1
|
Sawraj S, Kumar D, Pravesh R, Shanker Chaudhary V, Prasad Pandey B, Sharma S, Kumar S. PCF-Based Sensors for Biomedical Applications: A Review. IEEE Trans Nanobioscience 2025; 24:157-164. [PMID: 39288060 DOI: 10.1109/tnb.2024.3462748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The article provides a comprehensive overview of the current and future advances of Photonic crystal fiber (PCF) based biosensors, the research explores the impact of structural parameter variations on phase matching conditions, by investigating pitch, air hole diameter, and gold layer thickness. Currently, these surface plasmon resonance (SPR) biosensors demonstrate the ability to detect a range of biological substances such as glucose, pH, serum proteins, and similar chemicals. They have the capacity to directly identify bio-components in urine, blood, and saliva, as well as pathogens, bacteria, and contaminants in food, water, and air. The study investigates by presenting the fundamental principles of PCF biosensors, highlighting their comparative benefits over conventional biosensors. Recent studies utilizing PCF biosensors for various application are reviewed, the findings of the review suggest that the integration of SPR enhances the sensing capabilities of these biosensors, making them promising tools for diverse applications in the field of biosensing.
Collapse
|
2
|
Woyessa G, Bang O. Sensitivity Enhancement of Polymer Optical Fiber Surface Plasmon Resonance Sensor Utilizing ITO Overlayer. SENSORS (BASEL, SWITZERLAND) 2025; 25:1863. [PMID: 40293035 PMCID: PMC11945530 DOI: 10.3390/s25061863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/30/2025]
Abstract
We present an experimental study of a sensitivity-enhanced surface plasmon resonance (SPR) sensor utilizing a cladding etched multimode polymer optical fiber (POF) coated with a layer of gold followed by an indium tin oxide (ITO) layer. Our findings indicate that POF SPR sensors with an ITO overlayer exhibit higher sensitivity compared to those coated solely with gold. Additionally, increasing the thickness of the ITO layer increases the sensitivity of the sensor at the expense of a broader SPR spectrum. We determined that the optimal ITO thickness for maximizing sensitivity is 25 nm. The sensor coated with 40 nm gold and 25 nm ITO demonstrated a refractive index sensitivity of 2258 nm per refractive index unit (nm/RIU) with a figure of merit and resolution of 10.13 RIU-1 and 2.74×10-4 RIU, respectively, within the range of 1.33 to 1.37 RIU. Notably, this sensitivity is 70% greater than that of a POF SPR sensor coated only with 40 nm gold. Long-term stability tests conducted in a hydrated environment confirmed that the ITO layer remains unaffected over time and that the maximum SPR wavelength drift was only 1.2 nm. The standard deviation of the three-round measurements also revealed that the sensor has good repeatability. We believe that this sensor offers a simple structure and a relatively easy fabrication process, eliminating the need for side polishing while providing a large interaction area, making it a promising candidate for high-sensitivity biosensing applications.
Collapse
Affiliation(s)
- Getinet Woyessa
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark (DTU), DK-2800 Kongens Lyngby, Denmark;
| | | |
Collapse
|
3
|
Lu X, Yu X, Zhou J, Chang M, Lu D. An Ultra-Wide Range D-Shaped Fiber SPR Sensor with a Nanostructure of Gold-MoS 2 and Sodium for the Simultaneous Measurement of Refractive Index and Temperature. SENSORS (BASEL, SWITZERLAND) 2025; 25:377. [PMID: 39860747 PMCID: PMC11769119 DOI: 10.3390/s25020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Refractive index (RI) and temperature (T) are both critical environmental parameters for environmental monitoring, food production, and medical testing. The paper develops a D-shaped photonic crystal fiber (PCF) sensor to measure RI and T simultaneously. Its cross-sectional structure encompasses a hexagonal-hole lattice, with one hole selectively filled with toluene for temperature sensing. By coating the D-shaped surface of the PCF with a metal film and a MoS2 film, the refractive index-detection channel is formed. Numerical results demonstrate that RI and T can be reflected in the same spectrum, without any interference caused by the two parameters with each other. At an environmental RI of 1.26-1.38, its maximum RI sensitivity is up to 5400 nm/RIU. At a temperature of 20-80 °C, its temperature sensitivity reaches -1.2 nm/°C. This design allows for a broad operational spectrum and an extensive measurement range, which makes it particularly suitable for applications requiring low-RI detection. Moreover, the resonance strength of the sensor is significantly enhanced by introducing a two-dimensional material MoS2 on the D-surface. Specifically, it reaches 195,149 dB/m when RI = 1.34 at 30 °C. This is much higher than that of most previous studies, and the requirements for inspection equipment can be lowered in this case. These results are essential for progress in simultaneously detecting RI and T.
Collapse
Affiliation(s)
- Xinglian Lu
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Y.); (J.Z.); (M.C.)
| | - Xiantong Yu
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Y.); (J.Z.); (M.C.)
| | - Jun Zhou
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Y.); (J.Z.); (M.C.)
| | - Min Chang
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Y.); (J.Z.); (M.C.)
| | - Dunke Lu
- School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China;
| |
Collapse
|
4
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
5
|
De Maria L, Arcadio F, Gabetta G, Merli D, Alberti G, Zeni L, Cennamo N, Pesavento M. An Optical Device Based on a Chemical Chip and Surface Plasmon Platform for 2-Furaldehyde Detection in Insulating Oil. SENSORS (BASEL, SWITZERLAND) 2024; 24:5261. [PMID: 39204956 PMCID: PMC11359362 DOI: 10.3390/s24165261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
2-Furaldehyde (2-FAL) is one of the main by-products of the degradation of hemicellulose, which is the solid material of the oil-paper insulating system of oil-filled transformers. For this reason, it has been suggested as a marker of the degradation of the insulating system; sensing devices for 2-FAL analysis in a wide concentration range are of high interest in these systems. An optical sensor system is proposed; this consists of a chemical chip, able to capture 2-FAL from the insulating oil, coupled with a surface plasmon resonance (SPR) probe, both realized on multimode plastic optical fibers (POFs). The SPR platform exploits gold nanofilm or, alternatively, a double layer of gold and silicon oxide to modulate the sensor sensitivity. The capturing chip is always based on the same molecularly imprinted polymer (MIP) as a receptor specific for 2-FAL. The system with the SPR probe based on a gold nanolayer had a higher sensitivity and a lower detection limit of fractions of μg L-1. Instead, the SPR probe, based on a double layer (gold and silicon oxide), has a lower sensitivity with a worse detection limit, and it is suitable for the detection of 2-FAL at concentrations of 0.01-1 mg L-1.
Collapse
Affiliation(s)
| | - Francesco Arcadio
- Department of Engineering, University of Campania L. Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (F.A.); (L.Z.); (N.C.)
| | | | - Daniele Merli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.M.); (G.A.)
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.M.); (G.A.)
| | - Luigi Zeni
- Department of Engineering, University of Campania L. Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (F.A.); (L.Z.); (N.C.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania L. Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (F.A.); (L.Z.); (N.C.)
| | - Maria Pesavento
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.M.); (G.A.)
| |
Collapse
|
6
|
Zhao Z, Yin H, Xiao J, Cui M, Huang R, Su R. Efficient Sequential Detection of Two Antibiotics Using a Fiber-Optic Surface Plasmon Resonance Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:2126. [PMID: 38610339 PMCID: PMC11013968 DOI: 10.3390/s24072126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Antibiotic residues have become a worldwide public safety issue. It is vital to detect multiple antibiotics simultaneously using sensors. A new and efficient method is proposed for the combined detection of two antibiotics (enrofloxacin (Enro) and ciprofloxacin (Cip)) in milk using surface plasmon resonance (SPR) sensors. Based on the principle of immunosuppression, two antibiotic antigens (for Enro and Cip) were immobilized on an optical fiber surface with conjugates of bovine serum albumin using dopamine (DA) polymerization. Each single antigen was bound to its corresponding antibody to derive standard curves for Enro and Cip. The fiber-optic sensor's sensitivity was 2900 nm/RIU. Detection limits were calculated to be 1.20 ng/mL for Enro and 0.81 ng/mL for Cip. The actual system's recovery rate was obtained by testing Enro and Cip in milk samples; enrofloxacin's and ciprofloxacin's mean recoveries from the milk samples were 96.46-120.46% and 96.74-126.9%, respectively. In addition, several different regeneration solutions were tested to analyze the two target analytes' regeneration ability; NaOH and Gly-HCl solutions were found to have the best regeneration ability.
Collapse
Affiliation(s)
- Ze Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Huiting Yin
- Zhejiang Institute of Tianjin University, Ningbo 315201, China;
| | - Jingzhe Xiao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
- Zhejiang Institute of Tianjin University, Ningbo 315201, China;
| |
Collapse
|
7
|
Khonina SN, Kazanskiy NL, Butt MA. Optical Fibre-Based Sensors-An Assessment of Current Innovations. BIOSENSORS 2023; 13:835. [PMID: 37754069 PMCID: PMC10526340 DOI: 10.3390/bios13090835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023]
Abstract
Optical fibre sensors are an essential subset of optical fibre technology, designed specifically for sensing and measuring several physical parameters. These sensors offer unique advantages over traditional sensors, making them gradually more valuable in a wide range of applications. They can detect extremely small variations in the physical parameters they are designed to measure, such as analytes in the case of biosensing. This high sensitivity allows them to detect subtle variations in temperature, pressure, strain, the refractive index of analytes, vibration, and other environmental factors with exceptional accuracy. Moreover, these sensors enable remote sensing capabilities. Since light signals are used to carry information, the sensing elements can be placed at distant or inaccessible sites and still communicate the data back to the central monitoring system without signal degradation. In recent times, different attractive configurations and approaches have been proposed to enhance the sensitivity of the optical fibre-based sensor and are briefly explained in this review. However, we believe that the choice of optical fibre sensor configuration should be designated based on the specific application. As these sensors continue to evolve and improve, they will play an increasingly vital role in critical monitoring and control applications across various industries.
Collapse
Affiliation(s)
- Svetlana N. Khonina
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Nikolay L. Kazanskiy
- Samara National Research University, 443086 Samara, Russia
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | | |
Collapse
|
8
|
Fakhri MA, Salim ET, Tariq SM, Ibrahim RK, Alsultany FH, Alwahib AA, Alhasan SFH, Gopinath SCB, Salim ZT, Hashim U. A gold nanoparticles coated unclad single mode fiber-optic sensor based on localized surface plasmon resonance. Sci Rep 2023; 13:5680. [PMID: 37029253 PMCID: PMC10082208 DOI: 10.1038/s41598-023-32852-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
In the last few decays, the fiber-optic was employed in the field of sensing because of its benefits in contrast to other types of sensors such as small size, easy to fabricate, high response, and flexibility. In this study, unclad single mode fiber-optic sensor is proposed to operate at 650 nm wavelength. COMSOL Multiphysics 5.1 finite element method (FEM) is used to design the sensor and tested it theoretically. The middle portion of the fiber cladding is removed and replaced by gold nanoparticles (Au NPs) of 50 nm thickness. Analytic layer of 3 μm thickness was immersed in different liquids in range of refractive index (RI) from 1.000281 to 1.39. These liquids are NaCl Deionized (DI) water solution, sucrose-Deionized (DI) water solution, and glycerol solution Deionized (DI) water. It was found that the highest obtained sensitivity and resolution are for glycerol-DI water solution with value of 3157.98 (nm/RIU) and 3.16 × 10-5 (RIU), respectively. Furthermore, it is easy to fabricate and of low cost. In experiments, pulsed laser ablation (PLA) was used to prepare Au NPs. X-ray diffraction (XRD) shown that the peak of the intensity grew as the ablated energy increased as well as the structure crystallization. Transmission electron microscopy (TEM) revealed an average diameter of 30 nm at the three ablated energies, while X-ray spectroscopy (EDX) spectrum has indicated the presence of Au NPs in the prepared solution. The photoluminescence (PL) and ultraviolet-visible UV-Vis transmission were used to study the optical properties of the prepared Au NPs. An optical spectrum analyzer was used to obtain the sensor's output results. It has shown that best intensity was obtained for sucrose which confined with theoretical results.
Collapse
Affiliation(s)
- Makram A Fakhri
- Laser and Optoelectronic Engineering Department, University of Technology-Iraq, Baghdad, Iraq.
| | - Evan T Salim
- Applied science department, University of Technology-Iraq, Baghdad, Iraq.
| | - Sara M Tariq
- Laser and Optoelectronic Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| | | | - Forat H Alsultany
- Department of Medical Physics, Al-Mustaqbal University College, Hillah, Iraq
| | - Ali A Alwahib
- Laser and Optoelectronic Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| | | | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Zaid T Salim
- Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - U Hashim
- Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| |
Collapse
|
9
|
Wang Z, Zhang W, Liu X, Li M, Lang X, Singh R, Marques C, Zhang B, Kumar S. Novel Optical Fiber-Based Structures for Plasmonics Sensors. BIOSENSORS 2022; 12:1016. [PMID: 36421134 PMCID: PMC9688463 DOI: 10.3390/bios12111016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/24/2023]
Abstract
Optical fiber sensors based on surface plasma technology have many unique advantages in specific applications such as extreme environmental monitoring, physical parameter determination, and biomedical indicators testing. In recent decades, various kinds of fiber probes with special structures were developed according to special processing such as tapering, splicing, etching, fiber balls, grating etc. In this paper, the fabrication technology, characteristics, development status and application scenarios of different special optical fiber structures are briefly reviewed, including common processing equipment. Furthermore, many special novel optical fiber structures reported in recent years are summarized, which have been used in various kinds of plasmonic sensing work. Then, the fiber-plasmonic sensors for practical applications are also introduced and examined in detail. The main aim of this review is to provide guidance and inspiration for researchers to design and fabricate special optical fiber structures, thus facilitating their further research.
Collapse
Affiliation(s)
- Zhi Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xianzheng Lang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Carlos Marques
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
10
|
Yaiwong P, Lertvachirapaiboon C, Shinbo K, Kato K, Ounnunkad K, Baba A. Tunable surface plasmon resonance enhanced fluorescence via the stretching of a gold quantum dot-coated aluminum-coated elastomeric grating substrate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3188-3195. [PMID: 35938318 DOI: 10.1039/d2ay00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, the surface plasmon resonance (SPR)-enhanced fluorescence properties of gold quantum dots (AuQDs) on an aluminum (Al)-coated polydimethylsiloxane (PDMS) grating substrate were investigated by changing the grating pitch via mechanical stretching. The SPR-excitation wavelength of the AuQDs/Al-coated PDMS-grating substrate was tuned by changing the incident light angle from 5° to 60° and stretching it from 0 to 1.0 mm. In addition, the SPR-enhanced fluorescence tuning ability was studied using an AuQD/Al-coated PDMS-grating film by stretching the substrate. The SPR-enhanced fluorescence (SPF) of the AuQDs on the Al-grating was observed using a violet laser as the excitation source at 405 nm with p-polarization. The wavelengths of the SPR excitation, corresponding to the SP-dispersion mode of +1, were shifted to a longer wavelength upon stretching the grating substrate from 0 to 1.0 mm. By stretching the AuQDs/Al-grating PDMS substrate, the SPR-enhanced fluorescence intensity increased at fixed incident angles of 15° and 35°, whereas the SPR-enhanced fluorescence intensity decreased at 40°. Moreover, the SPF could be tuned to exhibit different properties in tunable optical sensors.
Collapse
Affiliation(s)
- Patrawadee Yaiwong
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Chutiparn Lertvachirapaiboon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Kazunari Shinbo
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
| | - Keizo Kato
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
| | - Kontad Ounnunkad
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Akira Baba
- Graduate School of Science and Technology and Faculty of Engineering, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
11
|
Teng C, Ying S, Min R, Deng S, Deng H, Chen M, Chu X, Yuan L, Cheng Y, Xue M. Side-Polish Plastic Optical Fiber Based SPR Sensor for Refractive Index and Liquid-Level Sensing. SENSORS (BASEL, SWITZERLAND) 2022; 22:6241. [PMID: 36015998 PMCID: PMC9413881 DOI: 10.3390/s22166241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
In this work, a simple side-polish plastic optical fiber (POF)-based surface plasmon resonance (SPR) sensor is proposed and demonstrated for simultaneous measurement of refractive index (RI) and liquid level. The effects of side-polish depths on the sensing performance were studied. The experimental results show that the SPR peak wavelength will be changed as the RI changes, and the SPR peak intensity will be changed with the liquid level variation. By monitoring the changes in peak wavelength and intensity, the RI and liquid level can be detected simultaneously. Experimental results show that an RI sensitivity of 2008.58 nm/RIU can be reached at an RI of 1.39. This sensor has the advantages of simple structure and low cost, which has a good prospect in the field of biochemical sensing.
Collapse
Affiliation(s)
- Chuanxin Teng
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Shiyuan Ying
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Rui Min
- State Key Laboratory of Cognitive Neuroscience and Learning, Center for Cognition and Neuroergonomics, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| | - Shijie Deng
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Hongchang Deng
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ming Chen
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xiaoxue Chu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Libo Yuan
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yu Cheng
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Minmin Xue
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
12
|
Johari SH, Cheak TZ, Rahim HRA, Jali MH, Yusof HHM, Johari MAM, Harun SW. Formaldehyde Sensing Using Tapered U-Shape Plastic Optical Fiber Coated With Zinc Oxide Nanorods. IEEE ACCESS 2022; 10:91445-91451. [DOI: 10.1109/access.2022.3202176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Siti H. Johari
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Tiu Zian Cheak
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Hazli Rafis Abdul Rahim
- Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malacca, Malaysia
| | - Mohd Hafiz Jali
- Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Malacca, Malaysia
| | - Haziezol Helmi Mohd Yusof
- Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Malacca, Malaysia
| | - Md Ashadi M. Johari
- Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka, Malacca, Malaysia
| | - Sulaiman Wadi Harun
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Teng C, Min R, Zheng J, Deng S, Li M, Hou L, Yuan L. Intensity-Modulated Polymer Optical Fiber-Based Refractive Index Sensor: A Review. SENSORS 2021; 22:s22010081. [PMID: 35009621 PMCID: PMC8747346 DOI: 10.3390/s22010081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023]
Abstract
The simple and highly sensitive measurement of the refractive index (RI) of liquids is critical for designing the optical instruments and important in biochemical sensing applications. Intensity modulation-based polymer optical fiber (POF) RI sensors have a lot of advantages including low cost, easy fabrication and operation, good flexibility, and working in the visible wavelength. In this review, recent developments of the intensity modulation POF-based RI sensors are summarized. The materials of the POF and the working principle of intensity modulation are introduced briefly. Moreover, the RI sensing performance of POF sensors with different structures including tapered, bent, and side-polished structures, among others, are presented in detail. Finally, the sensing performance for different structures of POF-based RI sensors are compared and discussed.
Collapse
Affiliation(s)
- Chuanxin Teng
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (S.D.); (M.L.); (L.Y.)
- Correspondence: (C.T.); (L.H.)
| | - Rui Min
- State Key Laboratory of Cognitive Neuroscience and Learning, Center for Cognition and Neuroergonomics, Beijing Normal University at Zhuhai, Zhuhai 519087, China;
| | - Jie Zheng
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| | - Shijie Deng
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (S.D.); (M.L.); (L.Y.)
| | - Maosen Li
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (S.D.); (M.L.); (L.Y.)
| | - Li Hou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
- Correspondence: (C.T.); (L.H.)
| | - Libo Yuan
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; (S.D.); (M.L.); (L.Y.)
| |
Collapse
|
14
|
Nguyen TT, Van Sau N, Ngo QM, Eppe G, Tran NQ, Thi Phuong Anh N. Enhanced Sensitivity and Detection of Near-Infrared Refractive Index Sensor with Plasmonic Multilayers. SENSORS (BASEL, SWITZERLAND) 2021; 21:7056. [PMID: 34770363 PMCID: PMC8587138 DOI: 10.3390/s21217056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022]
Abstract
In this work, the multilayer of the surface plasmon resonance (SPR) sensor was optimized to achieve the maximum sensor sensitivity. By optimizing the thickness of the silver layer (Ag) and dielectric films (TiO2 and AlAs), the optimum sensitivity of the SPR sensor could be obtained. The performance of the SPR sensor proposed was compared with control simulations utilizing zinc oxide (ZnO) and molybdenum oxide (MoO3). The numerical results indicate that the figure-of-merits (FOM) of the SPR sensor was achieved around 150/RIU, corresponding to the sensor sensitivity of 162.79°/RIU with the optimized thicknesses of the TiO2, Ag, and AlAs layers of 140 nm, 60 nm, and 25 nm, respectively. This refractive index sensor shows the FOM to have high detection accuracy and high sensitivity that lead to finding potential application in bio-chemical detection with a small volume of liquid used in biological diagnosis.
Collapse
Affiliation(s)
- Tan Tai Nguyen
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Van Sau
- School of Basic Science, Tra Vinh University, Tra Vinh City 87000, Vietnam;
| | - Quang Minh Ngo
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, Hanoi 100000, Vietnam;
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11—Quartier Agora, 4000 Liège, Belgium;
| | - Ngoc Quyen Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam;
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Thi Phuong Anh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
15
|
Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. SENSORS 2021; 21:s21165262. [PMID: 34450704 PMCID: PMC8401600 DOI: 10.3390/s21165262] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022]
Abstract
Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials integration are introduced. The optical-fiber sensors integrated with LSPR/SPR structures and 2D materials are summarized. We also introduce the recent advances in quantum plasmonic sensing beyond the classical shot noise limit. The challenges and opportunities in this field are discussed.
Collapse
|