1
|
Sen D, Volya N, Muhammed Y, Lazenby RA. Fabrication and Characterization of a Tunable Microelectrode Array Probe for Simultaneous Multiplexed Electrochemical Detection. Anal Chem 2025; 97:7702-7710. [PMID: 40183452 DOI: 10.1021/acs.analchem.4c05175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Individually addressable microelectrode arrays (MEAs) enable the simultaneous and independent measurement of multiple analytes and benefit from a small size scale, which enables highly localized electrochemical detection. In this work, we describe a new methodology to fabricate low-cost and tunable MEA probes in which the number, spatial arrangement, and spacing of the electrodes and electrode material can be changed and controlled. This was achieved using a 3D printed support assembly to position wires of the electrode material into designated positions and a mold to seal the electrodes in place using epoxy resin. After curing of the epoxy, mechanical polishing exposed the surface of closely spaced disk microelectrodes embedded in the insulating material, which formed the MEA. The individual electrodes of the array were characterized using electrochemical methods and optical and electron microscopy to evaluate the surface quality and the integrity of the seal with the insulating epoxy. To validate the fabrication method and to demonstrate the controlled electrode spacing, we used a dual-disk electrode device, while four-, five-, and seven-electrode probes were used to demonstrate some of the different numbers and geometric arrangements of electrodes that are possible. While the developed probes have numerous potential applications, including as probes or substrates in scanning electrochemical microscopy, we fabricated electrochemical aptamer-based sensors on the individual electrodes, for the simultaneous detection of adenosine triphosphate and dopamine in phosphate-buffered saline solution, with and without 10% fetal bovine serum.
Collapse
Affiliation(s)
- Debashis Sen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Nicholas Volya
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Yusuf Muhammed
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Robert A Lazenby
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
2
|
Daly R, Narayan T, Diaz F, Shao H, Gutierrez Moreno JJ, Nolan M, O'Riordan A, Lovera P. Electrochemical synthesis of 2D-silver nanodendrites functionalized with cyclodextrin for SERS-based detection of herbicide MCPA. NANOTECHNOLOGY 2024; 35:285704. [PMID: 38522104 DOI: 10.1088/1361-6528/ad373c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/24/2024] [Indexed: 03/26/2024]
Abstract
Surface enhanced Raman spectroscopy (SERS) is a powerful analytical technique that has found application in the trace detection of a wide range of contaminants. In this paper, we report on the fabrication of 2D silver nanodendrites, on silicon chips, synthesized by electrochemical reduction of AgNO3at microelectrodes. The formation of nanodendrites is tentatively explained in terms of electromigration and diffusion of silver ions. Electrochemical characterization suggests that the nanodendrites do not stay electrically connected to the microelectrode. The substrates show SERS activity with an enhancement factor on the order of 106. Density functional theory simulations were carried out to investigate the suitability of the fabricated substrate for pesticide monitoring. These substrates can be functionalized with cyclodextrin macro molecules to help with the detection of molecules with low affinity with silver surfaces. A proof of concept is demonstrated with the detection of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA).
Collapse
Affiliation(s)
- Robert Daly
- Nanotechnology Group, Tyndall National Institute-University College Cork, T12 R5CP Cork, Ireland
| | - Tarun Narayan
- Nanotechnology Group, Tyndall National Institute-University College Cork, T12 R5CP Cork, Ireland
| | - Fernando Diaz
- Nanotechnology Group, Tyndall National Institute-University College Cork, T12 R5CP Cork, Ireland
| | - Han Shao
- Nanotechnology Group, Tyndall National Institute-University College Cork, T12 R5CP Cork, Ireland
| | - Jose Julio Gutierrez Moreno
- Materials Modelling for Devices Group, Tyndall National Institute, Lee Maltings, UCC, T12 R5CP Cork, Ireland
| | - Michael Nolan
- Materials Modelling for Devices Group, Tyndall National Institute, Lee Maltings, UCC, T12 R5CP Cork, Ireland
| | - Alan O'Riordan
- Nanotechnology Group, Tyndall National Institute-University College Cork, T12 R5CP Cork, Ireland
| | - Pierre Lovera
- Nanotechnology Group, Tyndall National Institute-University College Cork, T12 R5CP Cork, Ireland
| |
Collapse
|
3
|
Rahman MM, Bhuiyan NH, Park M, Uddin MJ, Jin GJ, Shim JS. Lithography-free interdigitated electrodes by trench-filling patterning on polymer substrate for Alzheimer's disease detection. Biosens Bioelectron 2024; 244:115803. [PMID: 37956638 DOI: 10.1016/j.bios.2023.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
Microelectrodes have played a crucial role in electrochemistry for the last few decades. However, the conventional lithographic processes, the key players in fabrication, are nonetheless technologically challenging, pricey, and lack reproducibility. In this work has developed a novel and low-cost patterned-replication fabrication technology for interdigitated electrode array (IDA) electrodes on the polymer substrate. Conventional UV-lithography has been utilized to fabricate the nickel IDA electrode pattern as a master mold on the stainless-steel substrate, which was replicated onto the polymer substrate by the hot-emboss technique. Then, gold was deposited on the replicated wafer by electron beam evaporation, and finally adhesive tape lift-off was used to obtain the gold IDA electrode. The fabricated IDA electrode was applied for electrochemical detection of various p-aminophenol (PAP) concentrations as a representative biomarker with a detection limit of 0.01 nM. Finally, different levels of amyloid beta 42 (Aß42) and amyloid beta aggregated (Aß Agg.), two Alzheimer's disease (AD) biomarkers, were measured using the developed IDA electrode via e-ELISA using enzyme by-products PAP. While quantified, the proposed IDA electrode successfully detects Aß42 and Aß Agg. with the lower detection limit (LOD) of 3.9 and 7.81 pg/ml, respectively.
Collapse
Affiliation(s)
- M Mahabubur Rahman
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - Nabil H Bhuiyan
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - MinJun Park
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - M Jalal Uddin
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea; NanoGenesis Inc., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, Republic of Korea
| | - Gyeong J Jin
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - Joon S Shim
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea; NanoGenesis Inc., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
4
|
Gęca I, Korolczuk M. A Novel Eco-Friendly and Highly Sensitive Solid Lead-Tin Microelectrode for Trace U(VI) Determination in Natural Water Samples. SENSORS (BASEL, SWITZERLAND) 2023; 23:2552. [PMID: 36904757 PMCID: PMC10007126 DOI: 10.3390/s23052552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
For the first time a solid state lead-tin microelectrode (diameter ϕ 25 µm) was utilized for U(VI) ion determination by adsorptive stripping voltammetry. The described sensor is characterized by high durability, reusability and eco-friendly features, as the need for using lead and tin ions for metal film preplating has been eliminated, and consequently, the amount of toxic waste has been limited. The advantages of the developed procedure resulted also from the utilization of a microelectrode as a working electrode, because a restricted amount of metals is needed for its construction. Moreover, field analysis is possible to perform thanks to the fact that measurements can be carried out from unmixed solutions. The analytical procedure was optimized. The proposed procedure is characterized by two orders of magnitude linear dynamic range of U(VI) determination from 1 × 10-9 to 1 × 10-7 mol L-1 (120 s of accumulation). The detection limit was calculated to be 3.9 × 10-10 mol L-1 (accumulation time of 120 s). RSD% calculated from seven subsequent U(VI) determinations at a concentration of 2 × 10-8 mol L-1 was 3.5%. The correctness of the analytical procedure was confirmed by analyzing a natural certified reference material.
Collapse
|
5
|
Kosri E, Ibrahim F, Thiha A, Madou M. Micro and Nano Interdigitated Electrode Array (IDEA)-Based MEMS/NEMS as Electrochemical Transducers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234171. [PMID: 36500794 PMCID: PMC9741053 DOI: 10.3390/nano12234171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 05/28/2023]
Abstract
Micro and nano interdigitated electrode array (µ/n-IDEA) configurations are prominent working electrodes in the fabrication of electrochemical sensors/biosensors, as their design benefits sensor achievement. This paper reviews µ/n-IDEA as working electrodes in four-electrode electrochemical sensors in terms of two-dimensional (2D) planar IDEA and three-dimensional (3D) IDEA configurations using carbon or metal as the starting materials. In this regard, the enhancement of IDEAs-based biosensors focuses on controlling the width and gap measurements between the adjacent fingers and increases the IDEA's height. Several distinctive methods used to expand the surface area of 3D IDEAs, such as a unique 3D IDEA design, integration of mesh, microchannel, vertically aligned carbon nanotubes (VACNT), and nanoparticles, are demonstrated and discussed. More notably, the conventional four-electrode system, consisting of reference and counter electrodes will be compared to the highly novel two-electrode system that adopts IDEA's shape. Compared to the 2D planar IDEA, the expansion of the surface area in 3D IDEAs demonstrated significant changes in the performance of electrochemical sensors. Furthermore, the challenges faced by current IDEAs-based electrochemical biosensors and their potential solutions for future directions are presented herein.
Collapse
Affiliation(s)
- Elyana Kosri
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre of Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Marc Madou
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
- Academia Mexicana de Ciencias, Ciudad de México 14400, CDMX, Mexico
| |
Collapse
|
6
|
Facile fabrication of new sensing platforms decorated with quinalizarin and PtNi alloy nanoparticles for highly sensitive aluminum determination. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Patella B, Vincenzo SD, Zanca C, Bollaci L, Ferraro M, Giuffrè MR, Cipollina C, Bruno MG, Aiello G, Russo M, Inguanta R, Pace E. Electrochemical Quantification of H 2O 2 Released by Airway Cells Growing in Different Culture Media. MICROMACHINES 2022; 13:1762. [PMID: 36296115 PMCID: PMC9611932 DOI: 10.3390/mi13101762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 05/30/2023]
Abstract
Quantification of oxidative stress is a challenging task that can help in monitoring chronic inflammatory respiratory airway diseases. Different studies can be found in the literature regarding the development of electrochemical sensors for H2O2 in cell culture medium to quantify oxidative stress. However, there are very limited data regarding the impact of the cell culture medium on the electrochemical quantification of H2O2. In this work, we studied the effect of different media (RPMI, MEM, DMEM, Ham's F12 and BEGM/DMEM) on the electrochemical quantification of H2O2. The used electrode is based on reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) and was obtained by co-electrodeposition. To reduce the electrode fouling by the medium, the effect of dilution was investigated using diluted (50% v/v in PBS) and undiluted media. With the same aim, two electrochemical techniques were employed, chronoamperometry (CH) and linear scan voltammetry (LSV). The influence of different interfering species and the effect of the operating temperature of 37 °C were also studied in order to simulate the operation of the sensor in the culture plate. The LSV technique made the sensor adaptable to undiluted media because the test time is short, compared with the CH technique, reducing the electrode fouling. The long-term stability of the sensors was also evaluated by testing different storage conditions. By storing the electrode at 4 °C, the sensor performance was not reduced for up to 21 days. The sensors were validated measuring H2O2 released by two different human bronchial epithelial cell lines (A549, 16HBE) and human primary bronchial epithelial cells (PBEC) grown in RPMI, MEM and BEGM/DMEM media. To confirm the results obtained with the sensor, the release of reactive oxygen species was also evaluated with a standard flow cytometry technique. The results obtained with the two techniques were very similar. Thus, the LSV technique permits using the proposed sensor for an effective oxidative stress quantification in different culture media and without dilution.
Collapse
Affiliation(s)
- Bernardo Patella
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Serena Di Vincenzo
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Claudio Zanca
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luciano Bollaci
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Maria Ferraro
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
| | | | - Chiara Cipollina
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
- Ri.MED Foundation, 90146 Palermo, Italy
| | | | - Giuseppe Aiello
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | | | | | - Elisabetta Pace
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
| |
Collapse
|
8
|
Wasiewska LA, Diaz FG, Shao H, Burgess CM, Duffy G, O'Riordan A. Highly sensitive electrochemical sensor for the detection of Shiga toxin-producing E. coli (STEC) using interdigitated micro-electrodes selectively modified with a chitosan-gold nanocomposite. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Zhou S, Liu C, Lin J, Zhu Z, Hu B, Wu L. Towards Development of Molecularly Imprinted Electrochemical Sensors for Food and Drug Safety: Progress and Trends. BIOSENSORS 2022; 12:bios12060369. [PMID: 35735516 PMCID: PMC9221454 DOI: 10.3390/bios12060369] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 05/31/2023]
Abstract
Due to their advantages of good flexibility, low cost, simple operations, and small equipment size, electrochemical sensors have been commonly employed in food safety. However, when they are applied to detect various food or drug samples, their stability and specificity can be greatly influenced by the complex matrix. By combining electrochemical sensors with molecular imprinting techniques (MIT), they will be endowed with new functions of specific recognition and separation, which make them powerful tools in analytical fields. MIT-based electrochemical sensors (MIECs) require preparing or modifying molecularly imprinted polymers (MIPs) on the electrode surface. In this review, we explored different MIECs regarding the design, working principle and functions. Additionally, the applications of MIECs in food and drug safety were discussed, as well as the challenges and prospects for developing new electrochemical methods. The strengths and weaknesses of MIECs including low stability and electrode fouling are discussed to indicate the research direction for future electrochemical sensors.
Collapse
Affiliation(s)
- Shuhong Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China; (S.Z.); (J.L.)
| | - Chen Liu
- Leibniz-Institute of Photonic Technology, Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany;
| | - Jianguo Lin
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China; (S.Z.); (J.L.)
| | - Zhi Zhu
- Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China;
| | - Long Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China; (S.Z.); (J.L.)
- Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| |
Collapse
|
10
|
A direct comparison of 2D versus 3D diffusion analysis at nanowire electrodes: A finite element analysis and experimental study. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
State-of-the-Art Sensors Research in Ireland. SENSORS 2022; 22:s22020629. [PMID: 35062590 PMCID: PMC8780755 DOI: 10.3390/s22020629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/04/2022]
|