1
|
Lind CM, Rhen IM, Forsman M. Reliability and Accuracy of Standard Reference Procedures for Measurements of Trunk and Arm Postures in Ergonomics. Bioengineering (Basel) 2025; 12:50. [PMID: 39851325 PMCID: PMC11761571 DOI: 10.3390/bioengineering12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Adequate reference procedures for obtaining the reference zero-angle position are important for precise and accurate posture measurements, but few studies have systematically investigated these. A limited number of previous studies suggest differences in accuracy between procedures, with some causing an underestimation of the true arm elevation angle when sensors are taped to the skin. The reliability of commonly used reference procedures for the measurement of the trunk posture is also not well explored, and alternative procedures may improve precision. Based on this identified gap, this study evaluated the test-retest reliability of the N-position (I-pose), i.e., the standard procedure for recording trunk postures, and compared it with two new alternative procedures. Additionally, the accuracy of the N-position for measuring arm elevation angles was compared with one alternative procedure. A total of 40 participants (22 women and 18 men) aged 26-70 years performed the reference procedures in a laboratory setting. Postures were recorded using a smart workwear system equipped with two inertial measurement units (IMUs) embedded in pockets within the workwear. For the trunk posture, the N-position showed a slight lack of test-retest reliability, while one of the alternative procedures demonstrated better test-retest reliability. For the arm posture, the N-position, which does not include lateral trunk inclination, resulted in a substantial underestimation of the arm elevation angle of approximately 15°, which is a novel finding. In contrast, the posture involving trunk inclination closely matched the targeted reference, with a difference of less than 2°. This study underscores the importance of selecting appropriate reference procedures to ensure precise and accurate posture measurements.
Collapse
Affiliation(s)
- Carl M. Lind
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ida-Märta Rhen
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, 113 65 Stockholm, Sweden
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Mikael Forsman
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, 113 65 Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 141 57 Stockholm, Sweden
| |
Collapse
|
2
|
Lind CM. Effectiveness of Sensors-Based Augmented Feedback in Ergonomics to Reduce Adverse Biomechanical Exposure in Work-Related Manual Handling-A Rapid Review of the Evidence. SENSORS (BASEL, SWITZERLAND) 2024; 24:6977. [PMID: 39517873 PMCID: PMC11548609 DOI: 10.3390/s24216977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Manual handling is a major risk factor for work-related musculoskeletal disorders and one of the leading causes of disability-adjusted life years globally, necessitating multifaceted risk reduction measures. One potential intervention for manual handling tasks is work technique training assisted by augmented feedback on biomechanical exposures. However, there is a research gap regarding its effectiveness specifically for manual handling tasks in both real work environments and controlled settings, as well as its ability to induce retained reductions in biomechanical exposure. The gap was investigated using a rapid review comprising a literature search using two databases and 11 reviews/overviews to identify studies from the past 20 years, up to studies published by 1 June 2024. Sixteen studies were identified, with 14 of them being of high or moderate methodological quality and were included. Three studies were conducted in real work environments and eleven in controlled settings. Most studies (n = 9) used auditory feedback, followed by vibration feedback (n = 6). In real work environments, the evidence for the effectiveness of sensor-based augmented feedback in reducing biomechanical exposure during administration was considered to be inconsistent and very limited directly after administration. For longer periods after administration, ranging from one week to more than six months, there is currently no evidence demonstrating the effectiveness of the feedback. In controlled settings, there was strong evidence for its effectiveness during and immediately after administration, and limited evidence for effectiveness up to six months post-administration when considering the tasks included in the training. Future research needs are discussed.
Collapse
Affiliation(s)
- Carl M Lind
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
3
|
Razavi A, Forsman M, Abtahi F. Comparison of Six Sensor Fusion Algorithms with Electrogoniometer Estimation of Wrist Angle in Simulated Work Tasks. SENSORS (BASEL, SWITZERLAND) 2024; 24:4173. [PMID: 39000951 PMCID: PMC11244359 DOI: 10.3390/s24134173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Hand-intensive work is strongly associated with work-related musculoskeletal disorders (WMSDs) of the hand/wrist and other upper body regions across diverse occupations, including office work, manufacturing, services, and healthcare. Addressing the prevalence of WMSDs requires reliable and practical exposure measurements. Traditional methods like electrogoniometry and optical motion capture, while reliable, are expensive and impractical for field use. In contrast, small inertial measurement units (IMUs) may provide a cost-effective, time-efficient, and user-friendly alternative for measuring hand/wrist posture during real work. This study compared six orientation algorithms for estimating wrist angles with an electrogoniometer, the current gold standard in field settings. Six participants performed five simulated hand-intensive work tasks (involving considerable wrist velocity and/or hand force) and one standardised hand movement. Three multiplicative Kalman filter algorithms with different smoothers and constraints showed the highest agreement with the goniometer. These algorithms exhibited median correlation coefficients of 0.75-0.78 for flexion/extension and 0.64 for radial/ulnar deviation across the six subjects and five tasks. They also ranked in the top three for the lowest mean absolute differences from the goniometer at the 10th, 50th, and 90th percentiles of wrist flexion/extension (9.3°, 2.9°, and 7.4°, respectively). Although the results of this study are not fully acceptable for practical field use, especially for some work tasks, they indicate that IMU-based wrist angle estimation may be useful in occupational risk assessments after further improvements.
Collapse
Affiliation(s)
- Arvin Razavi
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 141 57 Huddinge, Sweden; (A.R.); (M.F.)
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mikael Forsman
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 141 57 Huddinge, Sweden; (A.R.); (M.F.)
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Farhad Abtahi
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 141 57 Huddinge, Sweden; (A.R.); (M.F.)
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, 141 86 Huddinge, Sweden
| |
Collapse
|
4
|
Lind CM. A Rapid Review on the Effectiveness and Use of Wearable Biofeedback Motion Capture Systems in Ergonomics to Mitigate Adverse Postures and Movements of the Upper Body. SENSORS (BASEL, SWITZERLAND) 2024; 24:3345. [PMID: 38894134 PMCID: PMC11175029 DOI: 10.3390/s24113345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024]
Abstract
Work-related diseases and disorders remain a significant global health concern, necessitating multifaceted measures for mitigation. One potential measure is work technique training utilizing augmented feedback through wearable motion capture systems. However, there exists a research gap regarding its current effectiveness in both real work environments and controlled settings, as well as its ability to reduce postural exposure and retention effects over short, medium, and long durations. A rapid review was conducted, utilizing two databases and three previous literature reviews to identify relevant studies published within the last twenty years, including recent literature up to the end of 2023. Sixteen studies met the inclusion criteria, of which 14 were of high or moderate quality. These studies were summarized descriptively, and the strength of evidence was assessed. Among the included studies, six were rated as high quality, while eight were considered moderate quality. Notably, the reporting of participation rates, blinding of assessors, and a-priori power calculations were infrequently performed. Four studies were conducted in real work environments, while ten were conducted in controlled settings. Vibration feedback was the most common feedback type utilized (n = 9), followed by auditory (n = 7) and visual feedback (n = 1). All studies employed corrective feedback initiated by the system. In controlled environments, evidence regarding the effectiveness of augmented feedback from wearable motion capture systems to reduce postural exposure ranged from strong evidence to no evidence, depending on the time elapsed after feedback administration. Conversely, for studies conducted in real work environments, the evidence ranged from very limited evidence to no evidence. Future reach needs are identified and discussed.
Collapse
Affiliation(s)
- Carl M Lind
- IMM Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
5
|
Figueira V, Silva S, Costa I, Campos B, Salgado J, Pinho L, Freitas M, Carvalho P, Marques J, Pinho F. Wearables for Monitoring and Postural Feedback in the Work Context: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:1341. [PMID: 38400498 PMCID: PMC10893004 DOI: 10.3390/s24041341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Wearables offer a promising solution for simultaneous posture monitoring and/or corrective feedback. The main objective was to identify, synthesise, and characterise the wearables used in the workplace to monitor and postural feedback to workers. The PRISMA-ScR guidelines were followed. Studies were included between 1 January 2000 and 22 March 2023 in Spanish, French, English, and Portuguese without geographical restriction. The databases selected for the research were PubMed®, Web of Science®, Scopus®, and Google Scholar®. Qualitative studies, theses, reviews, and meta-analyses were excluded. Twelve studies were included, involving a total of 304 workers, mostly health professionals (n = 8). The remaining studies covered workers in the industry (n = 2), in the construction (n = 1), and welders (n = 1). For assessment purposes, most studies used one (n = 5) or two sensors (n = 5) characterised as accelerometers (n = 7), sixaxial (n = 2) or nonaxialinertial measurement units (n = 3). The most common source of feedback was the sensor itself (n = 6) or smartphones (n = 4). Haptic feedback was the most prevalent (n = 6), followed by auditory (n = 5) and visual (n = 3). Most studies employed prototype wearables emphasising kinematic variables of human movement. Healthcare professionals were the primary focus of the study along with haptic feedback that proved to be the most common and effective method for correcting posture during work activities.
Collapse
Affiliation(s)
- Vânia Figueira
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
- H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido da Costa, 91, 4200-450 Porto, Portugal
| | - Sandra Silva
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
- H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal
- School of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inês Costa
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
| | - Bruna Campos
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
| | - João Salgado
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
| | - Liliana Pinho
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
- H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido da Costa, 91, 4200-450 Porto, Portugal
- Center for Rehabilitation Research (Cir), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Marta Freitas
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
- H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido da Costa, 91, 4200-450 Porto, Portugal
- Center for Rehabilitation Research (Cir), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Paulo Carvalho
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal;
| | - João Marques
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
- H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal
| | - Francisco Pinho
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
- H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal
| |
Collapse
|
6
|
Fan X, Yang L, Young N, Kaner I, Kjellman M, Forsman M. Ergonomics and performance of using prismatic loupes in simulated surgical tasks among surgeons - a randomized controlled, cross-over trial. Front Public Health 2024; 11:1257365. [PMID: 38264242 PMCID: PMC10803506 DOI: 10.3389/fpubh.2023.1257365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Recently developed prismatic loupes may mitigate the high physical workload and risk of neck disorders associated with traditional surgical loupes among surgeons. However, research in this area, particularly among surgeons, is sparse. This study examines the impact of prismatic loupes on surgeons' physical workload, musculoskeletal discomfort, and performance during simulated surgical tasks. Materials and methods Nineteen out of twenty recruited surgeons performed three tasks in a fixed-order with their own loupes and both low-tilt (LT) and high-tilt (HT) prismatic loupes, in a randomized order. The primary outcomes were the median inclination angles and velocities of the head, trunk, and upper arms, along with the median muscle activity of the cervical erector spinae (CES), upper trapezius (UT), and lumbar erector spinae (LES) for each pair of loupes. The secondary outcomes included performance (completion time and errors), perceived body-part discomfort, and subjective evaluation of the three pairs of loupes. Results Using prismatic loupes, either LT or HT, compared with the surgeons' own loupes yielded lower head inclinations (all p < 0.001), lower neck muscle activity (all p < 0.05), and lower neck discomfort in indirect comparisons (p < 0.01) with no significant difference in surgical errors (p = 0.628). However, HT loupes resulted in a longer task completion time in two tasks (p < 0.001). Most surgeons preferred LT loupes (N = 12) for their comfort and visual functions. Discussion The results indicate that prismatic loupes can reduce physical workload in the neck during simulated surgical task, with no significant difference in surgical errors. Future studies are needed to investigate the long-term effects of prismatic loupes among surgeons.
Collapse
Affiliation(s)
- Xuelong Fan
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Liyun Yang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nathalie Young
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ilayda Kaner
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Kjellman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Forsman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Huddinge, Sweden
| |
Collapse
|
7
|
Chen H, Schall MC, Martin SM, Fethke NB. Drift-Free Joint Angle Calculation Using Inertial Measurement Units without Magnetometers: An Exploration of Sensor Fusion Methods for the Elbow and Wrist. SENSORS (BASEL, SWITZERLAND) 2023; 23:7053. [PMID: 37631592 PMCID: PMC10458653 DOI: 10.3390/s23167053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Joint angles of the lower extremities have been calculated using gyroscope and accelerometer measurements from inertial measurement units (IMUs) without sensor drift by leveraging kinematic constraints. However, it is unknown whether these methods are generalizable to the upper extremity due to differences in motion dynamics. Furthermore, the extent that post-processed sensor fusion algorithms can improve measurement accuracy relative to more commonly used Kalman filter-based methods remains unknown. This study calculated the elbow and wrist joint angles of 13 participants performing a simple ≥30 min material transfer task at three rates (slow, medium, fast) using IMUs and kinematic constraints. The best-performing sensor fusion algorithm produced total root mean square errors (i.e., encompassing all three motion planes) of 6.6°, 3.6°, and 2.0° for the slow, medium, and fast transfer rates for the elbow and 2.2°, 1.7°, and 1.5° for the wrist, respectively.
Collapse
Affiliation(s)
- Howard Chen
- Industrial & Systems Engineering and Engineering Management Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Mark C. Schall
- Department of Industrial & Systems Engineering, Auburn University, Auburn, AL 36849, USA;
| | - Scott M. Martin
- Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA;
| | - Nathan B. Fethke
- Department of Occupational & Environmental Health, The University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
8
|
Chen H, Schall MC, Fethke NB. Gyroscope vector magnitude: A proposed method for measuring angular velocities. APPLIED ERGONOMICS 2023; 109:103981. [PMID: 36739779 DOI: 10.1016/j.apergo.2023.103981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/07/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
High movement velocities are among the primary risk factors for work-related musculoskeletal disorders (MSDs). Ergonomists have commonly used two methods to calculate angular movement velocities of the upper arms using inertial measurement units (accelerometers and gyroscopes). Generalized velocity is the speed of movement traveled on the unit sphere per unit time. Inclination velocity is the derivative of the postural inclination angle relative to gravity with respect to time. Neither method captures the full extent of upper arm angular velocity. We propose a new method, the gyroscope vector magnitude (GVM), and demonstrate how GVM captures angular velocities around all motion axes and more accurately represents the true angular velocities of the upper arm. We use optical motion capture data to demonstrate that the previous methods for calculating angular velocities capture 89% and 77% relative to our proposed method.
Collapse
Affiliation(s)
- Howard Chen
- Industrial & Systems Engineering and Engineering Management Department, The University of Alabama in Huntsville, Huntsville, AL, USA; Department of Mechanical Engineering, Auburn University, Auburn, AL, USA.
| | - Mark C Schall
- Department of Industrial & Systems Engineering, Auburn University, Auburn, AL, USA
| | - Nathan B Fethke
- Department of Occupational & Environmental Health, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Lind CM, Abtahi F, Forsman M. Wearable Motion Capture Devices for the Prevention of Work-Related Musculoskeletal Disorders in Ergonomics-An Overview of Current Applications, Challenges, and Future Opportunities. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094259. [PMID: 37177463 PMCID: PMC10181376 DOI: 10.3390/s23094259] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Work-related musculoskeletal disorders (WMSDs) are a major contributor to disability worldwide and substantial societal costs. The use of wearable motion capture instruments has a role in preventing WMSDs by contributing to improvements in exposure and risk assessment and potentially improved effectiveness in work technique training. Given the versatile potential for wearables, this article aims to provide an overview of their application related to the prevention of WMSDs of the trunk and upper limbs and discusses challenges for the technology to support prevention measures and future opportunities, including future research needs. The relevant literature was identified from a screening of recent systematic literature reviews and overviews, and more recent studies were identified by a literature search using the Web of Science platform. Wearable technology enables continuous measurements of multiple body segments of superior accuracy and precision compared to observational tools. The technology also enables real-time visualization of exposures, automatic analyses, and real-time feedback to the user. While miniaturization and improved usability and wearability can expand the use also to more occupational settings and increase use among occupational safety and health practitioners, several fundamental challenges remain to be resolved. The future opportunities of increased usage of wearable motion capture devices for the prevention of work-related musculoskeletal disorders may require more international collaborations for creating common standards for measurements, analyses, and exposure metrics, which can be related to epidemiologically based risk categories for work-related musculoskeletal disorders.
Collapse
Affiliation(s)
- Carl Mikael Lind
- IMM Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Farhad Abtahi
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 141 57 Huddinge, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Mikael Forsman
- IMM Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 141 57 Huddinge, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, 113 65 Stockholm, Sweden
| |
Collapse
|
10
|
Hoareau D, Fan X, Abtahi F, Yang L. Evaluation of In-Cloth versus On-Skin Sensors for Measuring Trunk and Upper Arm Postures and Movements. SENSORS (BASEL, SWITZERLAND) 2023; 23:3969. [PMID: 37112309 PMCID: PMC10142577 DOI: 10.3390/s23083969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Smart workwear systems with embedded inertial measurement unit sensors are developed for convenient ergonomic risk assessment of occupational activities. However, its measurement accuracy can be affected by potential cloth artifacts, which have not been previously assessed. Therefore, it is crucial to evaluate the accuracy of sensors placed in the workwear systems for research and practice purposes. This study aimed to compare in-cloth and on-skin sensors for assessing upper arms and trunk postures and movements, with the on-skin sensors as the reference. Five simulated work tasks were performed by twelve subjects (seven women and five men). Results showed that the mean (±SD) absolute cloth-skin sensor differences of the median dominant arm elevation angle ranged between 1.2° (±1.4) and 4.1° (±3.5). For the median trunk flexion angle, the mean absolute cloth-skin sensor differences ranged between 2.7° (±1.7) and 3.7° (±3.9). Larger errors were observed for the 90th and 95th percentiles of inclination angles and inclination velocities. The performance depended on the tasks and was affected by individual factors, such as the fit of the clothes. Potential error compensation algorithms need to be investigated in future work. In conclusion, in-cloth sensors showed acceptable accuracy for measuring upper arm and trunk postures and movements on a group level. Considering the balance of accuracy, comfort, and usability, such a system can potentially be a practical tool for ergonomic assessment for researchers and practitioners.
Collapse
Affiliation(s)
- Damien Hoareau
- Department of Mechatronics, École Normale Supérieure de Rennes, 35170 Bruz, France
- Laboratoire SATIE, CNRS UMR 8029, École Normale Supérieure de Rennes, 35170 Bruz, France
| | - Xuelong Fan
- Institute of Environmental Medicine, Karolinska Institutet, Solnavägen 4, SE-171 77 Stockholm, Sweden
| | - Farhad Abtahi
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Hälsovägen 11C, SE-141 57 Huddinge, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, SE-141 57 Huddinge, Sweden
| | - Liyun Yang
- Institute of Environmental Medicine, Karolinska Institutet, Solnavägen 4, SE-171 77 Stockholm, Sweden
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Hälsovägen 11C, SE-141 57 Huddinge, Sweden
| |
Collapse
|
11
|
Lind CM, De Clercq B, Forsman M, Grootaers A, Verbrugghe M, Van Dyck L, Yang L. Effectiveness and usability of real-time vibrotactile feedback training to reduce postural exposure in real manual sorting work. ERGONOMICS 2023; 66:198-216. [PMID: 35466852 DOI: 10.1080/00140139.2022.2069869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Vibrotactile feedback training may be used as a complementary strategy to reduce time in demanding postures in manual handling. This study evaluated the short- and medium-term effects of concurrent posture-correction vibrotactile feedback training on trunk inclination exposure in real manual sorting work. Fifteen warehouse workers completed the training and the follow-up sessions. Trunk inclination angles were recorded using the ambulatory Smart Workwear System. Questionnaires were used for assessing system usability, perceived physical exertion, and work ability. The results showed reduced time in trunk inclination >30°, >45°, and >60°, and reductions in the 90th, 95th, and 99th percentile trunk inclination angles, when receiving feedback and immediately after feedback withdrawal. No significant reduction was retained after one and three weeks. The wearer's comfort was scored high, and the feedback did not increase the perceived cognitive demands. No significant effects attributed to changed trunk inclination exposure were observed for perceived physical exertion or work ability. The training program has the potential of contributing to reduced trunk inclination exposure in the short term. Future studies are needed to evaluate if improvements in the feedback training can transfer the short-term results to retained median- and long-term effects.Practitioner summary: A two-day training program with concurrent posture-correction vibrotactile feedback can contribute to reduced exposure of trunk inclination in real manual sorting work in the short term. More research is needed on how to design the feedback training programs in order to be effective in the long term.
Collapse
Affiliation(s)
- Carl Mikael Lind
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Mikael Forsman
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Huddinge, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | | | | | | | - Liyun Yang
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Fan X, Forsman M, Yang L, Lind CM, Kjellman M. Surgeons' physical workload in open surgery versus robot-assisted surgery and nonsurgical tasks. Surg Endosc 2022; 36:8178-8194. [PMID: 35589973 PMCID: PMC9613719 DOI: 10.1007/s00464-022-09256-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Musculoskeletal disorders (MSDs) are common among surgeons, and its prevalence varies among surgical modalities. There are conflicting results concerning the correlation between adverse work exposures and MSD prevalence in different surgical modalities. The progress of rationalization in health care may lead to job intensification for surgeons, but the literature is scarce regarding to what extent such intensification influences the physical workload in surgery. The objectives of this study were to quantify the physical workload in open surgery and compare it to that in (1) nonsurgical tasks and (2) two surgeon roles in robot-assisted surgery (RAS). METHODS The physical workload of 22 surgeons (12 performing open surgery and 10 RAS) was measured during surgical workdays, which includes trapezius muscle activity from electromyography, and posture and movement of the head, upper arms and trunk from inertial measurement units. The physical workload of surgeons in open surgery was compared to that in nonsurgical tasks, and to the chief and assistant surgeons in RAS, and to the corresponding proposed action levels. Mixed-effects models were used to analyze the differences. RESULTS Open surgery constituted more than half of a surgical workday. It was associated with more awkward postures of the head and trunk than nonsurgical tasks. It was also associated with higher trapezius muscle activity levels, less muscle rest time and a higher proportion of sustained low muscle activity than nonsurgical tasks and the two roles in RAS. The head inclination and trapezius activity in open surgery exceeded the proposed action levels. CONCLUSIONS The physical workload of surgeons in open surgery, which exceeded the proposed action levels, was higher than that in RAS and that in nonsurgical tasks. Demands of increased operation time may result in higher physical workload for open surgeons, which poses an increased risk of MSDs. Risk-reducing measures are, therefore, needed.
Collapse
Affiliation(s)
- Xuelong Fan
- IMM Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mikael Forsman
- IMM Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Hälsovägen 11C, 14157 Huddinge, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, 113 65 Stockholm, Sweden
| | - Liyun Yang
- IMM Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Carl M. Lind
- IMM Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Magnus Kjellman
- Department of Molecular Medicine and Surgery, Department of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
13
|
Schall MC, Chen H, Cavuoto L. Wearable inertial sensors for objective kinematic assessments: A brief overview. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:501-508. [PMID: 35853137 DOI: 10.1080/15459624.2022.2100407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Mark C Schall
- Department of Industrial and Systems Engineering, Auburn University, Auburn, Alabama
| | - Howard Chen
- Department of Mechanical Engineering, Auburn University, Auburn, Alabama
| | - Lora Cavuoto
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, New York
| |
Collapse
|
14
|
Evaluation of a New Simplified Inertial Sensor Method against Electrogoniometer for Measuring Wrist Motion in Occupational Studies. SENSORS 2022; 22:s22041690. [PMID: 35214592 PMCID: PMC8874503 DOI: 10.3390/s22041690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
Wrist velocity is an important risk factor for work-related musculoskeletal disorders in the elbow/hand, which is also difficult to assess by observation or self-reports. This study aimed to evaluate a new convenient and low-cost inertial measurement unit (IMU)-based method using gyroscope signals against an electrogoniometer for measuring wrist flexion velocity. Twelve participants performed standard wrist movements and simulated work tasks while equipped with both systems. Two computational algorithms for the IMU-based system, i.e., IMUnorm and IMUflex, were used. For wrist flexion/extension, the mean absolute errors (MAEs) of median wrist flexion velocity compared to the goniometer were <10.1°/s for IMUnorm and <4.1°/s for IMUflex. During wrist deviation and pronation/supination, all methods showed errors, where the IMUnorm method had the largest overestimations. For simulated work tasks, the IMUflex method had small bias and better accuracy than the IMUnorm method compared to the goniometer, with the MAEs of median wrist flexion velocity <5.8°/s. The results suggest that the IMU-based method can be considered as a convenient method to assess wrist motion for occupational studies or ergonomic evaluations for the design of workstations and tools by both researchers and practitioners, and the IMUflex method is preferred. Future studies need to examine algorithms to further improve the accuracy of the IMU-based method in tasks of larger variations, as well as easy calibration procedures.
Collapse
|
15
|
Arvidsson I, Dahlqvist C, Enquist H, Nordander C. Reply to Letter to the Editor, by Mikael Forsman, Xuelong Fan, Ida-Märta Rhen and Carl Mikael Lind. Ann Work Expo Health 2021; 66:132. [PMID: 34718396 PMCID: PMC8751811 DOI: 10.1093/annweh/wxab091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Camilla Dahlqvist
- Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Henrik Enquist
- Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Catarina Nordander
- Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
| |
Collapse
|
16
|
Forsman M, Fan X, Rhén IM, Lind CM. Concerning a Work Movement Velocity Action Level Proposed in "Action Levels for the Prevention of Work-Related Musculoskeletal Disorders in the Neck and Upper Extremities: A Proposal" by Inger Arvidsson et al. (2021). Ann Work Expo Health 2021; 66:130-131. [PMID: 34469509 PMCID: PMC8751788 DOI: 10.1093/annweh/wxab075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mikael Forsman
- Division of Ergonomics, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Hälsovägen 11C, SE-14157 Huddinge, Sweden.,IMM Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, SE-113 65 Stockholm, Sweden
| | - Xuelong Fan
- IMM Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ida-Märta Rhén
- IMM Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, SE-113 65 Stockholm, Sweden.,Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Carl Mikael Lind
- IMM Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|