1
|
Macchia E, Björkström K, Tewari A, Eskonen V, Luukkonen A, Ghafari AM, Sarcina L, Caputo M, Tong-Ochoa N, Kopra K, Pettersson F, Gounani Z, Torsi L, Härmä H, Österbacka R. Label-free electronic detection of peptide post-translational modification with functional enzyme-driven assay at the physical limit. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101874. [PMID: 39906902 PMCID: PMC11791991 DOI: 10.1016/j.xcrp.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 02/06/2025]
Abstract
High-performance, ultra-sensitive, and universal protein post-translational modification (PTM) and protein-protein interaction (PPI) technologies are eagerly pursued in the pharmaceutical industry and bioanalytical research. Novel PTM and PPI detection methods outperform traditional assays in scope and scalability, enabling the collection of information on multiple biochemical targets. Detecting peptides and proteins at the single-molecule level is done by utilizing nanosized transducing elements and assaying solutions at very high analyte concentrations, in the nanomolar range or higher. Here, a proof of principle of a biosensing platform for single-molecule PTM detection is demonstrated. This platform is based on the single molecule with a large transistor (SiMoT) technology, encompassing a millimeter-sized electrolyte-gated organic field-effect transistor, for label-free PTM detection with a zeptomolar limit of detection. Sensitivity is improved 106- to 1012-fold compared with mass-spectrometry and luminescence-based assay methods. A functional assay for detecting enzyme-driven peptide PTMs in the zeptomolar concentration range is demonstrated using multivariate data processing, opening the way for future applications to monitor PTMs.
Collapse
Affiliation(s)
- Eleonora Macchia
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
- Department of Pharmaceutical Sciences, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Kim Björkström
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Amit Tewari
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Ville Eskonen
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Axel Luukkonen
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Amir Mohammad Ghafari
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Mariapia Caputo
- Department of Pharmaceutical Sciences, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Natalia Tong-Ochoa
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Kari Kopra
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Fredrik Pettersson
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zahra Gounani
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Harri Härmä
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Ronald Österbacka
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| |
Collapse
|
2
|
Scandurra C, Björkström K, Caputo M, Sarcina L, Genco E, Modena F, Viola FA, Brunetti C, Kovács‐Vajna ZM, Franco CD, Haeberle L, Larizza P, Mancini MT, Österbacka R, Reeves W, Scamarcio G, Wheeler M, Caironi M, Cantatore E, Torricelli F, Esposito I, Macchia E, Torsi L. Analysis of Clinical Samples of Pancreatic Cyst's Lesions with A Multi-Analyte Bioelectronic Simot Array Benchmarked Against Ultrasensitive Chemiluminescent Immunoassay. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308141. [PMID: 38234100 PMCID: PMC11251558 DOI: 10.1002/advs.202308141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/30/2023] [Indexed: 01/19/2024]
Abstract
Pancreatic cancer, ranking as the third factor in cancer-related deaths, necessitates enhanced diagnostic measures through early detection. In response, SiMoT-Single-molecule with a large Transistor multiplexing array, achieving a Technology Readiness Level of 5, is proposed for a timely identification of pancreatic cancer precursor cysts and is benchmarked against the commercially available chemiluminescent immunoassay SIMOA (Single molecule array) SP-X System. A cohort of 39 samples, comprising 33 cyst fluids and 6 blood plasma specimens, undergoes detailed examination with both technologies. The SiMoT array targets oncoproteins MUC1 and CD55, and oncogene KRAS, while the SIMOA SP-X planar technology exclusively focuses on MUC1 and CD55. Employing Principal Component Analysis (PCA) for multivariate data processing, the SiMoT array demonstrates effective discrimination of malignant/pre-invasive high-grade or potentially malignant low-grade pancreatic cysts from benign non-mucinous cysts. Conversely, PCA analysis applied to SIMOA assay reveals less effective differentiation ability among the three cyst classes. Notably, SiMoT unique capability of concurrently analyzing protein and genetic markers with the threshold of one single molecule in 0.1 mL positions it as a comprehensive and reliable diagnostic tool. The electronic response generated by the SiMoT array facilitates direct digital data communication, suggesting potential applications in the development of field-deployable liquid biopsy.
Collapse
Affiliation(s)
- Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Kim Björkström
- The Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
| | - Mariapia Caputo
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Enrico Genco
- Department of Electrical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Francesco Modena
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milan20134Italy
| | - Fabrizio Antonio Viola
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milan20134Italy
- Present address:
Dipartimento di Ingegneria Elettrica ed ElettronicaUniversità degli Studi di CagliariVia Marengo 3Cagliari09123Italy
| | | | - Zsolt M. Kovács‐Vajna
- Dipartimento Ingegneria dell'InformazioneUniversità degli Studi di BresciaBrescia25123Italy
| | | | - Lena Haeberle
- Institute of PathologyHeinrich‐Heine University and University Hospital of Düsseldorf40225DuesseldorfGermany
| | - Piero Larizza
- Masmec Biomed – Masmec SpA divisionModugno (BA)70026Italy
| | | | - Ronald Österbacka
- The Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
| | | | - Gaetano Scamarcio
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
| | | | - Mario Caironi
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milan20134Italy
| | - Eugenio Cantatore
- Department of Electrical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'InformazioneUniversità degli Studi di BresciaBrescia25123Italy
| | - Irene Esposito
- Institute of PathologyHeinrich‐Heine University and University Hospital of Düsseldorf40225DuesseldorfGermany
| | - Eleonora Macchia
- The Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| |
Collapse
|
3
|
Karoń S, Drozd M, Malinowska E. A Careful Insight into DDI-Type Receptor Layers on the Way to Improvement of Click-Biology-Based Immunosensors. BIOSENSORS 2024; 14:136. [PMID: 38534243 DOI: 10.3390/bios14030136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/28/2024]
Abstract
Protein-based microarrays are important tools for high-throughput medical diagnostics, offering versatile platforms for multiplex immunodetection. However, challenges arise in protein microarrays due to the heterogeneous nature of proteins and, thus, differences in their immobilization conditions. This article advocates DNA-directed immobilization (DDI) as a solution, emphasizing its rapid and cost-effective fabrication of biosensing platforms. Thiolated single-stranded DNA and its analogues, such as ZNA® and PNA probes, were used to immobilize model proteins (anti-CRP antibodies and SARS-CoV nucleoprotein). The study explores factors influencing DDI-based immunosensor performance, including the purity of protein-DNA conjugates and the stability of their duplexes with DNA and analogues. It also provides insight into backfilling agent type and probe surface density. The research reveals that single-component monolayers lack protection against protein adsorption, while mixing the probes with long-chain ligands may hinder DNA-protein conjugate anchoring. Conventional DNA probes offer slightly higher surface density, while ZNA® probes exhibit better binding efficiency. Despite no enhanced stability in different ionic strength media, the cost-effectiveness of DNA probes led to their preference. The findings contribute to advancing microarray technology, paving the way for new generations of DDI-based multiplex platforms for rapid and robust diagnostics.
Collapse
Affiliation(s)
- Sylwia Karoń
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Drozd
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
4
|
Genco E, Modena F, Sarcina L, Björkström K, Brunetti C, Caironi M, Caputo M, Demartis VM, Di Franco C, Frusconi G, Haeberle L, Larizza P, Mancini MT, Österbacka R, Reeves W, Scamarcio G, Scandurra C, Wheeler M, Cantatore E, Esposito I, Macchia E, Torricelli F, Viola FA, Torsi L. A Single-Molecule Bioelectronic Portable Array for Early Diagnosis of Pancreatic Cancer Precursors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304102. [PMID: 37452695 DOI: 10.1002/adma.202304102] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
A cohort of 47 patients is screened for pancreatic cancer precursors with a portable 96-well bioelectronic sensing-array for single-molecule assay in cysts fluid and blood plasma, deployable at point-of-care (POC). Pancreatic cancer precursors are mucinous cysts diagnosed with a sensitivity of at most 80% by state-of-the-art cytopathological molecular analyses (e.g., KRASmut DNA). Adding the simultaneous assay of proteins related to malignant transformation (e.g., MUC1 and CD55) is deemed essential to enhance diagnostic accuracy. The bioelectronic array proposed here, based on single-molecule-with-a-large-transistor (SiMoT) technology, can assay both nucleic acids and proteins at the single-molecule limit-of-identification (LOI) (1% of false-positives and false-negatives). It comprises an enzyme-linked immunosorbent assay (ELISA)-like 8 × 12-array organic-electronics disposable cartridge with an electrolyte-gated organic transistor sensor array, and a reusable reader, integrating a custom Si-IC chip, operating via software installed on a USB-connected smart device. The cartridge is complemented by a 3D-printed sensing gate cover plate. KRASmut , MUC1, and CD55 biomarkers either in plasma or cysts-fluid from 5 to 6 patients at a time, are multiplexed at single-molecule LOI in 1.5 h. The pancreatic cancer precursors are classified via a machine-learning analysis resulting in at least 96% diagnostic-sensitivity and 100% diagnostic-specificity. This preliminary study opens the way to POC liquid-biopsy-based early diagnosis of pancreatic-cancer precursors in plasma.
Collapse
Affiliation(s)
- Enrico Genco
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Francesco Modena
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan, 20134, Italy
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Kim Björkström
- The Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
| | | | - Mario Caironi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan, 20134, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Virginia Maria Demartis
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | | | - Giulia Frusconi
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Lena Haeberle
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, 40225, Duesseldorf, Germany
| | - Piero Larizza
- Masmec Biomed - Masmec SpA division, Modugno (BA), 70026, Italy
| | | | - Ronald Österbacka
- The Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
| | | | - Gaetano Scamarcio
- CNR IFN, Bari, 70126, Italy
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - May Wheeler
- FlexEnable Technology Ltd, Cambridge, CB4 0FX, UK
| | - Eugenio Cantatore
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, 40225, Duesseldorf, Germany
| | - Eleonora Macchia
- The Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Fabrizio Antonio Viola
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan, 20134, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| |
Collapse
|
5
|
Sarcina L, Scandurra C, Di Franco C, Caputo M, Catacchio M, Bollella P, Scamarcio G, Macchia E, Torsi L. A stable physisorbed layer of packed capture antibodies for high-performance sensing applications. JOURNAL OF MATERIALS CHEMISTRY. C 2023; 11:9093-9106. [PMID: 37457868 PMCID: PMC10341389 DOI: 10.1039/d3tc01123b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/10/2023] [Indexed: 07/18/2023]
Abstract
Antibody physisorption at a solid interface is a very interesting phenomenon that has important effects on applications such as the development of novel biomaterials and the rational design and fabrication of high-performance biosensors. The strategy selected to immobilize biorecognition elements can determine the performance level of a device and one of the simplest approaches is physical adsorption, which is cost-effective, fast, and compatible with printing techniques as well as with green-chemistry processes. Despite its huge advantages, physisorption is very seldom adopted, as there is an ingrained belief that it does not lead to high performance because of its lack of uniformity and long-term stability, which, however, have never been systematically investigated, particularly for bilayers of capture antibodies. Herein, the homogeneity and stability of an antibody layer against SARS-CoV-2-Spike1 (S1) protein physisorbed onto a gold surface have been investigated by means of multi-parametric surface plasmon resonance (MP-SPR). A surface coverage density of capture antibodies as high as (1.50 ± 0.06) × 1012 molecules per cm-2 is measured, corresponding to a thickness of 12 ± 1 nm. This value is compatible with a single monolayer of homogeneously deposited antibodies. The effect of the ionic strength (is) of the antibody solution in controlling physisorption of the protein was thoroughly investigated, demonstrating an enhancement in surface coverage at lower ionic strength. An atomic force microscopy (AFM) investigation shows a globular structure attributed to is-related aggregations of antibodies. The long-term stability over two weeks of the physisorbed proteins was also assessed. High-performance sensing was proven by evaluating figures of merit, such as the limit of detection (2 nM) and the selectivity ratio between a negative control and the sensing experiment (0.04), which is the best reported performance for an SPR S1 protein assay. These figures of merit outmatch those measured with more sophisticated biofunctionalization procedures involving chemical bonding of the capture antibodies to the gold surface. The present study opens up interesting new pathways toward the achievement of a cost-effective and scalable biofunctionalization protocol, which could guarantee the prolonged stability of the biolayer and easy handling of the biosensing system.
Collapse
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4 70125 Bari Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4 70125 Bari Italy
| | - Cinzia Di Franco
- CNR - Institute of Photonics and Nanotechnologies 70126 Bari Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro 70126 Bari Italy
| | - Michele Catacchio
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro 70126 Bari Italy
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4 70125 Bari Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4 70125 Bari Italy
| | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari Aldo Moro 70126 Bari Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4 70125 Bari Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro 70126 Bari Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4 70125 Bari Italy
- The Faculty of Science and Engineering, Åbo Akademi University 20500 Turku Finland
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4 70125 Bari Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4 70125 Bari Italy
- The Faculty of Science and Engineering, Åbo Akademi University 20500 Turku Finland
| |
Collapse
|
6
|
Sarcina L, Viola F, Modena F, Picca RA, Bollella P, Di Franco C, Cioffi N, Caironi M, Österbacka R, Esposito I, Scamarcio G, Torsi L, Torricelli F, Macchia E. A large-area organic transistor with 3D-printed sensing gate for noninvasive single-molecule detection of pancreatic mucinous cyst markers. Anal Bioanal Chem 2022; 414:5657-5669. [PMID: 35410389 PMCID: PMC9242948 DOI: 10.1007/s00216-022-04040-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/05/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Early diagnosis in a premalignant (or pre-invasive) state represents the only chance for cure in neoplastic diseases such as pancreatic-biliary cancer, which are otherwise detected at later stages and can only be treated using palliative approaches, with no hope for a cure. Screening methods for the purpose of secondary prevention are not yet available for these cancers. Current diagnostic methods mostly rely on imaging techniques and conventional cytopathology, but they do not display adequate sensitivity to allow valid early diagnosis. Next-generation sequencing can be used to detect DNA markers down to the physical limit; however, this assay requires labeling and is time-consuming. The additional determination of a protein marker that is a predictor of aggressive behavior is a promising innovative approach, which holds the potential to improve diagnostic accuracy. Moreover, the possibility to detect biomarkers in blood serum offers the advantage of a noninvasive diagnosis. In this study, both the DNA and protein markers of pancreatic mucinous cysts were analyzed in human blood serum down to the single-molecule limit using the SiMoT (single-molecule assay with a large transistor) platform. The SiMoT device proposed herein, which exploits an inkjet-printed organic semiconductor on plastic foil, comprises an innovative 3D-printed sensing gate module, consisting of a truncated cone that protrudes from a plastic substrate and is compatible with standard ELISA wells. This 3D gate concept adds tremendous control over the biosensing system stability, along with minimal consumption of the capturing molecules and body fluid samples. The 3D sensing gate modules were extensively characterized from both a material and electrical perspective, successfully proving their suitability as detection interfaces for biosensing applications. KRAS and MUC1 target molecules were successfully analyzed in diluted human blood serum with the 3D sensing gate functionalized with b-KRAS and anti-MUC1, achieving a limit of detection of 10 zM and 40 zM, respectively. These limits of detection correspond to (1 ± 1) KRAS and (2 ± 1) MUC1 molecules in the 100 μL serum sample volume. This study provides a promising application of the 3D SiMoT platform, potentially facilitating the timely, noninvasive, and reliable identification of pancreatic cancer precursor cysts.
Collapse
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Fabrizio Viola
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133, Milan, Italy
| | - Francesco Modena
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133, Milan, Italy
- Dipartimento di Elettronica, Infomazione e Bioingegneria; Politecnico di Milano, Milano, Italy
| | - Rosaria Anna Picca
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4, 70125, Bari, Italy
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Cinzia Di Franco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Nicola Cioffi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4, 70125, Bari, Italy
| | - Mario Caironi
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133, Milan, Italy
| | - Ronald Österbacka
- The Faculty of Science and Engineering, Åbo Akademi University, Porthaninkatu 3, FI-20500, Turku, Finland
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, 40225, Duesseldorf, Germany
| | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", 70125, Bari, Italy
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4, 70125, Bari, Italy
- The Faculty of Science and Engineering, Åbo Akademi University, Porthaninkatu 3, FI-20500, Turku, Finland
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123, Brescia, Italy.
| | - Eleonora Macchia
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4, 70125, Bari, Italy.
- The Faculty of Science and Engineering, Åbo Akademi University, Porthaninkatu 3, FI-20500, Turku, Finland.
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
7
|
Macchia E, Torricelli F, Bollella P, Sarcina L, Tricase A, Di Franco C, Österbacka R, Kovács-Vajna ZM, Scamarcio G, Torsi L. Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection. Chem Rev 2022; 122:4636-4699. [PMID: 35077645 DOI: 10.1021/acs.chemrev.1c00290] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioelectronic transducing surfaces that are nanometric in size have been the main route to detect single molecules. Though enabling the study of rarer events, such methodologies are not suited to assay at concentrations below the nanomolar level. Bioelectronic field-effect-transistors with a wide (μm2-mm2) transducing interface are also assumed to be not suited, because the molecule to be detected is orders of magnitude smaller than the transducing surface. Indeed, it is like seeing changes on the surface of a one-kilometer-wide pond when a droplet of water falls on it. However, it is a fact that a number of large-area transistors have been shown to detect at a limit of detection lower than femtomolar; they are also fast and hence innately suitable for point-of-care applications. This review critically discusses key elements, such as sensing materials, FET-structures, and target molecules that can be selectively assayed. The amplification effects enabling extremely sensitive large-area bioelectronic sensing are also addressed.
Collapse
Affiliation(s)
- Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Angelo Tricase
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Cinzia Di Franco
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy
| | - Ronald Österbacka
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zsolt M Kovács-Vajna
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Gaetano Scamarcio
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy.,Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Luisa Torsi
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
8
|
Surface Plasmon Resonance Assay for Label‐Free and Selective Detection of
Xylella Fastidiosa. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Sarcina L, Mangiatordi GF, Torricelli F, Bollella P, Gounani Z, Österbacka R, Macchia E, Torsi L. Surface Plasmon Resonance Assay for Label-Free and Selective Detection of HIV-1 p24 Protein. BIOSENSORS 2021; 11:180. [PMID: 34204930 PMCID: PMC8229864 DOI: 10.3390/bios11060180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
The early detection of the human immunodeficiency virus (HIV) is of paramount importance to achieve efficient therapeutic treatment and limit the disease spreading. In this perspective, the assessment of biosensing assay for the HIV-1 p24 capsid protein plays a pivotal role in the timely and selective detection of HIV infections. In this study, multi-parameter-SPR has been used to develop a reliable and label-free detection method for HIV-1 p24 protein. Remarkably, both physical and chemical immobilization of mouse monoclonal antibodies against HIV-1 p24 on the SPR gold detecting surface have been characterized for the first time. The two immobilization techniques returned a capturing antibody surface coverage as high as (7.5 ± 0.3) × 1011 molecule/cm2 and (2.4 ± 0.6) × 1011 molecule/cm2, respectively. However, the covalent binding of the capturing antibodies through a mixed self-assembled monolayer (SAM) of alkanethiols led to a doubling of the p24 binding signal. Moreover, from the modeling of the dose-response curve, an equilibrium dissociation constant KD of 5.30 × 10-9 M was computed for the assay performed on the SAM modified surface compared to a much larger KD of 7.46 × 10-5 M extracted for the physisorbed antibodies. The chemically modified system was also characterized in terms of sensitivity and selectivity, reaching a limit of detection of (4.1 ± 0.5) nM and an unprecedented selectivity ratio of 0.02.
Collapse
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica, Universita’ degli Studi di Bari A. Moro, 70125 Bari, Italy; (L.S.); (P.B.); (L.T.)
| | | | - Fabrizio Torricelli
- Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy;
| | - Paolo Bollella
- Dipartimento di Chimica, Universita’ degli Studi di Bari A. Moro, 70125 Bari, Italy; (L.S.); (P.B.); (L.T.)
| | - Zahra Gounani
- Physics, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (Z.G.); (R.Ö.)
| | - Ronald Österbacka
- Physics, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (Z.G.); (R.Ö.)
| | - Eleonora Macchia
- Physics, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (Z.G.); (R.Ö.)
| | - Luisa Torsi
- Dipartimento di Chimica, Universita’ degli Studi di Bari A. Moro, 70125 Bari, Italy; (L.S.); (P.B.); (L.T.)
- Physics, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (Z.G.); (R.Ö.)
- CSGI (Centre for Colloid and Surface Science), 70125 Bari, Italy
| |
Collapse
|