1016/j.compbiomed.2021.105021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/03/2022]
Abstract
The computerized detection of Parkinson's disease (PD) will facilitate population screening and frequent monitoring and provide a more objective measure of symptoms, benefiting both patients and healthcare providers. Dysarthria is an early symptom of the disease and examining it for computerized diagnosis and monitoring has been proposed. Deep learning-based approaches have advantages for such applications because they do not require manual feature extraction, and while this approach has achieved excellent results in speech recognition, its utilization in the detection of pathological voices is limited. In this work, we present an ensemble of convolutional neural networks (CNNs) for the detection of PD from the voice recordings of 50 healthy people and 50 people with PD obtained from PC-GITA, a publicly available database. We propose a multiple-fine-tuning method to train the base CNN. This approach reduces the semantical gap between the source task that has been used for network pretraining and the target task by expanding the training process by including training on another dataset. Training and testing were performed for each vowel separately, and a 10-fold validation was performed to test the models. The performance was measured by using accuracy, sensitivity, specificity and area under the ROC curve (AUC). The results show that this approach was able to distinguish between the voices of people with PD and those of healthy people for all vowels. While there were small differences between the different vowels, the best performance was when/a/was considered; we achieved 99% accuracy, 86.2% sensitivity, 93.3% specificity and 89.6% AUC. This shows that the method has potential for use in clinical practice for the screening, diagnosis and monitoring of PD, with the advantage that vowel-based voice recordings can be performed online without requiring additional hardware.
Collapse
Affiliation(s)
- Máté Hireš
- Intelligent Information Systems Lab, Technical University of Košice, Letná 9, 42001, Košice, Slovakia
| | - Matej Gazda
- Intelligent Information Systems Lab, Technical University of Košice, Letná 9, 42001, Košice, Slovakia
| | - Peter Drotár
- Intelligent Information Systems Lab, Technical University of Košice, Letná 9, 42001, Košice, Slovakia.
| | | | | | | |
Collapse
|
21
|
Hybrid Feature Selection Framework for the Parkinson Imbalanced Dataset Prediction Problem. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111217. [PMID: 34833435 PMCID: PMC8619928 DOI: 10.3390/medicina57111217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Recently, many studies have focused on the early detection of Parkinson's disease (PD). This disease belongs to a group of neurological problems that immediately affect brain cells and influence the movement, hearing, and various cognitive functions. Medical data sets are often not equally distributed in their classes and this gives a bias in the classification of patients. We performed a Hybrid feature selection framework that can deal with imbalanced datasets like PD. Use the SOMTE algorithm to deal with unbalanced datasets. Removing the contradiction from the features in the dataset and decrease the processing time by using Recursive Feature Elimination (RFE), and Principle Component Analysis (PCA). Materials and Methods: PD acoustic datasets and the characteristics of control subjects were used to construct classification models such as Bagging, K-nearest neighbour (KNN), multilayer perceptron, and the support vector machine (SVM). In the prepressing stage, the synthetic minority over-sampling technique (SMOTE) with two-feature selection RFE and PCA were used. The PD dataset comprises a large difference between the numbers of the infected and uninfected patients, which causes the classification bias problem. Therefore, SMOTE was used to resolve this problem. Results: For model evaluation, the train-test split technique was used for the experiment. All the models were Grid-search tuned, the evaluation results of the SVM model showed the highest accuracy of 98.2%, and the KNN model exhibited the highest specificity of 99%. Conclusions: the proposed method is compared with the current modern methods of detecting Parkinson's disease and other methods for medical diseases, it was noted that our developed system could treat data bias and reach a high prediction of PD and this can be beneficial for health organizations to properly prioritize assets.
Collapse
|
22
|
Prediction of Surface Roughness of an Abrasive Water Jet Cut Using an Artificial Neural Network. MATERIALS 2021; 14:ma14113108. [PMID: 34198903 PMCID: PMC8201306 DOI: 10.3390/ma14113108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/16/2022]
Abstract
The study’s primary purpose was to explore the abrasive water jet (AWJ) cut machinability of stainless steel X5CrNi18-10 (1.4301). The study analyzed the effects of such process parameters as the traverse speed (TS), the depth of cut (DC), and the abrasive mass flow rate (AR) on the surface roughness (Ra) concerning the thickness of the workpiece. Three different thicknesses were cut under different conditions; the Ra was measured at the top, in the middle, and the bottom of the cut. Experimental results were used in the developed feed-forward artificial neural network (ANN) to predict the Ra. The ANN’s model was validated using k-fold cross-validation. A lowest test root mean squared error (RMSE) of 0.2084 was achieved. The results of the predicted Ra by the ANN model and the results of the experimental data were compared. Additionally, as TS and DC were recognized, analysis of variance at a 95% confidence level was used to determine the most significant factors. Consequently, the ANN input parameters were modified, resulting in improved prediction; results show that the proposed model could be a useful tool for optimizing AWJ cut process parameters for predicting Ra. Its main advantage is the reduced time needed for experimentation.
Collapse
|
23
|
Termine A, Fabrizio C, Strafella C, Caputo V, Petrosini L, Caltagirone C, Giardina E, Cascella R. Multi-Layer Picture of Neurodegenerative Diseases: Lessons from the Use of Big Data through Artificial Intelligence. J Pers Med 2021; 11:280. [PMID: 33917161 PMCID: PMC8067806 DOI: 10.3390/jpm11040280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
In the big data era, artificial intelligence techniques have been applied to tackle traditional issues in the study of neurodegenerative diseases. Despite the progress made in understanding the complex (epi)genetics signatures underlying neurodegenerative disorders, performing early diagnosis and developing drug repurposing strategies remain serious challenges for such conditions. In this context, the integration of multi-omics, neuroimaging, and electronic health records data can be exploited using deep learning methods to provide the most accurate representation of patients possible. Deep learning allows researchers to find multi-modal biomarkers to develop more effective and personalized treatments, early diagnosis tools, as well as useful information for drug discovering and repurposing in neurodegenerative pathologies. In this review, we will describe how relevant studies have been able to demonstrate the potential of deep learning to enhance the knowledge of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases through the integration of all sources of biomedical data.
Collapse
Affiliation(s)
- Andrea Termine
- IRCCS Santa Lucia Foundation, Genomic Medicine Laboratory UILDM, 00179 Rome, Italy; (A.T.); (C.S.); (V.C.); (R.C.)
| | - Carlo Fabrizio
- IRCCS Santa Lucia Foundation, Laboratory of Experimental and Behavioral Neurophysiology, 00143 Rome, Italy; (C.F.); (L.P.)
| | - Claudia Strafella
- IRCCS Santa Lucia Foundation, Genomic Medicine Laboratory UILDM, 00179 Rome, Italy; (A.T.); (C.S.); (V.C.); (R.C.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Valerio Caputo
- IRCCS Santa Lucia Foundation, Genomic Medicine Laboratory UILDM, 00179 Rome, Italy; (A.T.); (C.S.); (V.C.); (R.C.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Laura Petrosini
- IRCCS Santa Lucia Foundation, Laboratory of Experimental and Behavioral Neurophysiology, 00143 Rome, Italy; (C.F.); (L.P.)
| | - Carlo Caltagirone
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioral Neurology, 00179 Rome, Italy;
| | - Emiliano Giardina
- IRCCS Santa Lucia Foundation, Genomic Medicine Laboratory UILDM, 00179 Rome, Italy; (A.T.); (C.S.); (V.C.); (R.C.)
- UILDM Lazio ONLUS Foundation, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Raffaella Cascella
- IRCCS Santa Lucia Foundation, Genomic Medicine Laboratory UILDM, 00179 Rome, Italy; (A.T.); (C.S.); (V.C.); (R.C.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| |
Collapse
|
24
|
Probabilistic Neural Network-based Model for Identification of Parkinson’s Disease by using Voice Profile and Personal Data. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Yücelbaş Ş. Simple Logistic Hybrid System Based on Greedy Stepwise Algorithm for Feature Analysis to Diagnose Parkinson’s Disease According to Gender. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04357-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Solana-Lavalle G, Galán-Hernández JC, Rosas-Romero R. Automatic Parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Almeida JS, Rebouças Filho PP, Carneiro T, Wei W, Damaševičius R, Maskeliūnas R, de Albuquerque VHC. Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques. Pattern Recognit Lett 2019. [DOI: 10.1016/j.patrec.2019.04.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|