1
|
Adamczyk PG, Harper SE, Reiter AJ, Roembke RA, Wang Y, Nichols KM, Thelen DG. Wearable sensing for understanding and influencing human movement in ecological contexts. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 28:100492. [PMID: 37663049 PMCID: PMC10469849 DOI: 10.1016/j.cobme.2023.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Wearable sensors offer a unique opportunity to study movement in ecological contexts - that is, outside the laboratory where movement happens in ordinary life. This article discusses the purpose, means, and impact of using wearable sensors to assess movement context, kinematics, and kinetics during locomotion, and how this information can be used to better understand and influence movement. We outline the types of information wearable sensors can gather and highlight recent developments in sensor technology, data analysis, and applications. We close with a vision for important future research and key questions the field will need to address to bring the potential benefits of wearable sensing to fruition.
Collapse
Affiliation(s)
- Peter Gabriel Adamczyk
- University of Wisconsin – Madison, Department of Mechanical Engineering, 1513 University Ave., Madison, Wisconsin, USA
| | - Sara E Harper
- University of Wisconsin – Madison, Department of Biomedical Engineering, 1550 Engineering Dr., Madison, Wisconsin, USA
| | - Alex J Reiter
- University of Wisconsin – Madison, Department of Mechanical Engineering, 1513 University Ave., Madison, Wisconsin, USA
| | - Rebecca A Roembke
- University of Wisconsin – Madison, Department of Mechanical Engineering, 1513 University Ave., Madison, Wisconsin, USA
| | - Yisen Wang
- University of Wisconsin – Madison, Department of Mechanical Engineering, 1513 University Ave., Madison, Wisconsin, USA
| | - Kieran M Nichols
- University of Wisconsin – Madison, Department of Mechanical Engineering, 1513 University Ave., Madison, Wisconsin, USA
| | - Darryl G. Thelen
- University of Wisconsin – Madison, Department of Mechanical Engineering, 1513 University Ave., Madison, Wisconsin, USA
- University of Wisconsin – Madison, Department of Biomedical Engineering, 1550 Engineering Dr., Madison, Wisconsin, USA
| |
Collapse
|
2
|
Nurse CA, Lewis CL, Shefelbine SJ. Frontal plane pelvic kinematics during high velocity running: Association with hamstring injury history. Phys Ther Sport 2023; 64:133-139. [PMID: 37890340 DOI: 10.1016/j.ptsp.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION Hamstring injuries are the most prevalent non-contact soft tissue injury in sports, with a larger portion of injuries being recurrent. The sagittal plane running kinematics correlated to hamstring injury history has been well documented. However, analysis of frontal plane kinematics allows for observation of stability and symmetry. This study aimed to examine the frontal plane running kinematics of elite collegiate level sprinters, with and without previous hamstring injury, compared to healthy counterparts. METHODS Thirty-nine participants performed three 50-m sprints, with three inertial measurement unit sensors placed on the pelvis: one on each iliac crest and one on the sacrum. Participants were classified based on sex, competitive status, and injury history. To investigate differences based on group classification, the data were used to analyze mediolateral motion (relative magnitude of mediolateral acceleration) and asymmetry (difference in acceleration between right and left iliac crests) during each stance phase throughout the run. RESULTS Injured sprinters displayed significantly greater mediolateral motion and asymmetry during stances than healthy counterparts. CONCLUSIONS This study demonstrates that frontal plane running stance dynamics are different in athletes with previous hamstring injury than healthy athletes. These athletes may benefit from rehabilitation strategies targeting postural control and stability during dynamic tasks.
Collapse
Affiliation(s)
- Cameron A Nurse
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37215, USA.
| | - Cara L Lewis
- Department of Physical Therapy, Boston University, Boston, MA, 02215, MA, USA.
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA; Department of Mechanical Engineering & Industrial Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Thieschäfer L, Klütz J, Weig J, Dos’Santos T, Büsch D. Development of a Cutting Technique Modification Training Program and Evaluation of its Effects on Movement Quality and Cutting Performance in Male Adolescent American Football Players. Sports (Basel) 2023; 11:184. [PMID: 37755861 PMCID: PMC10534889 DOI: 10.3390/sports11090184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
This study developed a cutting technique modification training program and investigated its effects on cutting performance and movement quality in adolescent American football players. For six weeks, an intervention group (IG) of 11 players participated in 25 min cutting technique modification training sessions integrated into team training twice a week, while a control group (CG) of 11 players continued their usual team training. Movement quality was assessed by evaluating 2D high-speed videos, obtained during preplanned 45° and 90° cutting tests, using the Cutting Movement Assessment Score (CMAS) qualitative screening tool. Cutting performance was assessed based on change of direction deficit (CODD). Significant interaction effects of time × group were found for CMAS in 45° and 90° cuttings (p < 0.001, ηp2 = 0.76, p < 0.001, ηp2 = 0.64, respectively), with large improvements in the IG (p < 0.001, g = -2.16, p < 0.001, g = -1.78, respectively) and deteriorations in the CG for 45° cuttings (p = 0.002, g = 1.15). However, no statistically significant differences in CODD were observed pre-to-post intervention. The cutting technique modification training was effective at improving movement quality without impairing cutting performance, and it can be used by practitioners working with adolescent athletes.
Collapse
Affiliation(s)
- Lutz Thieschäfer
- Institute of Sport Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany (D.B.)
| | - Julius Klütz
- Institute of Sport Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany (D.B.)
| | - Julian Weig
- Institute of Sport Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany (D.B.)
| | - Thomas Dos’Santos
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester M1 7EL, UK;
- Manchester Institute of Sport, Manchester Metropolitan University, Manchester M1 7EL, UK
| | - Dirk Büsch
- Institute of Sport Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany (D.B.)
| |
Collapse
|
4
|
Boyer KA, Hayes KL, Umberger BR, Adamczyk PG, Bean JF, Brach JS, Clark BC, Clark DJ, Ferrucci L, Finley J, Franz JR, Golightly YM, Hortobágyi T, Hunter S, Narici M, Nicklas B, Roberts T, Sawicki G, Simonsick E, Kent JA. Age-related changes in gait biomechanics and their impact on the metabolic cost of walking: Report from a National Institute on Aging workshop. Exp Gerontol 2023; 173:112102. [PMID: 36693530 PMCID: PMC10008437 DOI: 10.1016/j.exger.2023.112102] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Changes in old age that contribute to the complex issue of an increased metabolic cost of walking (mass-specific energy cost per unit distance traveled) in older adults appear to center at least in part on changes in gait biomechanics. However, age-related changes in energy metabolism, neuromuscular function and connective tissue properties also likely contribute to this problem, of which the consequences are poor mobility and increased risk of inactivity-related disease and disability. The U.S. National Institute on Aging convened a workshop in September 2021 with an interdisciplinary group of scientists to address the gaps in research related to the mechanisms and consequences of changes in mobility in old age. The goal of the workshop was to identify promising ways to move the field forward toward improving gait performance, decreasing energy cost, and enhancing mobility for older adults. This report summarizes the workshop and brings multidisciplinary insight into the known and potential causes and consequences of age-related changes in gait biomechanics. We highlight how gait mechanics and energy cost change with aging, the potential neuromuscular mechanisms and role of connective tissue in these changes, and cutting-edge interventions and technologies that may be used to measure and improve gait and mobility in older adults. Key gaps in the literature that warrant targeted research in the future are identified and discussed.
Collapse
Affiliation(s)
- Katherine A Boyer
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Kate L Hayes
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | | | | | - Jonathan F Bean
- New England GRECC, VA Boston Healthcare System, Boston, MA, USA; Department of PM&R, Harvard Medical School, Boston, MA, USA; Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Jennifer S Brach
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute and the Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - David J Clark
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA; Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Luigi Ferrucci
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | - James Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Yvonne M Golightly
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA; Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Tibor Hortobágyi
- Hungarian University of Sports Science, Department of Kinesiology, Budapest, Hungary; Institute of Sport Sciences and Physical Education, University of Pécs, Hungary; Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary; Center for Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Sandra Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Marco Narici
- Neuromuscular Physiology Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Barbara Nicklas
- Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, USA
| | - Thomas Roberts
- Department of Ecology and Evolutionary Biology, Brown University, USA
| | - Gregory Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, USA
| | - Eleanor Simonsick
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jane A Kent
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
5
|
Reliability of wearable sensors-based parameters for the assessment of knee stability. PLoS One 2022; 17:e0274817. [PMID: 36137143 PMCID: PMC9499276 DOI: 10.1371/journal.pone.0274817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Anterior cruciate ligament (ACL) rupture represents one of the most recurrent knee injuries in soccer players. To allow a safe return to sport after ACL reconstruction, standardised and reliable procedures/criteria are needed. In this context, wearable sensors are gaining momentum as they allow obtaining objective information during sport-specific and in-the-field tasks. This paper aims at proposing a sensor-based protocol for the assessment of knee stability and at quantifying its reliability. Seventeen soccer players performed a single leg squat and a cross over hop test. Each participant was equipped with two magnetic-inertial measurement units located on the tibia and foot. Parameters related to the knee stability were obtained from linear acceleration and angular velocity signals. The intraclass correlation coefficient (ICC) and minimum detectable change (MDC) were calculated to evaluate each parameter reliability. The ICC ranged from 0.29 to 0.84 according to the considered parameter. Specifically, angular velocity-based parameters proved to be more reliable than acceleration-based counterparts, particularly in the cross over hop test (average ICC values of 0.46 and 0.63 for acceleration- and angular velocity-based parameters, respectively). An exception was represented, in the single leg squat, by parameters extracted from the acceleration trajectory on the tibial transverse plane (0.60≤ICC≤0.76), which can be considered as promising candidates for ACL injury risk assessment. Overall, greater ICC values were found for the dominant limb, with respect to the non-dominant one (average ICC: 0.64 and 0.53, respectively). Interestingly, this between-limb difference in variability was not always mirrored by LSI results. MDC values provide useful information in the perspective of applying the proposed protocol on athletes with ACL reconstruction. Thus, The outcome of this study sets the basis for the definition of reliable and objective criteria for return to sport clearance after ACL injury.
Collapse
|
6
|
Preatoni E, Bergamini E, Fantozzi S, Giraud LI, Orejel Bustos AS, Vannozzi G, Camomilla V. The Use of Wearable Sensors for Preventing, Assessing, and Informing Recovery from Sport-Related Musculoskeletal Injuries: A Systematic Scoping Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:3225. [PMID: 35590914 PMCID: PMC9105988 DOI: 10.3390/s22093225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Wearable technologies are often indicated as tools that can enable the in-field collection of quantitative biomechanical data, unobtrusively, for extended periods of time, and with few spatial limitations. Despite many claims about their potential for impact in the area of injury prevention and management, there seems to be little attention to grounding this potential in biomechanical research linking quantities from wearables to musculoskeletal injuries, and to assessing the readiness of these biomechanical approaches for being implemented in real practice. We performed a systematic scoping review to characterise and critically analyse the state of the art of research using wearable technologies to study musculoskeletal injuries in sport from a biomechanical perspective. A total of 4952 articles were retrieved from the Web of Science, Scopus, and PubMed databases; 165 were included. Multiple study features-such as research design, scope, experimental settings, and applied context-were summarised and assessed. We also proposed an injury-research readiness classification tool to gauge the maturity of biomechanical approaches using wearables. Five main conclusions emerged from this review, which we used as a springboard to propose guidelines and good practices for future research and dissemination in the field.
Collapse
Affiliation(s)
- Ezio Preatoni
- Department for Health, University of Bath, Bath BA2 7AY, UK; (E.P.); (L.I.G.)
- Centre for Health and Injury and Illness Prevention in Sport, University of Bath, Bath BA2 7AY, UK
| | - Elena Bergamini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy; (E.B.); (A.S.O.B.); (V.C.)
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (BOHNES), University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy
| | - Silvia Fantozzi
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy;
- Health Sciences and Technologies—Interdepartmental Centre for Industrial Research, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Lucie I. Giraud
- Department for Health, University of Bath, Bath BA2 7AY, UK; (E.P.); (L.I.G.)
| | - Amaranta S. Orejel Bustos
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy; (E.B.); (A.S.O.B.); (V.C.)
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (BOHNES), University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy
| | - Giuseppe Vannozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy; (E.B.); (A.S.O.B.); (V.C.)
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (BOHNES), University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy
| | - Valentina Camomilla
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy; (E.B.); (A.S.O.B.); (V.C.)
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (BOHNES), University of Rome “Foro Italico”, Piazza L. de Bosis 6, 00135 Rome, Italy
| |
Collapse
|
7
|
Dos'Santos T, McBurnie A, Thomas C, Jones PA, Harper D. Attacking Agility Actions: Match Play Contextual Applications With Coaching and Technique Guidelines. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Change of Direction Speed and Technique Modification Training Improves 180° Turning Performance, Kinetics, and Kinematics. Sports (Basel) 2021; 9:sports9060073. [PMID: 34073842 PMCID: PMC8225134 DOI: 10.3390/sports9060073] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed to examine the effects of change of direction (COD) speed and technique modification training on 180° turning performance (completion time, ground contact time [GCT], and exit velocity), kinetics, and kinematics. A non-randomised 6 week intervention study was administered. Thirteen male multidirectional sport athletes formed the intervention group (IG), participating in two COD speed and technique modification sessions per week. A total of 12 male multidirectional sport athletes formed the control group (CG). All subjects performed six modified 505 trials, whereby pre-to-post-intervention biomechanical changes were evaluated using three-dimensional motion analysis. Two-way mixed analysis of variances revealed significant interaction effects (group × time) for completion time, mean horizontal propulsive force (HPF), horizontal to vertical mean braking and propulsive force ratios for the penultimate (PFC) and final foot contact (FFC), FFC peak knee flexion and PFC hip flexion angle (p ≤ 0.040, η2 = 0.170–0.417). The IG displayed small to large improvements post-intervention in these aforementioned variables (p ≤ 0.058, g = 0.49–1.21). Turning performance improvements were largely to very largely (p ≤ 0.062, r or ρ = 0.527–0.851) associated with increased mean HPF, more horizontally orientated FFC propulsive force and PFC braking force, and greater pelvic rotation, PFC hip flexion, and PFC velocity reductions. COD speed and technique modification is a simple, effective training strategy that enhances turning performance.
Collapse
|