1
|
Zhang K, Wang P, Wu L, Wang S, Jia Y, Yang J. A Soft Patch for Dynamic Myocardial Infarction Monitoring. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16479-16488. [PMID: 40056103 DOI: 10.1021/acsami.4c18868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Wearable electronics for cardiac monitoring have been widely developed in the field of routine vital sign monitoring and arrhythmia determination due to their convenience and continuity. However, there are very few reports on the demonstration of a stretchable multilead electrocardiogram (ECG) patch integrated with myocardial infarction (MI) location capability. Here, we first propose a wearable dynamic cardiac monitoring patch, which can acquire seven-lead ECG signals continuously. A novel stretchable bioelectrode is mounted on the patch, which is strain-insensitive in the 100% tensile strain range. Moreover, the bioelectrode maintains good adhesion to the skin at more than 0.4 N/cm. This soft and wireless multilead ECG patch is designed for long-term, all-round real-time cardiac monitoring. For MI classification, a machine learning model for MI identification and location is trained with accuracy (99.93%) and sensitivity (99.98%). In addition, we also propose a new framework for the automated annotation of MI abnormal segments, which simultaneously addresses the recognition of abnormal waveforms and the integration of interlead relationships. This study contributes to the realization of personalized medical monitoring and intervention as well as early warning for MI.
Collapse
Affiliation(s)
- Ke Zhang
- Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314011, PR China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute, Beihang University, Hangzhou 310052, China
| | - Peng Wang
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute, Beihang University, Hangzhou 310052, China
| | - Lingling Wu
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute, Beihang University, Hangzhou 310052, China
| | - Shuran Wang
- School of Clinical Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yanling Jia
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314000, China
| | - Jie Yang
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
2
|
Kim S, Yoo D, Kim J. Mechanically Robust 3D Flexible Electrodes via Embedding Conductive Nanomaterials in the Surface of Polymer Networks. SMALL METHODS 2025:e2401839. [PMID: 39895186 DOI: 10.1002/smtd.202401839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/09/2024] [Indexed: 02/04/2025]
Abstract
3D flexible electrodes are essential to implement flexible pressure sensors in various flexible electronic applications. Conventional methods for fabricating these electrodes include electroless deposition, spray coating, and incorporating conductive nanomaterials into a polymer matrix. However, the electrodes fabricated using these methods are characterized by poor adhesion between the conductive layer and polymer surface and fail to maintain intrinsic mechanical properties of the polymer, such as elastic modulus and ductility. Herein, a transfer method in which conductive nanomaterials are embedded into the surface of polymer networks via optimal surface energy control is proposed, such as reducing adhesion between the mold and nanomaterials. This method induces mechanical interlocking between the surface of polymer networks and conductive nanomaterials, firmly anchoring them onto the polymer network surface. Moreover, the intrinsic mechanical properties of the fabricated 3D flexible electrodes remain unchanged. Flexible capacitive sensors prepared using the resulting electrodes exhibit a stable sensing performance (ΔC0,5000/C0 = 0.169%) even under repetitive pressure conditions (5000 cycles at 70 kPa). The proposed robust 3D flexible electrode fabrication method presents a promising strategy for the future development of flexible pressure sensors.
Collapse
Affiliation(s)
- Sangmok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Dongwoo Yoo
- Department of Mechanical and Automotive Engineering, Kongju National University, Cheonan, Chungnam, 31080, South Korea
- Industrial Technology Research Institute, Kongju National University, Cheonan, Chungnam, 31080, South Korea
| | - Joonwon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
3
|
Banik O, Salve AL, Kumar P, Kumar S, Banoth E. Electrically conductive nanomaterials: transformative applications in biomedical engineering-a review. NANOTECHNOLOGY 2024; 36:022001. [PMID: 39389095 DOI: 10.1088/1361-6528/ad857d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
In recent years, significant advancements in nanotechnology have improved the various disciplines of scientific fields. Nanomaterials, like, carbon-based (carbon nanotubes, graphene), metallic, metal oxides, conductive polymers, and 2D materials (MXenes) exhibit exceptional electrical conductivity, mechanical strength, flexibility, thermal property and chemical stability. These materials hold significant capability in transforming material science and biomedical engineering by enabling the creation of more efficient, miniaturized, and versatile devices. The indulgence of nanotechnology with conductive materials in biological fields promises a transformative innovation across various industries, from bioelectronics to environmental regulations. The conductivity of nanomaterials with a suitable size and shape exhibits unique characteristics, which provides a platform for realization in bioelectronics as biosensors, tissue engineering, wound healing, and drug delivery systems. It can be explored for state-of-the-art cardiac, skeletal, nerve, and bone scaffold fabrication while highlighting their proof-of-concept in the development of biosensing probes and medical imaging. This review paper highlights the significance and application of the conductive nanomaterials associated with conductivity and their contribution towards a new perspective in improving the healthcare system globally.
Collapse
Affiliation(s)
- Oindrila Banik
- Opto-Biomedical Microsystems Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Amol Lalchand Salve
- Opto-Biomedical Microsystems Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Prasoon Kumar
- BioDesign and Medical Devices, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Santosh Kumar
- Department of Electronics and Communication Engineering, Centre of Excellence for Nanotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Earu Banoth
- Opto-Biomedical Microsystems Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
4
|
Kim K, Hong JH, Bae K, Lee K, Lee DJ, Park J, Zhang H, Sang M, Ju JE, Cho YU, Kang K, Park W, Jung S, Lee JW, Xu B, Kim J, Yu KJ. Extremely durable electrical impedance tomography-based soft and ultrathin wearable e-skin for three-dimensional tactile interfaces. SCIENCE ADVANCES 2024; 10:eadr1099. [PMID: 39303034 PMCID: PMC11414730 DOI: 10.1126/sciadv.adr1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
In the rapidly evolving field of human-machine interfaces (HMIs), high-resolution wearable electronic skin (e-skin) is essential for user interaction. However, traditional array-structured tactile interfaces require increased number of interconnects, while soft material-based computational methods have limited functionalities. Here, we introduce a thin and soft e-skin for tactile interfaces, offering high mapping capabilities through electrical impedance tomography (EIT). We employed an organic/inorganic hybrid structure with simple, cost-effective fabrication processes, ensuring flexibility and stability. The conductive and stretchable sensing domain includes a micropatterned multiwall carbon nanotube and elastomer composite. The skin-like tactile interface effectively detects pressure-induced conductivity changes, offering superior spatiotemporal resolution with fewer interconnects (pixel/interconnects >57). This EIT-based tactile interface discerns external pressures to a submillimeter degree and vertical deformations of a few hundred micrometers. It sustains stable functions under external damage or environmental changes, confirming its suitability for persistent wearable use. We demonstrate practical applications in real-time HMIs: handwriting recognition and drone control.
Collapse
Affiliation(s)
- Kyubeen Kim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jung-Hoon Hong
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyubin Bae
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyounghun Lee
- Sciospec GmbH, Leipziger Str. 43b, Bennewitz 04828, Germany
| | - Doohyun J. Lee
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Junsu Park
- Robotics Lab, Woowa Brothers Corp., Seoul 05544, Republic of Korea
| | - Haozhe Zhang
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Mingyu Sang
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong Eun Ju
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young Uk Cho
- Department of Biomedical & Robotics Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Kyowon Kang
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Wonkeun Park
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Suah Jung
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jung Woo Lee
- Department of Materials Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- The Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Zhuo S, Zhang A, Tessier A, Williams C, Kabiri Ameri S. Solvent-Free and Cost-Efficient Fabrication of a High-Performance Nanocomposite Sensor for Recording of Electrophysiological Signals. BIOSENSORS 2024; 14:188. [PMID: 38667181 PMCID: PMC11048393 DOI: 10.3390/bios14040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Carbon nanotube (CNT)-based nanocomposites have found applications in making sensors for various types of physiological sensing. However, the sensors' fabrication process is usually complex, multistep, and requires longtime mixing and hazardous solvents that can be harmful to the environment. Here, we report a flexible dry silver (Ag)/CNT/polydimethylsiloxane (PDMS) nanocomposite-based sensor made by a solvent-free, low-temperature, time-effective, and simple approach for electrophysiological recording. By mechanical compression and thermal treatment of Ag/CNT, a connected conductive network of the fillers was formed, after which the PDMS was added as a polymer matrix. The CNTs make a continuous network for electrons transport, endowing the nanocomposite with high electrical conductivity, mechanical strength, and durability. This process is solvent-free and does not require a high temperature or complex mixing procedure. The sensor shows high flexibility and good conductivity. High-quality electroencephalography (EEG) and electrooculography (EOG) were performed using fabricated dry sensors. Our results show that the Ag/CNT/PDMS sensor has comparable skin-sensor interface impedance with commercial Ag/AgCl-coated dry electrodes, better performance for noninvasive electrophysiological signal recording, and a higher signal-to-noise ratio (SNR) even after 8 months of storage. The SNR of electrophysiological signal recording was measured to be 26.83 dB for our developed sensors versus 25.23 dB for commercial Ag/AgCl-coated dry electrodes. Our process of compress-heating the functional fillers provides a universal approach to fabricate various types of nanocomposites with different nanofillers and desired electrical and mechanical properties.
Collapse
Affiliation(s)
- Shuyun Zhuo
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Anan Zhang
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Alexandre Tessier
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Chris Williams
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Shideh Kabiri Ameri
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
6
|
Ferreira R, Silva AP, Nunes-Pereira J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens 2024; 9:1104-1133. [PMID: 38394033 PMCID: PMC10964246 DOI: 10.1021/acssensors.3c02555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Due to an ever-increasing amount of the population focusing more on their personal health, thanks to rising living standards, there is a pressing need to improve personal healthcare devices. These devices presently require laborious, time-consuming, and convoluted procedures that heavily rely on cumbersome equipment, causing discomfort and pain for the patients during invasive methods such as sample-gathering, blood sampling, and other traditional benchtop techniques. The solution lies in the development of new flexible sensors with temperature, humidity, strain, pressure, and sweat detection and monitoring capabilities, mimicking some of the sensory capabilities of the skin. In this review, a comprehensive presentation of the themes regarding flexible sensors, chosen materials, manufacturing processes, and trends was made. It was concluded that carbon-based composite materials, along with graphene and its derivates, have garnered significant interest due to their electromechanical stability, extraordinary electrical conductivity, high specific surface area, variety, and relatively low cost.
Collapse
Affiliation(s)
- Rodrigo
G. Ferreira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - João Nunes-Pereira
- C-MAST, Centre for Mechanical and Aerospace
Science and Technologies, Universidade da
Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
7
|
Ananthasubramanian P, Sahay R, Raghavan N. Enhancement of the mechanical properties in ultra-low weight SWCNT sandwiched PDMS composites using a novel stacked architecture. Sci Rep 2024; 14:4487. [PMID: 38396000 PMCID: PMC10891152 DOI: 10.1038/s41598-024-54631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This study focuses on enhancing the mechanical properties of thin, soft, free-standing films via a layer-by-layer (LBL) fabrication process called LBL-FP. Soft polymer nanocomposite (PNC) thin films, combining polydimethylsiloxane (PDMS) and single-walled carbon nanotubes (SWCNT) at ultra-low loadings using a unique bottom-up LBL-FP, are examined. Two different structures of layered composites, (i) LBL PNCs- Layered composites with alternating layers of PDMS and SWCNT, (ii) Bulk PNCs- Layered composites with SWCNT dispersed in the bulk of PDMS, are comparatively investigated for their structural and mechanical properties. Silane-functionalized SWCNT strengthens the chemical bonding with PDMS, improving adhesion and dispersion. Mechanical analysis using nanoindentation, delamination, and dynamic analysis highlights the advantages of LBL PNCs with alternating layers of PDMS and SWCNT. Notably, LBL PNC (0.5 wt%) exhibits significant improvements, such as 2.6X increased nanoindentation resistance, 3X improved viscoelasticity, and (2-5)X enhanced tensile properties in comparison with neat PDMS. Due to this, LBL PNCs offer potential for soft, lightweight applications like wearables, electromagnetic interference shielding materials, and strain sensors while advancing composite thin film mechanics. The study emphasizes using a stacked architecture to produce PDMS-SWCNT multilayered PNCs with improved mechanics utilizing ultra-low concentrations of SWCNT. This first-of-its-kind stack design facilitates possibilities for lightweight composites utilizing less fillers. The LBL assembly involves the stacking of alternating layers of different materials, each contributing specific properties to enhance the overall strength and toughness of the structure.
Collapse
Affiliation(s)
- Pavithra Ananthasubramanian
- nano-Macro Reliability Laboratory (nMRL), Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Rahul Sahay
- nano-Macro Reliability Laboratory (nMRL), Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Nagarajan Raghavan
- nano-Macro Reliability Laboratory (nMRL), Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.
| |
Collapse
|
8
|
Oh J, Nam KW, Kim WJ, Kang BH, Park SH. Flexible Dry Electrode Based on a Wrinkled Surface That Uses Carbon Nanotube/Polymer Composites for Recording Electroencephalograms. MATERIALS (BASEL, SWITZERLAND) 2024; 17:668. [PMID: 38591516 PMCID: PMC10856397 DOI: 10.3390/ma17030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 04/10/2024]
Abstract
Electroencephalography (EEG) captures minute electrical signals emanating from the brain. These signals are vulnerable to interference from external noise and dynamic artifacts; hence, accurately recording such signals is challenging. Although dry electrodes are convenient, their signals are of limited quality; consequently, wet electrodes are predominantly used in EEG. Therefore, developing dry electrodes for accurately and stably recording EEG signals is crucial. In this study, we developed flexible dry electrodes using polydimethylsiloxane (PDMS)/carbon-nanotube (CNT) composites with isotropically wrinkled surfaces that effectively combine the advantages of wet and dry electrodes. Adjusting the PDMS crosslinker ratio led to good adhesion, resulting in a highly adhesive CNT/PDMS composite with a low Young's modulus that exhibited excellent electrical and mechanical properties owing to its ability to conformally contact skin. The isotropically wrinkled surface also effectively controls dynamic artifacts during EEG signal detection and ensures accurate signal analysis. The results of this study demonstrate that dry electrodes based on flexible CNT/PDMS composites and corrugated structures can outperform wet electrodes. The introduction of such electrodes is expected to enable the accurate analysis and monitoring of EEG signals in various scenarios, including clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Sung-Hoon Park
- Department of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea; (J.O.); (K.-W.N.); (W.-J.K.); (B.-H.K.)
| |
Collapse
|
9
|
Doria SM, Islam MN, Gagnon ZR. Teíchophoresis-enabled electrokinetic sample preparation and detection of calcium in natural plant samples. Talanta 2024; 267:125094. [PMID: 37666085 DOI: 10.1016/j.talanta.2023.125094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
We present a novel upstream electrokinetic sample preparation and liquid interfacial microfluidic method to pre-concentrate, detect and quantify the concentration of a charged species, such as calcium, from a natural plant sample. We employ a new electrokinetic phenomenon, termed as "Teíchophoresis" (TPE) to preconcentrate sample calcium ions (up to a 20X increase) against a conductive wall. Using microfluidic flow, we then continuously transport the pre-concentrated calcium to a hydrodynamically streamed interfacial sensing zone where we utilize the model fluorescent chelation reaction between calcium and Calcium Green-1 (CG1) to fluorescently quantify the calcium concentration. Using a combination of finite element analysis and finite difference numerical modelling, we model the kinetics of the CG1-calcium interfacial binding and predictably validate our TPE-driven concentration results. Finally, we demonstrate the applicability of our device for real world samples by determining the calcium concentration in a tree bark extract acquired from a southern live oak and confirm our concentration results using ICP-MS.
Collapse
Affiliation(s)
- Steven M Doria
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX, 77843, USA
| | - Md Nazibul Islam
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX, 77843, USA
| | - Zachary R Gagnon
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Li Z, Chen X, Tang S, Xiang D, Harkin‐Jones E, Chen Y, Zhao C, Li H, Wang P, Zhou L, Wang J, Li Y, Wu Y. Enhanced sensing performance of flexible strain sensors prepared from biaxially stretched carbon nanotubes/polydimethylsiloxane nanocomposites. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Zhen Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Xiaoyu Chen
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Shuai Tang
- Sichuan Aerospace Changzheng Equipment Manufacturing Co., Ltd. Chengdu China
| | - Dong Xiang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
- Collaborative Scientific Innovation Platform of Universities in Sichuan for Basalt Fiber Southwest Petroleum University Chengdu China
| | | | - Yong Chen
- Sichuan Aerospace Changzheng Equipment Manufacturing Co., Ltd. Chengdu China
| | - Chunxia Zhao
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
- Collaborative Scientific Innovation Platform of Universities in Sichuan for Basalt Fiber Southwest Petroleum University Chengdu China
| | - Hui Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
- Collaborative Scientific Innovation Platform of Universities in Sichuan for Basalt Fiber Southwest Petroleum University Chengdu China
| | - Ping Wang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Lihua Zhou
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Junjie Wang
- Department of Civil Engineering Tsinghua University Beijing China
| | - Yuntao Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Yuanpeng Wu
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
- Collaborative Scientific Innovation Platform of Universities in Sichuan for Basalt Fiber Southwest Petroleum University Chengdu China
| |
Collapse
|
11
|
Miroshnichenko AS, Neplokh V, Mukhin IS, Islamova RM. Silicone Materials for Flexible Optoelectronic Devices. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8731. [PMID: 36556538 PMCID: PMC9780939 DOI: 10.3390/ma15248731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Polysiloxanes and materials based on them (silicone materials) are of great interest in optoelectronics due to their high flexibility, good film-forming ability, and optical transparency. According to the literature, polysiloxanes are suggested to be very promising in the field of optoelectronics and could be employed in the composition of liquid crystal devices, computer memory drives organic light emitting diodes (OLED), and organic photovoltaic devices, including dye synthesized solar cells (DSSC). Polysiloxanes are also a promising material for novel optoectronic devices, such as LEDs based on arrays of III-V nanowires (NWs). In this review, we analyze the currently existing types of silicone materials and their main properties, which are used in optoelectronic device development.
Collapse
Affiliation(s)
- Anna S. Miroshnichenko
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia
- ChemBio Cluster, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia
- Laboratory of Renewable Energy Sources, St. Petersburg Academic University, 8/3 Khlopina Str., St. Petersburg 194021, Russia
| | - Vladimir Neplokh
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia
- ChemBio Cluster, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia
- High School of Engineering Physics, The Great St. Petersburg Polytechnical University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Ivan S. Mukhin
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia
- ChemBio Cluster, ITMO University, 49 Kronverksky Pr., St. Petersburg 197101, Russia
- Laboratory of Renewable Energy Sources, St. Petersburg Academic University, 8/3 Khlopina Str., St. Petersburg 194021, Russia
- High School of Engineering Physics, The Great St. Petersburg Polytechnical University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Regina M. Islamova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Emb., St. Petersburg 199034, Russia
| |
Collapse
|
12
|
Wang L, Zhang F, Su W, Xu X, Li A, Li Y, Xu C, Sun Y. Green Manufacturing of Flexible Sensors with a Giant Gauge Factor: Bridging Effect of CNT and Electric Field Enhancement at the Percolation Threshold. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26024-26033. [PMID: 35608949 DOI: 10.1021/acsami.2c04296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Toxic organic solvents are commonly used to disperse nanomaterials in the manufacturing of flexible conductive composites (e.g., graphene-PDMS). The dry-blended method avoids toxic organic solvent usage but leads to poor performance. Here, we proposed an innovative manufacturing method by adapting the traditional dry-blended method, including two key steps: minor CNT bridging and high-frequency electric field enhancement at the percolation threshold of graphene-PDMS. Significant improvement was achieved in the electrical conductivity (1528 times), the giant gauge factor (>8767.54), and the piezoresistive strain range (30 times) over the traditional dry-blended method. Further applications in measurements of culturing rat neonatal cardiomyocytes and mouse hearts proved that the proposed method has great potential for the manufacturing of nontoxic flexible sensors.
Collapse
Affiliation(s)
- Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Feng Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xingyuan Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Anqing Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Yunlun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto ON M5S 3E8, Canada
| |
Collapse
|
13
|
Wang L, Li H, Su W, Zhang W, Xu Z, Wang J, Chen J. Fabrication of a Free-Standing MWCNT Electrode by Electric Field Force for an Ultra-Sensitive MicroRNA-21 Nano-Genosensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201791. [PMID: 35599383 DOI: 10.1002/smll.202201791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Indexed: 05/21/2023]
Abstract
Abnormal expression of microRNA-21 (miR-21) is considered to be closely associated with the pathogenesis of colorectal cancer. However, great challenges do exist for the development of ultra-sensitive biosensors to detect the abnormal expression of miR-21 due to the low concentration in serum (fm level) at the early stage of colorectal cancer. Therefore, electric field force is used to rotate and rearrange random multi-walled carbon nanotubes (MWCNTs) at the microscale to improve the active sites of the electrode in this study. The free-standing MWCNTs are densely and high-orderly embedded into the bare electrode along the direction of the electric field. Compared to the bare electrode, the peak-current response of the free-standing MWCNT electrode improves by 150 times in cyclic voltammetric measurement. A nano-genosensor based on the free-standing MWCNT electrode is developed for measuring miR-21. The nano-genosensor for miR-21 shows an ultra-high sensitivity of 48.24 µA µm-1 , a wide linear range from 0.01 × 10-15 to 100 × 10-12 m, and a low detection limit of 1.2 × 10-18 m. The present nano-genosensor shows superior performance for miR-21 in human serum samples and demonstrates a potential application for the diagnosis of early stage colorectal cancer.
Collapse
Affiliation(s)
- Li Wang
- Advanced Micro and Nano-Instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353, China
| | - Huimin Li
- Advanced Micro and Nano-Instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353, China
| | - Weiguang Su
- Advanced Micro and Nano-Instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353, China
| | - Wenxian Zhang
- Advanced Micro and Nano-Instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353, China
| | - Zhipeng Xu
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jun Chen
- Advanced Micro and Nano-Instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250353, China
| |
Collapse
|
14
|
Zhong H, Fu R, Chen S, Zhou Z, Zhang Y, Yin X, He B. Large-area flexible MWCNT/PDMS pressure sensor for ergonomic design with aid of deep learning learning. NANOTECHNOLOGY 2022; 33:345502. [PMID: 35417891 DOI: 10.1088/1361-6528/ac66ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
The achievement of well-performing pressure sensors with low pressure detection, high sensitivity, large-scale integration, and effective analysis of the subsequent data remains a major challenge in the development of flexible piezoresistive sensors. In this study, a simple and extendable sensor preparation strategy was proposed to fabricate flexible sensors on the basis of multiwalled carbon nanotube/polydimethylsiloxane (MWCNT/PDMS) composites. A dispersant of tetrahydrofuran (THF) was added to solve the agglomeration of MWCNTs in PDMS, and the resistance of the obtained MWCNT/PDMS conductive unit with 7.5 wt.% MWCNTs were as low as 180 Ω/hemisphere. Sensitivity (0.004 kPa-1), excellent response stability, fast response time (36 ms), and excellent electromechanical properties were demonstrated within the pressure range from 0 to 100 kPa. A large-area flexible sensor with 8 × 10 pixels was successfully adopted to detect the pressure distribution on the human back and to verify its applicability. Combining the sensor array with deep learning, inclination of human sitting was easily recognized with high accuracy, indicating that the combined technology can be used to guide ergonomic design.
Collapse
Affiliation(s)
- Hongchuan Zhong
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Rongda Fu
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shiqi Chen
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zaiwei Zhou
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yue Zhang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Engineering Research Center of Joint Intelligent Medical Engineering, Fuzhou 350108, People's Republic of China
| | - Xiangyu Yin
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Engineering Research Center of Joint Intelligent Medical Engineering, Fuzhou 350108, People's Republic of China
| | - Bingwei He
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian Engineering Research Center of Joint Intelligent Medical Engineering, Fuzhou 350108, People's Republic of China
| |
Collapse
|
15
|
Faraz M, Abbasi MA, Son D, Shin C, Lee KT, Won SM, Baac HW. Strain-Dependent Photoacoustic Characteristics of Free-Standing Carbon-Nanocomposite Transmitters. SENSORS 2022; 22:s22093432. [PMID: 35591121 PMCID: PMC9104446 DOI: 10.3390/s22093432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
In this paper we demonstrate strain-dependent photoacoustic (PA) characteristics of free-standing nanocomposite transmitters that are made of carbon nanotubes (CNT) and candle soot nanoparticles (CSNP) with an elastomeric polymer matrix. We analyzed and compared PA output performances of these transmitters which are prepared first on glass substrates and then in a delaminated free-standing form for strain-dependent characterization. This confirms that the nanocomposite transmitters with lower concentration of nanoparticles exhibit more flexible and stretchable property in terms of Young’s modulus in a range of 4.08–10.57 kPa. Then, a dynamic endurance test was performed revealing that both types of transmitters are reliable with pressure amplitude variation as low as 8–15% over 100–800 stretching cycles for a strain level of 5–28% with dynamic endurance in range of 0.28–2.8%. Then, after 2000 cycles, the transmitters showed pressure amplitude variation of 6–29% (dynamic endurance range of 0.21–1.03%) at a fixed strain level of 28%. This suggests that the free-standing nanocomposite transmitters can be used as a strain sensor under a variety of environments providing robustness under repeated stretching cycles.
Collapse
Affiliation(s)
- Muhammad Faraz
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Muhammad Awais Abbasi
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Changhwan Shin
- School of Electrical Engineering, Korea University, Seoul 02841, Korea
| | - Kyu-Tae Lee
- Department of Physics, Inha University, Incheon 22212, Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
16
|
Lee D, Bhardwaj J, Jang J. Paper-based electrochemical immunosensor for label-free detection of multiple avian influenza virus antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. Sci Rep 2022; 12:2311. [PMID: 35145121 PMCID: PMC8831593 DOI: 10.1038/s41598-022-06101-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Many studies have been conducted on measuring avian influenza viruses and their hemagglutinin (HA) antigens via electrochemical principles; most of these studies have used gold electrodes on ceramic, glass, or silicon substrates, and/or labeling for signal enhancement. Herein, we present a paper-based immunosensor for label-free measurement of multiple avian influenza virus (H5N1, H7N9, and H9N2) antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. These flexible electrodes on a paper substrate can complement the physical weakness of the paper-based sensors when wetted, without affecting flexibility. The relative standard deviation of the peak currents was 1.88% when the electrodes were repeatedly bent and unfolded twenty times with deionized water provided each cycle, showing the stability of the electrodes. For the detection of HA antigens, approximately 10-μl samples (concentration: 100 pg/ml–100 ng/ml) were needed to form the antigen–antibody complexes during 20–30 min incubation, and the immune responses were measured via differential pulse voltammetry. The limits of detections were 55.7 pg/ml (0.95 pM) for H5N1 HA, 99.6 pg/ml (1.69 pM) for H7N9 HA, and 54.0 pg/ml (0.72 pM) for H9N2 HA antigens in phosphate buffered saline, and the sensors showed good selectivity and reproducibility. Such paper-based sensors are economical, flexible, robust, and easy-to-manufacture, with the ability to detect several avian influenza viruses.
Collapse
Affiliation(s)
- Daesoon Lee
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jyoti Bhardwaj
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaesung Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Department of Biomedical Engineering, UNIST, Ulsan, 44919, Republic of Korea. .,Department of Urban and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
17
|
Shi L, Wang H, Ma X, Wang Y, Wang F, Zhao D, Shen D. The Deformation Behavior and Bending Emissions of ZnO Microwire Affected by Deformation-Induced Defects and Thermal Tunneling Effect. SENSORS (BASEL, SWITZERLAND) 2021; 21:5887. [PMID: 34502777 PMCID: PMC8434524 DOI: 10.3390/s21175887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
The realization of electrically pumped emitters at micro and nanoscale, especially with flexibility or special shapes is still a goal for prospective fundamental research and application. Herein, zinc oxide (ZnO) microwires were produced to investigate the luminescent properties affected by stress. To exploit the initial stress, room temperature in situ elastic bending stress was applied on the microwires by squeezing between the two approaching electrodes. A novel unrecoverable deformation phenomenon was observed by applying a large enough voltage, resulting in the formation of additional defects at bent regions. The electrical characteristics of the microwire changed with the applied bending deformation due to the introduction of defects by stress. When the injection current exceeded certain values, bright emission was observed at bent regions, ZnO microwires showed illumination at the bent region priority to straight region. The bent emission can be attributed to the effect of thermal tunneling electroluminescence appeared primarily at bent regions. The physical mechanism of the observed thermoluminescence phenomena was analyzed using theoretical simulations. The realization of electrically induced deformation and the related bending emissions in single microwires shows the possibility to fabricate special-shaped light sources and offer a method to develop photoelectronic devices.
Collapse
Affiliation(s)
- Linlin Shi
- State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, No. 7186 Wei-Xing Road, Changchun 130022, China; (H.W.); (X.M.)
| | - Hong Wang
- State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, No. 7186 Wei-Xing Road, Changchun 130022, China; (H.W.); (X.M.)
| | - Xiaohui Ma
- State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, No. 7186 Wei-Xing Road, Changchun 130022, China; (H.W.); (X.M.)
| | - Yunpeng Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033, China; (Y.W.); (F.W.); (D.Z.); (D.S.)
| | - Fei Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033, China; (Y.W.); (F.W.); (D.Z.); (D.S.)
| | - Dongxu Zhao
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033, China; (Y.W.); (F.W.); (D.Z.); (D.S.)
| | - Dezhen Shen
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033, China; (Y.W.); (F.W.); (D.Z.); (D.S.)
| |
Collapse
|
18
|
Thiyagarajan K, Rajini GK, Maji D. Flexible, Highly Sensitive Paper-Based Screen Printed MWCNT/PDMS Composite Breath Sensor for Human Respiration Monitoring. IEEE SENSORS JOURNAL 2021; 21:13985-13995. [PMID: 35789076 PMCID: PMC8768993 DOI: 10.1109/jsen.2020.3040995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 05/14/2023]
Abstract
Accurate measurement and monitoring of respiration is vital in patients affected by severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2). Patients with severe chronic diseases and pneumonia need continuous respiration monitoring and oxygenation support. Existing respiratory sensing techniques require direct contact with the human body along with expensive and heavy Holter monitors for continuous real-time monitoring. In this work, we propose a low-cost, non-invasive and reliable paper-based wearable screen printed sensor for human respiration monitoring as an effective alternative of existing sensing systems. The proposed sensor was fabricated using traditional screen printing of multi-walled carbon nanotubes (MWCNTs) and polydimethylsiloxane (PDMS) composite based interdigitated electrodes on paper substrate. The paper substrate was used as humidity sensing material of the sensor. The hygroscopic nature of paper during inhalation and exhalation causes a change in dielectric constant, which in turn changes the capacitance of the sensor. The composite interdigitated electrode configuration exhibited better response times with a rise time of 1.178s being recorded during exhalation and fall time of 0.88s during inhalation periods. The respiration rate of sensor was successfully examined under various breathing conditions such as normal breathing, deep breathing, workout, oral breathing, nasal breathing, fast breathing and slow breathing by employing it in a wearable mask, a mandatory wearable product during the current COVID-19 pandemic situation.Thus, the above proposed sensor may hold tremendous potential in wearable/flexible healthcare technology with good sensitivity, stability, biodegradability and flexibility at this time of need.
Collapse
Affiliation(s)
- K. Thiyagarajan
- School of Electrical EngineeringVellore Institute of TechnologyVellore632 014India
| | - G. K. Rajini
- School of Electrical EngineeringVellore Institute of TechnologyVellore632 014India
| | - Debashis Maji
- Department of Sensor and Biomedical TechnologySchool of Electronics EngineeringVellore Institute of TechnologyVellore632 014India
| |
Collapse
|
19
|
Sunwoo SH, Ha KH, Lee S, Lu N, Kim DH. Wearable and Implantable Soft Bioelectronics: Device Designs and Material Strategies. Annu Rev Chem Biomol Eng 2021; 12:359-391. [PMID: 34097846 DOI: 10.1146/annurev-chembioeng-101420-024336] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-performance wearable and implantable devices capable of recording physiological signals and delivering appropriate therapeutics in real time are playing a pivotal role in revolutionizing personalized healthcare. However, the mechanical and biochemical mismatches between rigid, inorganic devices and soft, organic human tissues cause significant trouble, including skin irritation, tissue damage, compromised signal-to-noise ratios, and limited service time. As a result, profuse research efforts have been devoted to overcoming these issues by using flexible and stretchable device designs and soft materials. Here, we summarize recent representative research and technological advances for soft bioelectronics, including conformable and stretchable device designs, various types of soft electronic materials, and surface coating and treatment methods. We also highlight applications of these strategies to emerging soft wearable and implantable devices. We conclude with some current limitations and offer future prospects of this booming field.
Collapse
Affiliation(s)
- Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; .,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Ho Ha
- Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA;
| | - Sangkyu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea;
| | - Nanshu Lu
- Department of Mechanical Engineering, The University of Texas at Austin, Texas 78712, USA; .,Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, Department of Biomedical Engineering, and Texas Material Institute, The University of Texas at Austin, Texas 78712, USA
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; .,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|