1
|
Sankar K, Kuzmanović U, Schaus SE, Galagan JE, Grinstaff MW. Strategy, Design, and Fabrication of Electrochemical Biosensors: A Tutorial. ACS Sens 2024; 9:2254-2274. [PMID: 38636962 DOI: 10.1021/acssensors.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Advanced healthcare requires novel technologies capable of real-time sensing to monitor acute and long-term health. The challenge relies on converting a real-time quantitative biological and chemical signal into a desired measurable output. Given the success in detecting glucose and the commercialization of glucometers, electrochemical biosensors continue to be a mainstay of academic and industrial research activities. Despite the wealth of literature on electrochemical biosensors, reports are often specific to a particular application (e.g., pathogens, cancer markers, glucose, etc.), and most fail to convey the underlying strategy and design, and if it is transferable to detection of a different analyte. Here we present a tutorial review for those entering this research area that summarizes the basic electrochemical techniques utilized as well as discusses the designs and optimization strategies employed to improve sensitivity and maximize signal output.
Collapse
|
2
|
Yunussova N, Tilegen M, Pham TT, Kanayeva D. Rapid detection of carcinoembryonic antigen by means of an electrochemical aptasensor. iScience 2024; 27:109637. [PMID: 38646165 PMCID: PMC11033162 DOI: 10.1016/j.isci.2024.109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Carcinoembryonic antigen (CEA) is a critical biomarker for identifying colon cancer. This work presents an electrochemical impedance spectroscopy (EIS) based aptasensor for detecting CEA, utilizing a single-stranded DNA (ssDNA) aptamer previously selected and characterized by our research group. The surface of an interdigitated gold electrode (IDE) was successfully functionalized with an 18-HEG-modified aptamer sequence. The developed aptasensor demonstrated high specificity and sensitivity with detection limits of 2.4 pg/mL and 3.8 pg/mL for CEA in buffer and human serum samples, respectively. The optimal incubation time for the target protein was 20 min, and EIS measurements took less than 3 min. Atomic force microscopy (AFM) micrographs supported the EIS data, demonstrating a change in IDE surface roughness after each modification step, confirming the successful capture of the target. The potential of this developed EIS aptasensor in detecting CEA in complex samples holds promise.
Collapse
Affiliation(s)
- Nigara Yunussova
- Ph.D. program in Life Sciences, Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana 010000, Kazakhstan
| | - Meruyert Tilegen
- M.Sc. program in Molecular Medicine, School of Medicine, Nazarbayev University, 5/1 Kerey-Zhanibek Khandar St, Astana 010000, Kazakhstan
| | - Tri Thanh Pham
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana 010000, Kazakhstan
| | - Damira Kanayeva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay batyr Avenue, Astana 010000, Kazakhstan
| |
Collapse
|
3
|
Çağlayan Arslan Z, Okan M, Külah H. Pre-enrichment-free detection of hepatocellular carcinoma-specific ctDNA via PDMS and MEMS-based microfluidic sensor. Mikrochim Acta 2024; 191:229. [PMID: 38565645 PMCID: PMC10987365 DOI: 10.1007/s00604-024-06315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
The growing interest in microfluidic biosensors has led to improvements in the analytical performance of various sensing mechanisms. Although various sensors can be integrated with microfluidics, electrochemical ones have been most commonly employed due to their ease of miniaturization, integration ability, and low cost, making them an established point-of-care diagnostic method. This concept can be easily adapted to the detection of biomarkers specific to certain cancer types. Pathological profiling of hepatocellular carcinoma (HCC) is heterogeneous and rather complex, and biopsy samples contain limited information regarding the tumor and do not reflect its heterogeneity. Circulating tumor DNAs (ctDNAs), which can contain information regarding cancer characteristics, have been studied tremendously since liquid biopsy emerged as a new diagnostic method. Recent improvements in the accuracy and sensitivity of ctDNA determination also paved the way for genotyping of somatic genomic alterations. In this study, three-electrode (Au-Pt-Ag) glass chips were fabricated and combined with polydimethylsiloxane (PDMS) microchannels to establish an electrochemical microfluidic sensor for detecting c.747G > T hotspot mutations in the TP53 gene of ctDNAs from HCC. The preparation and analysis times of the constructed sensor were as short as 2 h in total, and a relatively high flow rate of 30 µl/min was used during immobilization and hybridization steps. To the best of our knowledge, this is the first time a PDMS-based microfluidic electrochemical sensor has been developed to target HCC ctDNAs. The system exhibited a limit of detection (LOD) of 24.1 fM within the tested range of 2-200 fM. The sensor demonstrated high specificity in tests conducted with fully noncomplementary and one-base mismatched target sequences. The developed platform is promising for detecting HCC-specific ctDNA at very low concentrations without requiring pre-enrichment steps.
Collapse
Affiliation(s)
- Zeynep Çağlayan Arslan
- Department of Electrical and Electronics Engineering, METU, Ankara, Turkey
- METU MEMS Research and Application Center, Ankara, Turkey
| | - Meltem Okan
- Department of Micro and Nanotechnology, METU, Ankara, Turkey
- METU MEMS Research and Application Center, Ankara, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, METU, Ankara, Turkey.
- Department of Micro and Nanotechnology, METU, Ankara, Turkey.
- METU MEMS Research and Application Center, Ankara, Turkey.
| |
Collapse
|
4
|
Aydın M, Aydın EB, Sezgintürk MK. Ultrasensitive detection of NSE employing a novel electrochemical immunosensor based on a conjugated copolymer. Analyst 2024; 149:1632-1644. [PMID: 38305417 DOI: 10.1039/d3an01602a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In the current study a simple and highly specific label-free impedimetric neuron specific enolase (NSE) immunosensor based on a copolymer matrix-coated disposable electrode was designed and tested. The copolymer matrix was prepared using a very conductive EDOT monomer and semi-conductive thiophene-bearing epoxy groups (ThEp), and the combination of the two monomers enhanced the conductivity and protein loading capacity of the electrode surface. The P(ThEp-co-EDOT) copolymer matrix was prepared via a drop-casting process and anti-NSE recognition biomolecules were immobilized directly on the epoxy groups of the copolymer. After the coupling of NSE molecules on the P(ThEp-co-EDOT) copolymer matrix-coated electrode surface, the charge transfer resistance (Rct) of the biosensor changed dramatically. These changes in Rct were proportional to the NSE molecule amounts captured by anti-NSE molecules. Under optimized experimental conditions, the increment in the Rct value was proportional to the NSE concentration over a range of 0.01 to 25 pg mL-1 with a detection limit (LOD) of 2.98 × 10-3 pg mL-1. This copolymer-coated electrode provided a lower LOD than the other biosensors. In addition, the suggested electrochemical immuno-platform showed good selectivity, superior reproducibility, long-term stability, and high recovery of NSE in real serum (95.64-102.20%) and saliva (95.28-105.35%) samples. These results showed that the present system had great potential for electrochemical biosensing applications.
Collapse
Affiliation(s)
- Muhammet Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydın
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
5
|
Abid K, Iannazzo D, Celesti C, Khaskhoussi A, Foti A, Maalej R, Gucciardi PG, Neri G. A novel 2D-GO@WS2 electrochemical platform for the determination of thiram fungicide. J Environ Sci (China) 2024; 136:226-236. [PMID: 37923433 DOI: 10.1016/j.jes.2022.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/07/2023]
Abstract
In this paper, the determination of Thiram fungicide by a novel modified screen-printed carbon electrode (SPCE) fabricated modifying the working electrode (WE) with 2D-GO/WS2 nanohybrid composites, is reported. Scanning electron microscopy (SEM), Raman spectroscopy, and fluorescence analysis (PL) were used to reveal the morphological and microstructural characteristics of the 2D-GO/WS2 nanohybrids with different graphene oxide:tungsten disulphide (GO:WS2) ratio. Electrochemical characterization demonstrated that the 2D-WS2/GO nanohybrids having a GO:WS2 ratio = 2:1 shows the highest electrocatalytic activity towards oxidation of Thiram. The developed sensor permits the quantification of Thiram in the linear range 0.083-0.33 µM with a limit of detection (LOD) of 0.02 µM, which is below the legal limits for this fungicide in drinking water or foods.
Collapse
Affiliation(s)
- Khouloud Abid
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy; INSTM, Research Unity of Messina, Italy; Laboratory of Dielectric and Photonic Materials, Faculty of Sciences of Sfax, Sfax, University, Sfax 3018, Tunisia
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy; INSTM, Research Unity of Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy
| | - Amani Khaskhoussi
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy
| | - Antonino Foti
- CNR IPCF Istituto per i Processi Chimico-Fisici, viale F. Stagno D'Alcontres 37, I-98156 Messina, Italy
| | - Ramzi Maalej
- Laboratory of Dielectric and Photonic Materials, Faculty of Sciences of Sfax, Sfax, University, Sfax 3018, Tunisia
| | - Pietro Giuseppe Gucciardi
- CNR IPCF Istituto per i Processi Chimico-Fisici, viale F. Stagno D'Alcontres 37, I-98156 Messina, Italy
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy; INSTM, Research Unity of Messina, Italy.
| |
Collapse
|
6
|
Ferreira R, Ribeiro PA, Canário AVM, Raposo M. Biosensors Based on Stanniocalcin-1 Protein Antibodies Thin Films for Prostate Cancer Diagnosis. BIOSENSORS 2023; 13:981. [PMID: 37998156 PMCID: PMC10669463 DOI: 10.3390/bios13110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Prostate cancer is one of the most prevalent tumors in men, accounting for about 7.3% of cancer deaths. Although there are several strategies for diagnosing prostate cancer, these are only accurate when the tumor is already at a very advanced stage, so early diagnosis is essential. Stanniocalcin 1 (STC1) is a secreted glycoprotein, which has been suggested as a tumor marker as its increased expression is associated with the development and/or progression of different types of malignant tumors. In this work, an electronic tongue (ET) prototype, based on a set of four sensors prepared from thin films that included STC1 antibodies for detecting prostate cancer, was developed. In the preparation of the thin films, polyelectrolytes of polyallylamine hydrochloride, polystyrene sulfonate of sodium and polyethyleneimine, and the biomolecules chitosan, protein A, and STC1 antibody were used. These films were deposited on quartz lamellae and on solid supports using layer-on-layer and self-assembly techniques. The deposition of the films was analyzed by ultraviolet-visible spectroscopy, and the detection of STC1 in aqueous solutions of PBS was analyzed by impedance spectroscopy. The impedance data were statistically analyzed using principal component analysis. The ETs formed by the four sensors and the three best sensors could detect the antigen at concentrations in the range from 5 × 10-11 to 5 × 10-4 M. They showed a linear dependence with the logarithm of the antigen concentration and a sensitivity of 5371 ± 820 and 4863 ± 634 per decade of concentration, respectively. Finally, the results allow us to conclude that this prototype can advance to the calibration phase with patient samples.
Collapse
Affiliation(s)
- Renato Ferreira
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.F.); (P.A.R.)
| | - Paulo A. Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.F.); (P.A.R.)
| | - Adelino V. M. Canário
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (R.F.); (P.A.R.)
| |
Collapse
|
7
|
Dong H, Liu X, Gan L, Fan D, Sun X, Zhang Z, Wu P. Nucleic acid aptamer-based biosensors and their application in thrombin analysis. Bioanalysis 2023. [PMID: 37326345 DOI: 10.4155/bio-2023-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Thrombin is a multifunctional serine protease that plays an important role in coagulation and anticoagulation processes. Aptamers have been widely applied in biosensors due to their high specificity, low cost and good biocompatibility. This review summarizes recent advances in thrombin quantification using aptamer-based biosensors. The primary focus is optical sensors and electrochemical sensors, along with their applications in thrombin analysis and disease diagnosis.
Collapse
Affiliation(s)
- Hang Dong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
8
|
Cheataini F, Ballout N, Al Sagheer T. The effect of neuroinflammation on the cerebral metabolism at baseline and after neural stimulation in neurodegenerative diseases. J Neurosci Res 2023. [PMID: 37186320 DOI: 10.1002/jnr.25198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Neuroinflammation is a reaction of nervous tissue to an attack caused by an infection, a toxin, or a neurodegenerative disease. It involves brain metabolism adaptation in order to meet the increased energy needs of glial cell activation, but the nature of these adaptations is still unknown. Increasing interest concerning neuroinflammation leads to the identification of its role in neurodegenerative diseases. Few reports studied the effect of metabolic alteration on neuroinflammation. Metabolic damage initiates a pro-inflammatory response by microglial activation. Moreover, the exact neuroinflammation effect on cerebral cell metabolism remains unknown. In this study, we reviewed systematically the neuroinflammation effect in animal models' brains. All articles showing the relationship of neuroinflammation with brain metabolism, or with neuronal stimulation in neurodegenerative diseases were considered. Moreover, this review examines also the mitochondrial damage effect in neurodegeneration diseases. Then, different biosensors are classified regarding their importance in the determination of metabolite change. Finally, some therapeutic drugs inhibiting neuroinflammation are cited. Neuroinflammation increases lymphocyte infiltration and cytokines' overproduction, altering cellular energy homeostasis. This review demonstrates the importance of neuroinflammation as a mediator of disease progression. Further, the spread of depolarization effects pro-inflammatory genes expression and microglial activation, which contribute to the degeneration of neurons, paving the road to better management and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatima Cheataini
- Neuroscience Research Center (NRC), Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Nissrine Ballout
- Neuroscience Research Center (NRC), Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Tareq Al Sagheer
- Neuroscience Research Center (NRC), Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| |
Collapse
|
9
|
High-frequency phenomena and electrochemical impedance spectroscopy at nanoelectrodes. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2022.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Waifalkar PP, Noh D, Derashri P, Barage S, Oh E. Role of Estradiol Hormone in Human Life and Electrochemical Aptasensing of 17β-Estradiol: A Review. BIOSENSORS 2022; 12:1117. [PMID: 36551086 PMCID: PMC9776368 DOI: 10.3390/bios12121117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Estradiol is known as one of the most potent estrogenic endocrine-disrupting chemicals (EDCs) that may cause various health implications on human growth, metabolism regulation, the reproduction system, and possibly cancers. The detection of these EDCs in our surroundings, such as in foods and beverages, is important to prevent such harmful effects on humans. Aptamers are a promising class of bio-receptors for estradiol detection due to their chemical stability and high affinity. With the development of aptamer technology, electrochemical aptasensing became an important tool for estradiol detection. This review provides detailed information on various technological interventions in electrochemical estradiol detection in solutions and categorized the aptasensing mechanisms, aptamer immobilization strategies, and electrode materials. Moreover, we also discussed the role of estradiol in human physiology and signaling mechanisms. The level of estradiol in circulation is associated with normal and diseased conditions. The aptamer-based electrochemical sensing techniques are powerful and sensitive for estradiol detection.
Collapse
Affiliation(s)
- P. P. Waifalkar
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Daegwon Noh
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Poorva Derashri
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Panvel 410206, Maharashtra, India
| | - Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Panvel 410206, Maharashtra, India
- Centre for Computational Biology and Translational Research, Amity University, Mumbai-Pune Expressway, Panvel 410206, Maharashtra, India
| | - Eunsoon Oh
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
11
|
Leong YX, Tan EX, Leong SX, Lin Koh CS, Thanh Nguyen LB, Ting Chen JR, Xia K, Ling XY. Where Nanosensors Meet Machine Learning: Prospects and Challenges in Detecting Disease X. ACS NANO 2022; 16:13279-13293. [PMID: 36067337 DOI: 10.1021/acsnano.2c05731] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Disease X is a hypothetical unknown disease that has the potential to cause an epidemic or pandemic outbreak in the future. Nanosensors are attractive portable devices that can swiftly screen disease biomarkers on site, reducing the reliance on laboratory-based analyses. However, conventional data analytics limit the progress of nanosensor research. In this Perspective, we highlight the integral role of machine learning (ML) algorithms in advancing nanosensing strategies toward Disease X detection. We first summarize recent progress in utilizing ML algorithms for the smart design and fabrication of custom nanosensor platforms as well as realizing rapid on-site prediction of infection statuses. Subsequently, we discuss promising prospects in further harnessing the potential of ML algorithms in other aspects of nanosensor development and biomarker detection.
Collapse
Affiliation(s)
- Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Emily Xi Tan
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Shi Xuan Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Charlynn Sher Lin Koh
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Lam Bang Thanh Nguyen
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jaslyn Ru Ting Chen
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Kelin Xia
- Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
12
|
An Electrochemical Immunosensor for the Determination of Procalcitonin Using the Gold-Graphene Interdigitated Electrode. BIOSENSORS 2022; 12:bios12100771. [PMID: 36290909 PMCID: PMC9599768 DOI: 10.3390/bios12100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 01/09/2023]
Abstract
Procalcitonin (PCT) is considered a sepsis and infection biomarker. Herein, an interdigitated electrochemical immunosensor for the determination of PCT has been developed. The interdigitated electrode was made of the laser-engraved graphene electrode decorated with gold (LEGE/Aunano). The scanning electron microscopy indicated the LEGE/Aunano has been fabricated successfully. After that, the anti-PTC antibodies were immobilized on the surface of the electrode by using 3-mercaptopropionic acid. The electrochemical performance of the fabricated immunosensor was studied using electrochemical impedance spectroscopy (EIS). The EIS method was used for the determination of PCT in the concentration range of 2.5–800 pg/mL with a limit of detection of 0.36 pg/mL. The effect of several interfering agents such as the C reactive protein (CRP), immunoglobulin G (IgG), and human serum albumin (HSA) was also studied. The fabricated immunosensor had a good selectivity to the PCT. The stability of the immunosensor was also studied for 1 month. The relative standard deviation (RSD) was obtained to be 5.2%.
Collapse
|
13
|
Gongi W, Touzi H, Sadly I, Ben ouada H, Tamarin O, Ben ouada H. A Novel Impedimetric Sensor Based on Cyanobacterial Extracellular Polymeric Substances for Microplastics Detection. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:4738-4748. [PMID: 36032357 PMCID: PMC9392654 DOI: 10.1007/s10924-022-02555-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 05/28/2023]
Abstract
Cyanobacterial extracellular polymeric substances "EPS" have attracted intensive concern in biomedicine and food. Nevertheless, the use of those polymers as a sensor coating material has not yet been investigated mainly for microplastic detection. This study focuses on the application of EPS as a sensitive membrane deposited on a gold electrode and investigated with electrochemical impedance spectroscopy to detect four types of microplastics with a size range of 0.1 µm to 1 mm. The surface properties of this impedimetric sensor were investigated by Scanning electron microscopy, Fourier transforms infrared spectroscopy, and X-ray spectroscopy and, showed a high homogenous structure with the presence of several functional groups. The measurements showed a high homogenous structure with the presence of several functional groups. The EPS-based sensor could detect the four tested microplastics with a low limit of detection of 10-11 M. It is the first report focusing on EPS extracted from cyanobacteria that could be a new quantification method for low concentrations of microplastics. Supplementary Information The online version contains supplementary material available at 10.1007/s10924-022-02555-6.
Collapse
Affiliation(s)
- Wejdene Gongi
- Laboratory of Blue Biotechnology & Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000 Monastir, Tunisia
- University of French Guiana, Espace-Dev, UMR 228, 97300 Cayenne, France
| | - Hassen Touzi
- Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Monastir University, 5000 Monastir, Tunisia
| | - Idris Sadly
- University of French Guiana, Espace-Dev, UMR 228, 97300 Cayenne, France
| | - Hafedh Ben ouada
- Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Monastir University, 5000 Monastir, Tunisia
| | - Ollivier Tamarin
- University of French Guiana, Espace-Dev, UMR 228, 97300 Cayenne, France
- Université de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, 33400 Talence, France
| | - Hatem Ben ouada
- Laboratory of Blue Biotechnology & Aquatic Bioproducts, National Institute of Marine Sciences and Technologies, 5000 Monastir, Tunisia
| |
Collapse
|
14
|
Puiu M, Bala C. Affinity Assays for Cannabinoids Detection: Are They Amenable to On-Site Screening? BIOSENSORS 2022; 12:608. [PMID: 36005003 PMCID: PMC9405638 DOI: 10.3390/bios12080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022]
Abstract
Roadside testing of illicit drugs such as tetrahydrocannabinol (THC) requires simple, rapid, and cost-effective methods. The need for non-invasive detection tools has led to the development of selective and sensitive platforms, able to detect phyto- and synthetic cannabinoids by means of their main metabolites in breath, saliva, and urine samples. One may estimate the time passed from drug exposure and the frequency of use by corroborating the detection results with pharmacokinetic data. In this review, we report on the current detection methods of cannabinoids in biofluids. Fluorescent, electrochemical, colorimetric, and magnetoresistive biosensors will be briefly overviewed, putting emphasis on the affinity formats amenable to on-site screening, with possible applications in roadside testing and anti-doping control.
Collapse
Affiliation(s)
- Mihaela Puiu
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Camelia Bala
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
- Department of Analytical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| |
Collapse
|
15
|
Nanodiamond conjugated SARS-CoV-2 spike protein: electrochemical impedance immunosensing on a gold microelectrode. Mikrochim Acta 2022; 189:226. [PMID: 35590000 PMCID: PMC9119799 DOI: 10.1007/s00604-022-05320-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/25/2022] [Indexed: 11/04/2022]
Abstract
A promising immunosensing strategy in diagnosing SARS-CoV-2 is proposed using a 10-µm gap-sized gold interdigitated electrode (AuIDE) to target the surface spike protein (SP). The microelectrode surface was modified by (3-glycidyloxypropyl) trimethoxysilane to enforce the epoxy matrix, which facilitates the immobilization of the anti-SP antibody. The immunosensing performance was evaluated by integrating a nanosized (~ 10 nm) diamond-complexed SP as a target. The proposed immunoassay was quantitatively evaluated through electrochemical impedance spectroscopy (EIS) with the swept frequency from 0.1 to 1 MHz using a 100 mVRMS AC voltage supply. The immunoassay performed without diamond integration showed low sensitivity, with the lowest SP concentration measured at 1 pM at a determination coefficient of R2 = 0.9681. In contrast, the nanodiamond-conjugated SP on the immunosensor showed excellent sensitivity with a determination coefficient of R2 = 0.986. SP detection with a nanodiamond-conjugated target on AuIDE reached the low limit of detection at 189 fM in a linear detection range from 250 to 8000 fM. The specificity of the developed immunosensor was evaluated by interacting influenza-hemagglutinin and SARS-CoV-2-nucleocapsid protein with anti-SP. In addition, the authentic interaction of SP and anti-SP was validated by enzyme-linked immunosorbent assay.
Collapse
|
16
|
Luka GS, Najjaran H, Hoorfar M. On-chip-based electrochemical biosensor for the sensitive and label-free detection of Cryptosporidium. Sci Rep 2022; 12:6957. [PMID: 35484282 PMCID: PMC9051104 DOI: 10.1038/s41598-022-10765-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/08/2022] [Indexed: 01/14/2023] Open
Abstract
Cryptosporidium, an intestinal protozoan pathogen, is one of the leading causes of death in children and diarrhea in healthy adults. Detection of Cryptosporidium has become a high priority to prevent potential outbreaks. In this paper, a simple, easy to fabricate, and cost-effective on-chip-based electrochemical biosensor has been developed for the sensitive and label-free detection of Cryptosporidium oocysts in water samples. The sensor was fabricated using standard lithography using a mask with a 3-electrode design and modified by self-assembling a hybrid of a thiolated protein/G and the specific anti-Cryptosporidium monoclonal antibodies (IgG3). The electrochemical impedance spectroscopy (EIS) was employed to quantitate C. parvum in the range of 0 to 300 oocysts, with a detection limit of approximately 20 oocysts/5 µL. The high sensitivity and specificity of the developed label-free electrochemical biosensor suggest that this novel platform is a significant step towards the development of fast, real-time, inexpensive and label-free sensing tool for early warning and immediate on-site detection of C. parvum oocysts in water samples, as compared to the traditional methods (such as PCR and microscopy). Furthermore, under optimized conditions, this label-free biosensor can be extended to detect other analytes and biomarkers for environmental and biomedical analyses.
Collapse
Affiliation(s)
- George S Luka
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, BC, V1V1V7, Canada
| | - Homayoun Najjaran
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, BC, V1V1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, 333 University Way, Kelowna, BC, V1V1V7, Canada.
| |
Collapse
|
17
|
Park K. Impedance Technique-Based Label-Free Electrochemical Aptasensor for Thrombin Using Single-Walled Carbon Nanotubes-Casted Screen-Printed Carbon Electrode. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22072699. [PMID: 35408313 PMCID: PMC9002654 DOI: 10.3390/s22072699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 05/28/2023]
Abstract
An impedance technique-based aptasensor for the detection of thrombin was developed using a single-walled carbon nanotube (SWCNT)-modified screen-printed carbon electrode (SPCE). In this work, a thrombin-binding aptamer (TBA) as probe was used for the determination of thrombin, and that was immobilized on SWCNT through π-π interaction. In the presence of thrombin, the TBA on SWCNT binds with target thrombin, and the amount of TBA on the SWCNT surface decreases. The detachment of TBA from SWCNT will be affected by the concentration of thrombin and the remaining TBA on the SWCNT surface can be monitored by electrochemical methods. The TBA-modified SWCNT/SPCE sensing layer was characterized by cyclic voltammetry (CV). For the measurement of thrombin, the change in charge-transfer resistance (Rct) of the sensing interface was investigated using electrochemical impedance spectroscopy (EIS) with a target thrombin and [Fe(CN)6]3- as redox maker. Upon incubation with thrombin, a decrease of Rct change was observed due to the decrease in the repulsive interaction between the redox marker and the electrode surface without any label. A plot of Rct changes vs. the logarithm of thrombin concentration provides the linear detection ranges from 0.1 nM to 1 µM, with a ~0.02 nM detection limit.
Collapse
Affiliation(s)
- Kyungsoon Park
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
18
|
Lee J, Kane BJ, Khanwalker M, Sode K. Development of an electrochemical impedance spectroscopy based biosensor for detection of ubiquitin C-Terminal hydrolase L1. Biosens Bioelectron 2022; 208:114232. [PMID: 35390718 DOI: 10.1016/j.bios.2022.114232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022]
Abstract
Year over year, the incidence of traumatic brain injury (TBI) in the population is dramatically increasing; thus, timely diagnosis is crucial for improving patient outcomes in the clinic. Ubiquitin C-terminal hydrolase L1 (UCH-L1), a blood-based biomarker, has been approved by the FDA as a promising quantitative indicator of mild TBI that arises in blood serum shortly after injury. Current gold standard techniques for its quantitation are time-consuming and require specific laboratory equipment. Hence, development of a hand-held device is an attractive alternative. In this study, we report a novel system for rapid, one-step electrochemical UCH-L1 detection. Electrodes were functionalized with anti-UCH-L1 antibody, which was used as a molecular recognition element for selective sensing of UCH-L1. Electrochemical impedance spectroscopy (EIS) was used as a transduction method to quantify its binding. When the electrode was incubated with different concentrations of UCH-L1, impedance signal increased against a concentration gradient with high logarithmic correlation. Upon single-frequency analysis, a second calibration curve with greater signal to noise was obtained, which was used to distinguish physiologically relevant concentrations of UCH-L1. Notably, our system could detect UCH-L1 within 5 min, without a washing step nor bound/free separation, and had resolution across concentrations ranging from 1 pM to 1000 pM within an artificial serum sample. These attributes, together with the miniaturization potential afforded by an impedimetric sensing platform, make this platform an attractive candidate for scale-up as a device for rapid, on-site detection of TBI. These findings may aid in the future development of sensing systems for quantitative TBI detection.
Collapse
Affiliation(s)
- Jinhee Lee
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Bryant J Kane
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Mukund Khanwalker
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
19
|
Shin JH, Reddy YVM, Park TJ, Park JP. Recent advances in analytical strategies and microsystems for food allergen detection. Food Chem 2022; 371:131120. [PMID: 34634648 DOI: 10.1016/j.foodchem.2021.131120] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Food allergies are abnormal immune responses that typically occur within short period after exposure of certain allergenic proteins in food or food-related resources. Currently, the means to treat food allergies is not clearly understood, and the only known prevention method is avoiding the consumption of allergen-containing foods. From the viewpoint of analytical methods, the effective detection of food allergens is hindered by the effects of various treatment processes and food matrices on trace amounts of allergens. The aim of this effort is to provide the reader with a clear and concise view of new advances for the detection of food allergens. Therefore, the present review explored the development status of various biosensors for the real-time, on-site detection of food allergens with high selectivity and sensitivity. The review also described the analytical consideration for the quantification of food allergens, and global development trends and the future availability of these technologies.
Collapse
Affiliation(s)
- Jae Hwan Shin
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
20
|
Karaboğa MNS, Sezgintürk MK. Biosensor approaches on the diagnosis of neurodegenerative diseases: Sensing the past to the future. J Pharm Biomed Anal 2022; 209:114479. [PMID: 34861607 DOI: 10.1016/j.jpba.2021.114479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Early diagnosis of neurodegeneration-oriented diseases that develop with the aging world is essential for improving the patient's living conditions as well as the treatment of the disease. Alzheimer's and Parkinson's diseases are prominent examples of neurodegeneration characterized by dementia leading to the death of nerve cells. The clinical diagnosis of these diseases only after the symptoms appear, delays the treatment process. Detection of biomarkers, which are distinctive molecules in biological fluids, involved in neurodegeneration processes, has the potential to allow early diagnosis of neurodegenerative diseases. Studies on biosensors, whose main responsibility is to detect the target analyte with high specificity, has gained momentum in recent years with the aim of high detection of potential biomarkers of neurodegeneration process. This study aims to provide an overview of neuro-biosensors developed on the basis of biomarkers identified in biological fluids for the diagnosis of neurodegenerative diseases such as Alzheimer's disease (AD), and Parkinson's disease (PD), and to provide an overview of the urgent needs in this field, emphasizing the importance of early diagnosis in the general lines of the neurodegeneration pathway. In this review, biosensor systems developed for the detection of biomarkers of neurodegenerative diseases, especially in the last 5 years, are discussed.
Collapse
|
21
|
Lorigo M, Cairrao E. Fetoplacental vasculature as a model to study human cardiovascular endocrine disruption. Mol Aspects Med 2021; 87:101054. [PMID: 34839931 DOI: 10.1016/j.mam.2021.101054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Increasing evidence has associated the exposure of endocrine-disrupting chemicals (EDCs) with the cardiovascular (CV) system. This exposure is particularly problematic in a sensitive window of development, pregnancy. Pregnancy exposome can affect the overall health of the pregnancy by dramatic changes in vascular physiology and endocrine activity, increasing maternal susceptibility. Moreover, fetoplacental vascular function is generally altered, increasing the risk of developing pregnancy complications (including cardiovascular diseases, CVD) and predisposing the foetus to adverse health risks later in life. Thus, our review summarizes the existing literature on exposures to EDCs during pregnancy and adverse maternal health outcomes, focusing on the human placenta, vein, and umbilical artery associated with pregnancy complications. The purpose of this review is to highlight the role of fetoplacental vasculature as a model for the study of human cardiovascular endocrine disruption. Therefore, we emphasize that the placenta, together with the umbilical arteries and veins, allows a better characterization of the pregnant woman's exposome. Consequently, it contributes to the protection of the mother and foetus against CV disorders in life.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
22
|
Aydın EB, Aydın M, Sezgintürk MK. Highly selective and sensitive sandwich immunosensor platform modified with MUA-capped GNPs for detection of spike Receptor Binding Domain protein: A precious marker of COVID 19 infection. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 345:130355. [PMID: 34188361 PMCID: PMC8225300 DOI: 10.1016/j.snb.2021.130355] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 05/10/2023]
Abstract
A label-free electrochemical biosensing system as a suitable analysis technique for COVID 19 specific spike receptor-binding domain protein (RBD) was developed with an aim to facilitate the diagnosis of coronavirus. A novel production procedure for the fabrication of gold nanoparticles (GNPs)-capped 11-mercaptoundecanoic acid (MUA) modified bioelectrode was presented and its application potential for RBD biosensing was examined. The bioelectrode fabrication protocol was based on covalent ester linking formation between hydroxylated ITO electrode and GNPs-capped MUA (GNPs@MUA) with carboxyl ends. For this aim, spherical GNPs were prepared and characterized with scanning-transmission electron microscopy (S-TEM), UV-vis, and Raman spectroscopy. The synthesized GNPs were functionalized with MUA yielding Au-S bonds. Then, covalent immobilization of anti-RBD antibodies on the GNPs@MUA was performed with the help of carbodiimide coupling chemistry. The assembly processes of GNPs@MUA, anti-RBD antibodies and RBD antigens were characterized electrochemical, chemical and morphological techniques. GNPs@MUA was used as immobilization environment and provided the most effective surface design for target immunosensor. The resulting immunosensor is further applied to the impedimetric detection of RBD and it displayed a linear response to RBD antigen in the linear range of 0.002-100 pg mL-1 with a limit of detection of 0.577 fg mL-1 and sensitivity of 0.238 kohmpgmL-1 cm-2. The fabricated immunosensor had a good repeatability, long storage, stability and a reusable property after simple regeneration process. Furthermore, it was successfully employed for selective determination of RBD in artificial nasal secretion samples.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Muhammet Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
23
|
Jin Mei C, Ainliah Alang Ahmad S. A review on the determination heavy metals ions using calixarene-based electrochemical sensors. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Ibrahim N, Jamaluddin ND, Tan LL, Mohd Yusof NY. A Review on the Development of Gold and Silver Nanoparticles-Based Biosensor as a Detection Strategy of Emerging and Pathogenic RNA Virus. SENSORS (BASEL, SWITZERLAND) 2021; 21:5114. [PMID: 34372350 PMCID: PMC8346961 DOI: 10.3390/s21155114] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022]
Abstract
The emergence of highly pathogenic and deadly human coronaviruses, namely SARS-CoV and MERS-CoV within the past two decades and currently SARS-CoV-2, have resulted in millions of human death across the world. In addition, other human viral diseases, such as mosquito borne-viral diseases and blood-borne viruses, also contribute to a higher risk of death in severe cases. To date, there is no specific drug or medicine available to cure these human viral diseases. Therefore, the early and rapid detection without compromising the test accuracy is required in order to provide a suitable treatment for the containment of the diseases. Recently, nanomaterials-based biosensors have attracted enormous interest due to their biological activities and unique sensing properties, which enable the detection of analytes such as nucleic acid (DNA or RNA), aptamers, and proteins in clinical samples. In addition, the advances of nanotechnologies also enable the development of miniaturized detection systems for point-of-care (POC) biosensors, which could be a new strategy for detecting human viral diseases. The detection of virus-specific genes by using single-stranded DNA (ssDNA) probes has become a particular interest due to their higher sensitivity and specificity compared to immunological methods based on antibody or antigen for early diagnosis of viral infection. Hence, this review has been developed to provide an overview of the current development of nanoparticles-based biosensors that target pathogenic RNA viruses, toward a robust and effective detection strategy of the existing or newly emerging human viral diseases such as SARS-CoV-2. This review emphasizes the nanoparticles-based biosensors developed using noble metals such as gold (Au) and silver (Ag) by virtue of their powerful characteristics as a signal amplifier or enhancer in the detection of nucleic acid. In addition, this review provides a broad knowledge with respect to several analytical methods involved in the development of nanoparticles-based biosensors for the detection of viral nucleic acid using both optical and electrochemical techniques.
Collapse
Affiliation(s)
- Nadiah Ibrahim
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.I.); (N.D.J.)
| | - Nur Diyana Jamaluddin
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.I.); (N.D.J.)
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.I.); (N.D.J.)
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
25
|
Curulli A. Electrochemical Biosensors in Food Safety: Challenges and Perspectives. Molecules 2021; 26:2940. [PMID: 34063344 PMCID: PMC8156954 DOI: 10.3390/molecules26102940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
26
|
Rafi H, Zestos AG. Review-Recent Advances in FSCV Detection of Neurochemicals via Waveform and Carbon Microelectrode Modification. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2021; 168:057520. [PMID: 34108735 PMCID: PMC8186302 DOI: 10.1149/1945-7111/ac0064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fast scan cyclic voltammetry (FSCV) is an analytical technique that was first developed over 30 years ago. Since then, it has been extensively used to detect dopamine using carbon fiber microelectrodes (CFMEs). More recently, electrode modifications and waveform refinement have enabled the detection of a wider variety of neurochemicals including nucleosides such as adenosine and guanosine, neurotransmitter metabolites of dopamine, and neuropeptides such as enkephalin. These alterations have facilitated the selectivity of certain biomolecules over others to enhance the measurement of the analyte of interest while excluding interferants. In this review, we detail these modifications and how specializing CFME sensors allows neuro-analytical researchers to develop tools to understand the neurochemistry of the brain in disease states and provide groundwork for translational work in clinical settings.
Collapse
Affiliation(s)
- Harmain Rafi
- Department of Chemistry, American University, Washington, DC 20016, United States of America
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, United States of America
| | - Alexander G. Zestos
- Department of Chemistry, American University, Washington, DC 20016, United States of America
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, United States of America
| |
Collapse
|
27
|
Alhamoud Y, Li Y, Zhou H, Al-Wazer R, Gong Y, Zhi S, Yang D. Label-Free and Highly-Sensitive Detection of Ochratoxin A Using One-Pot Synthesized Reduced Graphene Oxide/Gold Nanoparticles-Based Impedimetric Aptasensor. BIOSENSORS 2021; 11:87. [PMID: 33808613 PMCID: PMC8003581 DOI: 10.3390/bios11030087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/13/2023]
Abstract
Ochratoxin A (OTA) primarily obtained by the genera aspergillus and penicillium, is one of the toxic substances for different organs and systems of the human body such as the kidney, liver, neurons and the immune system. Moreover, it is considered to cause tumors and fetal malformation even at a very low concentration. Fast and sensitive assay for detection of OTA at ultralow levels in foods and agricultural products has been an increasing demand. In this study, a new label-free electrochemical biosensor based on three-dimensional reduced graphene oxide/gold nanoparticles/aptamer for OTA detection was constructed. The 3D-rGO/Au NPs nanocomposites were firstly synthesized using a one-pot hydrothermal process under optimized experimental conditions. The 3D-rGO/Au NPs with considerable particular surface area and outstanding electrical conductivity was then coated on a glass carbon electrode to provide tremendous binding sites for -SH modified aptamer via the distinctive Au-S linkage. The presence of OTA was specifically captured by aptamer and resulted in electrochemical impedance spectroscopy (EIS) signal response accordingly. The constructed impedimetric aptasensor obtained a broad linear response from 1 pg/mL to 10 ng/mL with an LOD of 0.34 pg/mL toward OTA detection, highlighting the excellent sensitivity. Satisfactory reproducibility was also achieved with the relative standard deviation (RSD) of 1.393%. Moreover, the proposed aptasensor obtained a good recovery of OTA detection in red wine samples within the range of 93.14 to 112.75% along with a low LOD of 0.023 ng/mL, indicating its applicability for OTA detection in real samples along with economical, specific, susceptible, fast, easy, and transportable merits.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China; (Y.A.); (Y.L.); (Y.G.)
| | - Yingying Li
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China; (Y.A.); (Y.L.); (Y.G.)
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Ragwa Al-Wazer
- Department of Pharmacy, Faculty of Applied Medical Sciences, Yemeni Jordanian University, 1833 Sana’a, Yemen;
| | - Yiying Gong
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China; (Y.A.); (Y.L.); (Y.G.)
| | - Shuai Zhi
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China; (Y.A.); (Y.L.); (Y.G.)
| | - Danting Yang
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, China; (Y.A.); (Y.L.); (Y.G.)
| |
Collapse
|