1
|
Abhinav V, Basu P, Verma SS, Verma J, Das A, Kumari S, Yadav PR, Kumar V. Advancements in Wearable and Implantable BioMEMS Devices: Transforming Healthcare Through Technology. MICROMACHINES 2025; 16:522. [PMID: 40428648 DOI: 10.3390/mi16050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
Wearable and implantable BioMEMSs (biomedical microelectromechanical systems) have transformed modern healthcare by enabling continuous, personalized, and minimally invasive monitoring, diagnostics, and therapy. Wearable BioMEMSs have advanced rapidly, encompassing a diverse range of biosensors, bioelectronic systems, drug delivery platforms, and motion tracking technologies. These devices enable non-invasive, real-time monitoring of biochemical, electrophysiological, and biomechanical signals, offering personalized and proactive healthcare solutions. In parallel, implantable BioMEMS have significantly enhanced long-term diagnostics, targeted drug delivery, and neurostimulation. From continuous glucose and intraocular pressure monitoring to programmable drug delivery and bioelectric implants for neuromodulation, these devices are improving precision treatment by continuous monitoring and localized therapy. This review explores the materials and technologies driving advancements in wearable and implantable BioMEMSs, focusing on their impact on chronic disease management, cardiology, respiratory care, and glaucoma treatment. We also highlight their integration with artificial intelligence (AI) and the Internet of Things (IoT), paving the way for smarter, data-driven healthcare solutions. Despite their potential, BioMEMSs face challenges such as regulatory complexities, global standardization, and societal determinants. Looking ahead, we explore emerging directions like multifunctional systems, biodegradable power sources, and next-generation point-of-care diagnostics. Collectively, these advancements position BioMEMS as pivotal enablers of future patient-centric healthcare systems.
Collapse
Affiliation(s)
- Vishnuram Abhinav
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Prithvi Basu
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shikha Supriya Verma
- Integrated Disease Surveillance Program, National Health Mission, Guwahati 781005, Assam, India
| | - Jyoti Verma
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Atanu Das
- Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Savita Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Prateek Ranjan Yadav
- School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Vibhor Kumar
- Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Gimeno-Muñoz R, Díaz-Torres R, Gómez-Coca S, Roubeau O, Díaz-Cruz JM, Aliaga-Alcalde N, González-Campo A. Curcuminoid-Based Responsive Surfaces for Fluorescent BF 3 Detection, a Fast and Reversible Approach. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20383-20393. [PMID: 40129187 PMCID: PMC11969430 DOI: 10.1021/acsami.4c19421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/26/2025]
Abstract
The strategic design of a novel curcuminoid (CCMoid), termed PA, containing pyrene units and a terminal carboxylic group provides the necessary tools for its efficient immobilization on surfaces and its potential use as an optical chemosensor. To this end, our work provides a robust methodology for the preparation of CCMoid-based active surfaces with a fluorescent response and reusability. The covalent immobilization of the CCMoid is obtained by the reaction of the acidic groups of PA and the imidazole ends of the previously functionalized substrates. In this way, fluorescent patterned surfaces of PA, whose emission could be observed in the visible region thanks to the pyrene groups of the CCMoid, were obtained using microcontact printing. In addition, the coordination of BF3 molecules (in solution and in gas phase) with the keto-enol moiety of the PAs anchored on the surfaces has been analyzed. The ability of BF3 to modify the optical properties of the CCMoids-based surfaces, leading to emissions in the near-IR, has been identified as a fast and reversible process. Such ability is intrinsic to the final coordinated system and not to other boron-based molecules, providing unique response and sensing surfaces.
Collapse
Affiliation(s)
- Raquel Gimeno-Muñoz
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de
La Universitat Autonoma de Barcelona, Barcelona 08193, Spain
| | - Raúl Díaz-Torres
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de
La Universitat Autonoma de Barcelona, Barcelona 08193, Spain
| | - Silvia Gómez-Coca
- Departament
de Química Inorgànica and Institut de Recerca de Química
Teòrica I Computacional, Universitat
de Barcelona (UB), Diagonal 645, Barcelona 08028, Spain
| | - Olivier Roubeau
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, Zaragoza 50009, Spain
| | - José Manuel Díaz-Cruz
- Departament
d’Enginyeria Química I Química Analítica, Universitat de Barcelona (UB), Diagonal 645, Barcelona 08028, Spain
| | - Núria Aliaga-Alcalde
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de
La Universitat Autonoma de Barcelona, Barcelona 08193, Spain
- ICREA
(Institució Catalana de Recerca I Estudis Avançats),
Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Arántzazu González-Campo
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de
La Universitat Autonoma de Barcelona, Barcelona 08193, Spain
| |
Collapse
|
3
|
Hong S, Yu T, Wang Z, Lee CH. Biomaterials for reliable wearable health monitoring: Applications in skin and eye integration. Biomaterials 2025; 314:122862. [PMID: 39357154 PMCID: PMC11787905 DOI: 10.1016/j.biomaterials.2024.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in biomaterials have significantly impacted wearable health monitoring, creating opportunities for personalized and non-invasive health assessments. These developments address the growing demand for customized healthcare solutions. Durability is a critical factor for biomaterials in wearable applications, as they must withstand diverse wearing conditions effectively. Therefore, there is a heightened focus on developing biomaterials that maintain robust and stable functionalities, essential for advancing wearable sensing technologies. This review examines the biomaterials used in wearable sensors, specifically those interfaced with human skin and eyes, highlighting essential strategies for achieving long-lasting and stable performance. We specifically discuss three main categories of biomaterials-hydrogels, fibers, and hybrid materials-each offering distinct properties ideal for use in durable wearable health monitoring systems. Moreover, we delve into the latest advancements in biomaterial-based sensors, which hold the potential to facilitate early disease detection, preventative interventions, and tailored healthcare approaches. We also address ongoing challenges and suggest future directions for research on material-based wearable sensors to encourage continuous innovation in this dynamic field.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ziheng Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA; School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA; School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA; Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Pirrera A, Giansanti D. Smart Tattoo Sensors 2.0: A Ten-Year Progress Report through a Narrative Review. Bioengineering (Basel) 2024; 11:376. [PMID: 38671797 PMCID: PMC11048663 DOI: 10.3390/bioengineering11040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The increased interest in sensing tattoos reflects a shift in wearable technology, emphasizing their flexible, skin-adherent nature. These devices, driven by advancements in nanotechnology and materials science, offer highly sensitive and customizable sensors. The growing body of research in this area indicates a rising curiosity in their design and applications, with potential uses ranging from vital sign monitoring to biomarker detection. Sensing tattoos present a promising avenue in wearable healthcare technology, attracting attention from researchers, clinicians, and technology enthusiasts. The objective of this study is to analyze the development, application, and integration of the sensing tattoos in the health domain. A review was conducted on PubMed and Scopus, applying a standard checklist and a qualification process. The outcome reported 37 studies. Sensing tattoos hold transformative potential in health monitoring and physiological sensing, driven by their focus on affordability, user-friendly design, and versatile sensorization solutions. Despite their promise, ongoing refinement is essential, addressing limitations in adhesion, signal quality, biocompatibility, and regulatory complexities. Identified opportunities, including non-invasive health monitoring, multiplexed detection, and cost-effective fabrication methods, open avenues for personalized healthcare applications. However, bridging gaps in medical device standards, cybersecurity, and regulatory compliance is imperative for seamless integration. A key theme calls for a holistic, user-centric approach, emphasizing interdisciplinary collaboration. Balancing innovation with practicality, prioritizing ethics, and fostering collaboration are crucial for the evolution of these technologies. The dynamic state of the field is evident, with active exploration of new frontiers. This overview also provides a roadmap, urging scholars, industry players, and regulators to collectively contribute to the responsible integration of sensing tattoos into daily life.
Collapse
Affiliation(s)
- Antonia Pirrera
- Centro Nazionale TISP, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - Daniele Giansanti
- Centro Nazionale TISP, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| |
Collapse
|
5
|
Barron SL, Oldroyd SV, Saez J, Chernaik A, Guo W, McCaughan F, Bulmer D, Owens RM. A Conformable Organic Electronic Device for Monitoring Epithelial Integrity at the Air Liquid Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306679. [PMID: 38061027 DOI: 10.1002/adma.202306679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/27/2023] [Indexed: 02/23/2024]
Abstract
Air liquid interfaced (ALI) epithelial barriers are essential for homeostatic functions such as nutrient transport and immunological protection. Dysfunction of such barriers are implicated in a variety of autoimmune and inflammatory disorders and, as such, sensors capable of monitoring barrier health are integral for disease modelling, diagnostics and drug screening applications. To date, gold-standard electrical methods for detecting barrier resistance require rigid electrodes bathed in an electrolyte, which limits compatibility with biological architectures and is non-physiological for ALI. This work presents a flexible all-planar electronic device capable of monitoring barrier formation and perturbations in human respiratory and intestinal cells at ALI. By interrogating patient samples with electrochemical impedance spectroscopy and simple equivalent circuit models, disease-specific and patient-specific signatures are uncovered. Device readouts are validated against commercially available chopstick electrodes and show greater conformability, sensitivity and biocompatibility. The effect of electrode size on sensing efficiency is investigated and a cut-off sensing area is established, which is one order of magnitude smaller than previously reported. This work provides the first steps in creating a physiologically relevant sensor capable of mapping local and real-time changes of epithelial barrier function at ALI, which will have broad applications in toxicology and drug screening applications.
Collapse
Affiliation(s)
- Sarah L Barron
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Sophie V Oldroyd
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
- Microfluidics Cluster, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, CP 01006, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
- Bioaraba Health Research Institute, Microfluidics Cluster UPV/EHU, Vitoria-Gasteiz, 01009, Spain
| | - Alice Chernaik
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Wenrui Guo
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Frank McCaughan
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - David Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| |
Collapse
|
6
|
Jin YJ, Si BM, Kim E, Lee J, Kim H, Kwak G, Sakaguchi T, Lee J, Song IY, Lee CL, Kim JH, Heo K, Lee WE. Reusable, Ultrasensitive, Patterned Conjugated Polyelectrolyte-Surfactant Complex Film with a Wide Detection Range for Copper Ion Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12339-12349. [PMID: 36847579 DOI: 10.1021/acsami.2c21388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Conjugated polyelectrolytes (CPEs) are emerging as promising materials in the sensor field because they enable high-sensitivity detection of various substances in aqueous media. However, most CPE-based sensors have serious problems in real-world application because the sensor system is operated only when the CPE is dissolved in aqueous media. Here, the fabrication and performance of a water-swellable (WS) CPE-based sensor driven in the solid state are demonstrated. The WS CPE films are prepared by immersing a water-soluble CPE film in cationic surfactants of different alkyl chain lengths in a chloroform solution. The prepared film exhibits rapid, limited water swellability despite the absence of chemical crosslinking. The water swellability of the film enables the highly sensitive and selective detection of Cu2+ in water. The fluorescence quenching constant and the detection limit of the film are 7.24 × 106 L mol-1 and 4.38 nM (0.278 ppb), respectively. Moreover, the film is reusable via a facile treatment. Furthermore, various fluorescent patterns introduced by different surfactants are successfully fabricated by a simple stamping method. By integrating the patterns, Cu2+ detection in a wide concentration range (nM-mM) can be achieved.
Collapse
Affiliation(s)
- Young-Jae Jin
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Beom-Min Si
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Eonji Kim
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Jineun Lee
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 41566, South Korea
| | - Heesang Kim
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 41566, South Korea
| | - Giseop Kwak
- Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 41566, South Korea
| | - Toshikazu Sakaguchi
- Department of Materials Science and Engineering, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1, Fukui 910-8507, Japan
| | - Jinhee Lee
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - In Young Song
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Chang-Lyoul Lee
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 61005, South Korea
| | - Joon Heon Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 61005, South Korea
| | - Kyuyoung Heo
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Wang-Eun Lee
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| |
Collapse
|
7
|
Brady B, Li W, Farooque N, Ehrhardt C, Meyerhoff ME, Wang X. S-Nitrosothiol-Impregnated Silicone Catheter for Colorimetric Sensing of Indole and E. coli: Toward On-Body Detection of Urinary Tract Infections. ACS Sens 2022; 7:1712-1719. [PMID: 35604028 DOI: 10.1021/acssensors.2c00439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although there are many techniques to detect pathogenic bacteria, most of them are only suited for in vitro diagnostics. We report a urinary catheter-based colorimetric sensor for potential on-body detection of E. coli, the most prevalent bacterial species in urinary tract infections associated with the use of urinary catheters. In urine, indole is secreted by E. coli and reacts with a nitrosating agent incorporated in a silicone catheter. A red dimeric product, indoxyl red, is generated within silicone rubber to allow for color-based indole sensing with high sensitivity, linearity, and specificity. This reaction is initiated by the nitrosation reaction of indole at its C-3 position via reagents like sodium nitrite or S-nitroso-N-acetyl-penicillamine under aerobic conditions. The generated 3-nitrosoindole undergoes tautomerization, dimerization, and deoximation to form indoxyl red with high absorbance at 537 nm. In contrast to other indole sensors, the presented method can be applied in real catheters to detect indole and E. coli in biofluids such as urine. The is because (1) S-nitroso-N-acetyl-penicillamine, the nitrosating agent, can be impregnated into silicone elastomers, (2) indole from urine is extracted into silicone due to its hydrophobicity, and (3) the high acidity and oxygen solubility of silicone facilitates the sensing reaction within the silicone matrix. This silicone-based colorimetric sensor clearly differentiates E. coli below and above 105 CFU/mL, which is the threshold concentration of bacteriuria. We expect that early diagnosis of urinary tract infections using the naked eye is possible by functionalizing an exposed section of urinary catheters with the proposed molecular probe.
Collapse
Affiliation(s)
- Brock Brady
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Wuwei Li
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Nashwan Farooque
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Christopher Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, 1015 Floyd Avenue, Richmond, Virginia 23284, United States
| | - Mark E. Meyerhoff
- Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, Michigan 48109, United States
| | - Xuewei Wang
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
8
|
Lemarchand J, Bridonneau N, Battaglini N, Carn F, Mattana G, Piro B, Zrig S, Noël V. Challenges, Prospects, and Emerging Applications of Inkjet-Printed Electronics: A Chemist's Point of View. Angew Chem Int Ed Engl 2022; 61:e202200166. [PMID: 35244321 DOI: 10.1002/anie.202200166] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/15/2022]
Abstract
Driven by the development of new functional inks, inkjet-printed electronics has achieved several milestones upon moving from the integration of simple electronic elements (e.g., temperature and pressure sensors, RFID antennas, etc.) to high-tech applications (e.g. in optoelectronics, energy storage and harvesting, medical diagnosis). Currently, inkjet printing techniques are limited by spatial resolution higher than several micrometers, which sets a redhibitorythreshold for miniaturization and for many applications that require the controlled organization of constituents at the nanometer scale. In this Review, we present the physico-chemical concepts and the equipment constraints underpinning the resolution limit of inkjet printing and describe the contributions from molecular, supramolecular, and nanomaterials-based approaches for their circumvention. Based on these considerations, we propose future trajectories for improving inkjet-printing resolution that will be driven and supported by breakthroughs coming from chemistry. Please check all text carefully as extensive language polishing was necessary. Title ok? Yes.
Collapse
Affiliation(s)
| | | | | | - Florent Carn
- Université de Paris, Laboratoire Matière et Systèmes Complexes CNRS, UMR 7057, 75013, Paris, France
| | | | - Benoit Piro
- Université de Paris, CNRS, ITODYS, 75013, Paris, France
| | - Samia Zrig
- Université de Paris, CNRS, ITODYS, 75013, Paris, France
| | - Vincent Noël
- Université de Paris, CNRS, ITODYS, 75013, Paris, France
| |
Collapse
|
9
|
Tabasum H, Gill N, Mishra R, Lone S. Wearable microfluidic-based e-skin sweat sensors. RSC Adv 2022; 12:8691-8707. [PMID: 35424805 PMCID: PMC8985157 DOI: 10.1039/d1ra07888g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/27/2022] [Indexed: 12/20/2022] Open
Abstract
Electronic skins (e-skins) are soft (deformable and stretchable) state-of-the-art wearable devices that emulate the attributes of human skin and act as a Human-Machine Interface (HMI). Recent advances in e-skin for real-time detection of medical signals such as pulse, temperature, electromyogram (EMG), electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG), and other bioelectric signals laid down an intelligent foundation for early prediction and diagnosis of diseases with a motive of reducing the risk of the ailment reaching to the end stage. In particular, sweat testing has been employed in diverse applications ranging from medical diagnosis of diabetes, cystic fibrosis, tuberculosis, blood pressure, and autonomic neuropathy to evaluating fluid and electrolyte balance in athletes. Typically, sweat testing techniques are done by trained experts and require off-body measurements, which prevent individuals from de-coding health issues quickly and independently. With the onset of soft electronics, wearable sweat sensors overcome this disadvantage via in situ sweat measurements with real-time feedback, timely diagnosis, creating the potential for preventive care and treatment. Over the past few decades, wearable microfluidic-based e-skin sweat sensors have paved a new way, promising sensing interfaces that are highly compatible with arranging medical and electronic applications. The present review highlights the recent research carried out in the microfluidic-based wearable sweat sensors with a critical focus on real-time sensing of lactate, chloride, and glucose concentration; sweat rate, simultaneously with pH, and total sweat loss for preventive care, timely diagnosis, and point-of-care health and fitness monitoring.
Collapse
Affiliation(s)
- Humairah Tabasum
- Department of Chemistry, National Institute of Technology (NIT) Srinagar J&K India 190006 +91-60005221589
- iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar India 190006
| | - Nikita Gill
- Department of Chemistry, National Institute of Technology (NIT) Srinagar J&K India 190006 +91-60005221589
- iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar India 190006
| | - Rahul Mishra
- Department of Chemistry, National Institute of Technology (NIT) Srinagar J&K India 190006 +91-60005221589
- iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar India 190006
| | - Saifullah Lone
- Department of Chemistry, National Institute of Technology (NIT) Srinagar J&K India 190006 +91-60005221589
- iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar India 190006
| |
Collapse
|
10
|
Lemarchand J, Bridonneau N, Battaglini N, Carn F, Mattana G, Piro B, Zrig S, NOEL V. Challenges and Prospects of Inkjet Printed Electronics Emerging Applications – a Chemist point of view. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Florent Carn
- Universite de Paris UFR Physique Physique FRANCE
| | | | | | | | - Vincent NOEL
- Universite Paris Diderot ITODYS 13 rue J de Baif 75013 Paris FRANCE
| |
Collapse
|
11
|
Revolution in Flexible Wearable Electronics for Temperature and Pressure Monitoring—A Review. ELECTRONICS 2022. [DOI: 10.3390/electronics11050716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the last few decades, technology innovation has had a huge influence on our lives and well-being. Various factors of observing our physiological characteristics are taken into account. Wearable sensing tools are one of the most imperative sectors that are now trending and are expected to grow significantly in the coming days. Externally utilized tools connected to any human to assess physiological characteristics of interest are known as wearable sensors. Wearable sensors range in size from tiny to large tools that are physically affixed to the user and operate on wired or wireless terms. With increasing technological capabilities and a greater grasp of current research procedures, the usage of wearable sensors has a brighter future. In this review paper, the recent developments of two important types of wearable electronics apparatuses have been discussed for temperature and pressure sensing (Psensing) applications. Temperature sensing (Tsensing) is one of the most important physiological factors for determining human body temperature, with a focus on patients with long-term chronic conditions, normally healthy, unconscious, and injured patients receiving surgical treatment, as well as the health of medical personnel. Flexile Psensing devices are classified into three categories established on their transduction mechanisms: piezoresistive, capacitive, and piezoelectric. Many efforts have been made to enhance the characteristics of the flexible Psensing devices established on these mechanisms.
Collapse
|
12
|
Finnegan M, Duffy E, Morrin A. The determination of skin surface pH via the skin volatile emission using wearable colorimetric sensors. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
13
|
Ukhurebor KE, Onyancha RB, Aigbe UO, UK-Eghonghon G, Kerry RG, Kusuma HS, Darmokoesoemo H, Osibote OA, Balogun VA. A Methodical Review on the Applications and Potentialities of Using Nanobiosensors for Disease Diagnosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1682502. [PMID: 35103234 PMCID: PMC8799955 DOI: 10.1155/2022/1682502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/23/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
Presently, with the introduction of nanotechnology, the evolutions and applications of biosensors and/or nanobiosensors are becoming prevalent in various scientific domains such as environmental and agricultural sciences as well as biomedical, clinical, and healthcare sciences. Trends in these aspects have led to the discovery of various biosensors/nanobiosensors with their tremendous benefits to mankind. The characteristics of the various biosensors/nanobiosensors are primarily based on the nature of nanomaterials/nanoparticles employed in the sensing mechanisms. In the last few years, the identification, as well as the detection of biological markers linked with any form of diseases (communicable or noncommunicable), has been accomplished by several sensing procedures using nanotechnology vis-à-vis biosensors/nanobiosensors. Hence, this study employs a systematic approach in reviewing some contemporary developed exceedingly sensitive nanobiosensors alongside their biomedical, clinical, or/and healthcare applications as well as their potentialities, specifically for the detection of some deadly diseases drawn from some of the recent publications. Ways forward in the form of future trends that will advance creative innovations of the potentialities of nanobiosensors for biomedical, clinical, or/and healthcare applications particularly for disease diagnosis are also highlighted.
Collapse
Affiliation(s)
- Kingsley Eghonghon Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Robert Birundu Onyancha
- Department of Physics and Space Science, School of Physical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, 00200 Nairobi, Kenya
| | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Gladys UK-Eghonghon
- Nursing Services Department, University of Benin Teaching Hospital, P.M.B. 1111, Benin City, Nigeria
| | - Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran”, Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Vincent Aizebeoje Balogun
- Department of Mechanical Engineering, Faculty of Engineering, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| |
Collapse
|
14
|
Nadia Ahmad NF, Nik Ghazali NN, Wong YH. Wearable patch delivery system for artificial pancreas health diagnostic-therapeutic application: A review. Biosens Bioelectron 2021; 189:113384. [PMID: 34090154 DOI: 10.1016/j.bios.2021.113384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
The advanced stimuli-responsive approaches for on-demand drug delivery systems have received tremendous attention as they have great potential to be integrated with sensing and multi-functional electronics on a flexible and stretchable single platform (all-in-one concept) in order to develop skin-integration with close-loop sensation for personalized diagnostic and therapeutic application. The wearable patch pumps have evolved from reservoir-based to matrix patch and drug-in-adhesive (single-layer or multi-layer) type. In this review, we presented the basic requirements of an artificial pancreas, surveyed the design and technologies used in commercial patch pumps available on the market and provided general information about the latest wearable patch pump. We summarized the various advanced delivery strategies with their mechanisms that have been developed to date and representative examples. Mechanical, electrical, light, thermal, acoustic and glucose-responsive approaches on patch form have been successfully utilized in the controllable transdermal drug delivery manner. We highlighted key challenges associated with wearable transdermal delivery systems, their research direction and future development trends.
Collapse
Affiliation(s)
- Nur Farrahain Nadia Ahmad
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yew Hoong Wong
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
George Kerry R, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin HS, Patra JK. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 2021; 9:3576-3602. [PMID: 34008586 DOI: 10.1039/d0bm02164d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The outstretched applications of biosensors in diverse domains has become the reason for their attraction for scientific communities. Because they are analytical devices, they can detect both quantitative and qualitative biological components through the generation of detectable signals. In the recent past, biosensors witnessed significant changes and developments in their design as well as features. Nanotechnology has revolutionized sensing phenomena by increasing biodiagnostic capacity in terms of specificity, size, and cost, resulting in exceptional sensitivity and flexibility. The steep increase of non-communicable diseases across the world has emerged as a matter of concern. In parallel, the abrupt outbreak of communicable diseases poses a serious threat to mankind. For decreasing the morbidity and mortality associated with various communicable and non-communicable diseases, early detection and subsequent treatment are indispensable. Detection of different biological markers generates quantifiable signals that can be electrochemical, mass-based, optical, thermal, or piezoelectric. Speculating on the incumbent applicability and versatility of nano-biosensors in large disciplines, this review highlights different types of biosensors along with their components and detection mechanisms. Moreover, it deals with the current advancements made in biosensors and the applications of nano-biosensors in detection of various non-communicable and communicable diseases, as well as future prospects of nano-biosensors for diagnostics.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Kingsley Eghonghon Ukhurebor
- Climatic/Environmental/Telecommunication Unit, Department of Physics, Edo University Iyamho, P.B.M. 04, Auchi, 312101, Edo State, Nigeria
| | - Swati Kumari
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi-221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha 757003, India
| | - Bijayananda Panigrahi
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India and School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | | | - María Del Pilar Rodriguez-Torres
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230, Querétaro, Mexico
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| |
Collapse
|
16
|
Mekhmouken S, Battaglini N, Mattana G, Maurin A, Zrig S, Piro B, Capitao D, Noel V. Gold nanoparticle-based eco-friendly ink for electrode patterning on flexible substrates. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Strawn JR, Levine A. Treatment Response Biomarkers in Anxiety Disorders: From Neuroimaging to Neuronally-Derived Extracellular Vesicles and Beyond. Biomark Neuropsychiatry 2020; 3:100024. [PMID: 32974615 PMCID: PMC7508464 DOI: 10.1016/j.bionps.2020.100024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multiple and diverse psychotherapeutic or psychopharmacologic treatments effectively reduce symptoms for many patients with anxiety disorders, but the trajectory and magnitude of response vary considerably. This heterogeneity of treatment response has invigorated the search for biomarkers of treatment response in anxiety disorders, across the lifespan. In this review, we summarize evidence for biomarkers of treatment response in children, adolescents and adults with generalized, separation and social anxiety disorders as well as panic disorder. We then discuss the relationship between these biomarkers of treatment response and the pathophysiology of anxiety disorders. Finally, we provide context for treatment response biomarkers of the future, including neuronally-derived extracellular vesicles in anxiety disorders and discuss challenges that must be overcome prior to the debut of treatment response biomarkers in the clinic. A number of promising treatment response biomarkers have been identified, although there is an urgent need to replicate findings and to identify which biomarkers might guide clinicians in selecting from available treatments rather than just simply identifying patients who may be less likely to respond to a given intervention.
Collapse
Affiliation(s)
- Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience; Anxiety Disorders Research Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio
- Department of Pediatrics, Division of Child & Adolescent Psychiatry and Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Amir Levine
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY
| |
Collapse
|
18
|
Transduction Mechanisms, Micro-Structuring Techniques, and Applications of Electronic Skin Pressure Sensors: A Review of Recent Advances. SENSORS 2020; 20:s20164407. [PMID: 32784603 PMCID: PMC7472322 DOI: 10.3390/s20164407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Electronic skin (e-skin), which is an electronic surrogate of human skin, aims to recreate the multifunctionality of skin by using sensing units to detect multiple stimuli, while keeping key features of skin such as low thickness, stretchability, flexibility, and conformability. One of the most important stimuli to be detected is pressure due to its relevance in a plethora of applications, from health monitoring to functional prosthesis, robotics, and human-machine-interfaces (HMI). The performance of these e-skin pressure sensors is tailored, typically through micro-structuring techniques (such as photolithography, unconventional molds, incorporation of naturally micro-structured materials, laser engraving, amongst others) to achieve high sensitivities (commonly above 1 kPa−1), which is mostly relevant for health monitoring applications, or to extend the linearity of the behavior over a larger pressure range (from few Pa to 100 kPa), an important feature for functional prosthesis. Hence, this review intends to give a generalized view over the most relevant highlights in the development and micro-structuring of e-skin pressure sensors, while contributing to update the field with the most recent research. A special emphasis is devoted to the most employed pressure transduction mechanisms, namely capacitance, piezoelectricity, piezoresistivity, and triboelectricity, as well as to materials and novel techniques more recently explored to innovate the field and bring it a step closer to general adoption by society.
Collapse
|
19
|
Skinner A, Toumpakari Z, Stone C, Johnson L. Future Directions for Integrative Objective Assessment of Eating Using Wearable Sensing Technology. Front Nutr 2020; 7:80. [PMID: 32714939 PMCID: PMC7343846 DOI: 10.3389/fnut.2020.00080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Established methods for nutritional assessment suffer from a number of important limitations. Diaries are burdensome to complete, food frequency questionnaires only capture average food intake, and both suffer from difficulties in self estimation of portion size and biases resulting from misreporting. Online and app versions of these methods have been developed, but issues with misreporting and portion size estimation remain. New methods utilizing passive data capture are required that address reporting bias, extend timescales for data collection, and transform what is possible for measuring habitual intakes. Digital and sensing technologies are enabling the development of innovative and transformative new methods in this area that will provide a better understanding of eating behavior and associations with health. In this article we describe how wrist-worn wearables, on-body cameras, and body-mounted biosensors can be used to capture data about when, what, and how much people eat and drink. We illustrate how these new techniques can be integrated to provide complete solutions for the passive, objective assessment of a wide range of traditional dietary factors, as well as novel measures of eating architecture, within person variation in intakes, and food/nutrient combinations within meals. We also discuss some of the challenges these new approaches will bring.
Collapse
Affiliation(s)
- Andy Skinner
- School of Psychological Science, University of Bristol, Bristol, United Kingdom.,MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Zoi Toumpakari
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, United Kingdom
| | - Christopher Stone
- School of Psychological Science, University of Bristol, Bristol, United Kingdom.,MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Laura Johnson
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
20
|
Comparative Study on the Effect of Protonation Control for Resistive Gas Sensor Based on Close-Packed Polypyrrole Nanoparticles. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conducting polymers are often used as sensor electrodes due to their conjugated chain structure, which leads to high sensitivity and rapid response at room temperature. Numerous studies have been conducted on the structures of conducting polymer nanomaterials to increase the active surface area for the target materials. However, studies on the control of the chemical state of conducting polymer chains and the modification of the sensing signal transfer with these changes have not been reported. In this work, polypyrrole nanoparticles (PPyNPs), where is PPy is a conducting polymer, are applied as a sensor transducer to analyze the chemical sensing ability of the electrode. In particular, the protonation of PPy is adjusted by chemical methods to modify the transfer sensing signals with changes in the polymer chain structure. The PPyNPs that were modified at pH 1 exhibit high sensitivity to the target analyte (down to 1 ppb of NH3) with short response and recovery times of less than 20 s and 50 s, respectively, at 25 °C.
Collapse
|