1
|
Martins J, Cerqueira SM, Catarino AW, da Silva AF, Rocha AM, Vale J, Ângelo M, Santos CP. Integrating sEMG and IMU Sensors in an e-Textile Smart Vest for Forward Posture Monitoring: First Steps. SENSORS (BASEL, SWITZERLAND) 2024; 24:4717. [PMID: 39066114 PMCID: PMC11280952 DOI: 10.3390/s24144717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Currently, the market for wearable devices is expanding, with a growing trend towards the use of these devices for continuous-monitoring applications. Among these, real-time posture monitoring and assessment stands out as a crucial application given the rising prevalence of conditions like forward head posture (FHP). This paper proposes a wearable device that combines the acquisition of electromyographic signals from the cervical region with inertial data from inertial measurement units (IMUs) to assess the occurrence of FHP. To improve electronics integration and wearability, e-textiles are explored for the development of surface electrodes and conductive tracks that connect the different electronic modules. Tensile strength and abrasion tests of 22 samples consisting of textile electrodes and conductive tracks produced with three fiber types (two from Shieldex and one from Imbut) were conducted. Imbut's Elitex fiber outperformed Shieldex's fibers in both tests. The developed surface electromyography (sEMG) acquisition hardware and textile electrodes were also tested and benchmarked against an electromyography (EMG) gold standard in dynamic and isometric conditions, with results showing slightly better root mean square error (RMSE) values (for 4 × 2 textile electrodes (10.02%) in comparison to commercial Ag/AgCl electrodes (11.11%). The posture monitoring module was also validated in terms of joint angle estimation and presented an overall error of 4.77° for a controlled angular velocity of 40°/s as benchmarked against a UR10 robotic arm.
Collapse
Affiliation(s)
- João Martins
- Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (J.M.); (A.F.d.S.)
| | - Sara M. Cerqueira
- Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (J.M.); (A.F.d.S.)
| | - André Whiteman Catarino
- Center of Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal; (A.W.C.); (A.M.R.)
| | - Alexandre Ferreira da Silva
- Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (J.M.); (A.F.d.S.)
- LABBELS-Associate Laboratory, University of Minho, 4800-058 Guimarães, Portugal
| | - Ana M. Rocha
- Center of Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal; (A.W.C.); (A.M.R.)
| | - Jorge Vale
- Valérius-Têxteis, SA, Rua Industrial do Aldão, Apartado 219, Vila Frescaínha, S.Martinho, 4750-078 Barcelos, Portugal; (J.V.); (M.Â.)
| | - Miguel Ângelo
- Valérius-Têxteis, SA, Rua Industrial do Aldão, Apartado 219, Vila Frescaínha, S.Martinho, 4750-078 Barcelos, Portugal; (J.V.); (M.Â.)
| | - Cristina P. Santos
- Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal; (J.M.); (A.F.d.S.)
- LABBELS-Associate Laboratory, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
2
|
Uddin M, Ganapathy K, Syed-Abdul S. Digital Technology Enablers of Tele-Neurorehabilitation in Pre- and Post-COVID-19 Pandemic Era - A Scoping Review. Int J Telerehabil 2024; 16:e6611. [PMID: 39022438 PMCID: PMC11250154 DOI: 10.5195/ijt.2024.6611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Neurorehabilitation (NR), a major component of neurosciences, is the process of restoring a patient's damaged/disorganized neurological function, through training, therapy, and education, while focusing on patient's independence and well-being. Since the advent of the COVID-19 pandemic, various applications of telecare and telehealth services surged drastically and became an integral part of current clinical practices. Tele-Neurorehabilitation (TNR) is one of such applications. When rehabilitation services were disrupted globally due to lockdown and travel restrictions, the importance of TNR was recognized, especially in developed, low, and middle-income countries. With exponential deployment of telehealth interventions in neurosciences, TNR has become a distinct stand-alone sub-specialty of neurosciences and telehealth. Digital technologies, such as wearables, robotics, and Virtual Reality (VR) have enabled TNR to improve the quality of patients' lives. Providing NR remotely using digital technologies and customized digital devices is now a reality, and likely to be the new norm soon. This article provides an overview of the needs, utilization, and deployment of TNR, and focuses on digital technology enablers of TNR in pre- and post-COVID-19 pandemic era.
Collapse
Affiliation(s)
- Mohy Uddin
- Research Quality Management Section, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Krishnan Ganapathy
- Distinguished Visiting Professor IIT Kanpur & Director Apollo Telemedicine Networking Foundation, India
| | - Shabbir Syed-Abdul
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Kim JC, Kim JG, Kim BS, Kim CK, Choi M, Lee J, Chung SG. Assessing the Preservation of Lumbar Lordotic Curvature in Everyday Sitting Conditions Assessed with an Inertial Measurement System. J Clin Med 2024; 13:2728. [PMID: 38731257 PMCID: PMC11084529 DOI: 10.3390/jcm13092728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Background/Objectives: Lumbar lordotic curvature (LLC), closely associated with low back pain (LBP) when decreased, is infrequently assessed in clinical settings due to the spatiotemporal limitations of radiographic methods. To overcome these constraints, this study used an inertial measurement system to compare the magnitude and maintenance of LLC across various sitting conditions, categorized into three aspects: verbal instructions, chair type, and desk task types. Methods: Twenty-nine healthy participants were instructed to sit for 3 min with two wireless sensors placed on the 12th thoracic vertebra and the 2nd sacral vertebra. The lumbar lordotic angle (LLA) was measured using relative angles for the mediolateral axis and comparisons were made within each sitting category. Results: The maintenance of LLA (LLAdev) was significantly smaller when participants were instructed to sit upright (-3.7 ± 3.9°) compared to that of their habitual sitting posture (-1.2 ± 2.4°) (p = 0.001), while the magnitude of LLA (LLAavg) was significantly larger with an upright sitting posture (p = 0.001). LLAdev was significantly larger when using an office chair (-0.4 ± 1.1°) than when using a stool (-3.2 ± 7.1°) (p = 0.033), and LLAavg was also significantly larger with the office chair (p < 0.001). Among the desk tasks, LLAavg was largest during keyboard tasks (p < 0.001), followed by mouse and writing tasks; LLAdev showed a similar trend without statistical significance (keyboard, -1.2 ± 3.0°; mouse, -1.8 ± 2.2°; writing, -2.9 ± 3.1°) (p = 0.067). Conclusions: Our findings suggest that strategies including the use of an office chair and preference for computer work may help preserve LLC, whereas in the case of cueing, repetition may be necessary.
Collapse
Affiliation(s)
- Ju Chan Kim
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong 12564, Republic of Korea;
| | - Jeong-Gil Kim
- Department of Rehabilitation Medicine, Armed Forces Yangju Hospital, Yangju 11429, Republic of Korea;
| | - Beom Suk Kim
- Department of Physical and Rehabilitation Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong 14353, Republic of Korea;
| | - Cheol Ki Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Minseok Choi
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Joonnyong Lee
- Mellowing Factory Co., Ltd., Seoul 06053, Republic of Korea;
| | - Sun Gun Chung
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Aging, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
4
|
Figueira V, Silva S, Costa I, Campos B, Salgado J, Pinho L, Freitas M, Carvalho P, Marques J, Pinho F. Wearables for Monitoring and Postural Feedback in the Work Context: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:1341. [PMID: 38400498 PMCID: PMC10893004 DOI: 10.3390/s24041341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Wearables offer a promising solution for simultaneous posture monitoring and/or corrective feedback. The main objective was to identify, synthesise, and characterise the wearables used in the workplace to monitor and postural feedback to workers. The PRISMA-ScR guidelines were followed. Studies were included between 1 January 2000 and 22 March 2023 in Spanish, French, English, and Portuguese without geographical restriction. The databases selected for the research were PubMed®, Web of Science®, Scopus®, and Google Scholar®. Qualitative studies, theses, reviews, and meta-analyses were excluded. Twelve studies were included, involving a total of 304 workers, mostly health professionals (n = 8). The remaining studies covered workers in the industry (n = 2), in the construction (n = 1), and welders (n = 1). For assessment purposes, most studies used one (n = 5) or two sensors (n = 5) characterised as accelerometers (n = 7), sixaxial (n = 2) or nonaxialinertial measurement units (n = 3). The most common source of feedback was the sensor itself (n = 6) or smartphones (n = 4). Haptic feedback was the most prevalent (n = 6), followed by auditory (n = 5) and visual (n = 3). Most studies employed prototype wearables emphasising kinematic variables of human movement. Healthcare professionals were the primary focus of the study along with haptic feedback that proved to be the most common and effective method for correcting posture during work activities.
Collapse
Affiliation(s)
- Vânia Figueira
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
- H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido da Costa, 91, 4200-450 Porto, Portugal
| | - Sandra Silva
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
- H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal
- School of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inês Costa
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
| | - Bruna Campos
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
| | - João Salgado
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
| | - Liliana Pinho
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
- H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido da Costa, 91, 4200-450 Porto, Portugal
- Center for Rehabilitation Research (Cir), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Marta Freitas
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
- H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido da Costa, 91, 4200-450 Porto, Portugal
- Center for Rehabilitation Research (Cir), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Paulo Carvalho
- Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal;
| | - João Marques
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
- H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal
| | - Francisco Pinho
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; (S.S.); (I.C.); (B.C.); (J.S.); (L.P.); (M.F.); (J.M.); (F.P.)
- H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal
| |
Collapse
|
5
|
Mustafa A, Ullah F, Rehman MU, Khan MB, Tanoli SAK, Ullah MK, Umar H, Chong KT. Non-intrusive RF sensing for early diagnosis of spinal curvature syndrome disorders. Comput Biol Med 2023; 155:106614. [PMID: 36780802 DOI: 10.1016/j.compbiomed.2023.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
The recent developments in communication and information ease people's lives to sit in one place and access any information from anywhere. However, the longevity of sitting and sitting in different postures raises the issues of spinal curvature. It necessitates a physical examination to identify the spinal illness in its early stages. This article aims to develop an intelligent monitoring framework for detecting and monitoring spinal curvature syndrome problems based on Software Defined Radio Frequency (SDRF) sensing and verify its feasibility for diagnosing actual patients. The proposed SDRF-based system identifies irregular spinal curvature syndrome and offers feedback signals when an incorrect posture is identified. We design the system using wireless university software-defined radio peripheral (USRP) kits to transmit and receive RF signals and record the wireless channel state information (WCSI) for kyphosis, Lordosis, and scoliosis spinal disorders. The statistical measures are extracted from the WCSI and apply machine learning algorithms to identify and classify the type of disorders. We record and test the system using 11 subjects with the spinal disorders kyphosis, Lordosis, and scoliosis. We acquire the WCSI, extract various statistical measures in terms of time and frequency domain features, and evaluate machine learning classifiers to identify and classify the spinal disorder. The performance comparison of the machine learning algorithms showed overall and each spinal curvature disorder recognition accuracy of more than 99%.
Collapse
Affiliation(s)
- Ali Mustafa
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Attock Campus, Punjab 43600, Pakistan.
| | - Farman Ullah
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Attock Campus, Punjab 43600, Pakistan; Division of Computer Science and Engineering, Jeonbuk National University, Jeonju, South Korea.
| | - Mobeen Ur Rehman
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Muhammad Bilal Khan
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Attock Campus, Punjab 43600, Pakistan.
| | - Shujaat Ali Khan Tanoli
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Attock Campus, Punjab 43600, Pakistan.
| | - Muhammad Kaleem Ullah
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Attock Campus, Punjab 43600, Pakistan.
| | - Hamza Umar
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Attock Campus, Punjab 43600, Pakistan.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
6
|
Ancillao A, Verduyn A, Vochten M, Aertbeliën E, De Schutter J. A Novel Procedure for Knee Flexion Angle Estimation Based on Functionally Defined Coordinate Systems and Independent of the Marker Landmarks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:500. [PMID: 36612839 PMCID: PMC9819753 DOI: 10.3390/ijerph20010500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Knee angles are kinematic quantities that are commonly presented in gait analysis reports. They are typically calculated as the relative angles between the anatomical coordinate systems rigidly attached to the femur and the tibia. To give these angles a biomechanical meaning, the coordinate systems must be defined with respect to some anatomical landmarks. For example, if one axis of the joint coordinate systems is directed along the knee flexion/extension axis, then the relative angle assumes the meaning of flexion/extension angle. Defining accurate anatomical coordinate systems is not an easy task, because it requires skills in marker placement, landmark identification and definition of a biomechanical model. In this paper, we present a novel method to (i) functionally define two coordinate systems attached to femur and tibia and (ii) functionally calculate the knee angle based on the relative differential kinematics between the previously defined coordinate systems. As the main limitation, this method is unable to provide an absolute measurement of the knee flexion/extension angle; however, it is able to accurately capture and display the relative angular motion of the knee. We show that our method produced consistent results even when the measured coordinate systems were randomly modified, removing any anatomical referencing. The proposed method has the advantage of being independent/invariant of the choice of the original coordinate systems of the femur and tibia, removing the need for accurate marker placement. Some major consequences are that (i) the markers may be placed on optimal landmarks, for example, minimizing the soft tissue artifacts or improving the subject's comfort, and (ii) there is no need for anatomical calibration when technical marker clusters/triads are used.
Collapse
Affiliation(s)
- Andrea Ancillao
- Robotics Research Group, Department of Mechanical Engineering, KU Leuven, 3001 Leuven, Belgium
- Core Lab ROB, Flanders Make, KU Leuven, 3001 Leuven, Belgium
- Functional Biomechanics and Rehabilitation Engineering Research Unit, Institute of Engineering Design and Product Development, TU Wien, 1060 Vienna, Austria
| | - Arno Verduyn
- Robotics Research Group, Department of Mechanical Engineering, KU Leuven, 3001 Leuven, Belgium
- Core Lab ROB, Flanders Make, KU Leuven, 3001 Leuven, Belgium
| | - Maxim Vochten
- Robotics Research Group, Department of Mechanical Engineering, KU Leuven, 3001 Leuven, Belgium
- Core Lab ROB, Flanders Make, KU Leuven, 3001 Leuven, Belgium
| | - Erwin Aertbeliën
- Robotics Research Group, Department of Mechanical Engineering, KU Leuven, 3001 Leuven, Belgium
- Core Lab ROB, Flanders Make, KU Leuven, 3001 Leuven, Belgium
| | - Joris De Schutter
- Robotics Research Group, Department of Mechanical Engineering, KU Leuven, 3001 Leuven, Belgium
- Core Lab ROB, Flanders Make, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
7
|
Trovato B, Roggio F, Sortino M, Zanghì M, Petrigna L, Giuffrida R, Musumeci G. Postural Evaluation in Young Healthy Adults through a Digital and Reproducible Method. J Funct Morphol Kinesiol 2022; 7:jfmk7040098. [PMID: 36412760 PMCID: PMC9680464 DOI: 10.3390/jfmk7040098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022] Open
Abstract
Different tools for the assessment of posture exist, from the simplest and cheap plumb line to complex, expensive, 3D-marker-based systems. The aim of this study is to present digital postural normative data of young adults collected through a mobile app to expand the possibilities of digital postural evaluation. A sample of 100 healthy volunteers, 50 males and 50 females, was analyzed with the mobile app Apecs-AI Posture Evaluation and Correction System® (Apecs). The Student’s t-test evaluated differences between gender to highlight if the digital posture evaluation may differ between groups. A significant difference was present in the anterior coronal plane for axillary alignment (p = 0.04), trunk inclination (p = 0.03), and knee alignment (p = 0.01). Head inclination (p = 0.04), tibia shift (p = 0.01), and foot angle (p < 0.001) presented significant differences in the sagittal plane, while there were no significant differences in the posterior coronal plane. The intraclass correlation coefficient (ICC) was considered to evaluate reproducibility. Thirteen parameters out of twenty-two provided an ICC > 0.90, three provided an ICC > 0.60, and six variables did not meet the cut-off criteria. The results highlight that digital posture analysis of healthy individuals may present slight differences related to gender. Additionally, the mobile app showed good reproducibility according to ICC. Digital postural assessment with Apecs could represent a quick method for preventing screening in the general population. Therefore, clinicians should consider this app’s worth as an auxiliary posture evaluation tool.
Collapse
Affiliation(s)
- Bruno Trovato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia No. 97, 95123 Catania, Italy
| | - Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia No. 97, 95123 Catania, Italy
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| | - Martina Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia No. 97, 95123 Catania, Italy
| | - Marta Zanghì
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia No. 97, 95123 Catania, Italy
| | - Luca Petrigna
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia No. 97, 95123 Catania, Italy
- Correspondence:
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, School of Medicine, University of Catania, 95125 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia No. 97, 95123 Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia No. 97, 95123 Catania, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
8
|
Development of an Automatic Air-Driven 3D-Printed Spinal Posture Corrector. ACTUATORS 2022. [DOI: 10.3390/act11070184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Billions of people are using smartphones and computers with poor posture. A careless attitude towards spinal posture could be dangerous for long-term spinal health, leading eventually to curvature of the spine. Ignoring this fact and its treatment at the early stage will significantly deteriorate spinal health and force surgical intervention. Instead of developing an automated posture-correcting system, the existing research mostly focused on a posture-monitoring system to inform the users via a human interface, e.g., Bluetooth-based devices. Therefore, this paper proposes a novel posture-correction method to automatically prevent spinal disease by facilitating proper posture habits. Specifically, we develop a fluid-driven wearable posture corrector, whose skeleton can be fabricated simply using a 3D printer, to estimate angular posture deviation using sensors and provide appropriate assistance to correct the posture habit of the user. Mounted sensors provide the degree of postural bending, and a controller regulates the appropriate signals to provide a friendly pulling force as a reminder to the user through a fluid-driven actuator. The skeleton with a fluid-driven tool is designed to mimic the motion of the spinal posture by activating the actuator, which injects (or releases) the fluid into (or from) the skeleton frame and regulates forces to reduce the angular deviation of the skeleton. The 3D-printed skeleton with a flexible rubber tube has been experimentally evaluated to ensure proper actuating mechanism through the adjustment of air pressure. It is found that, by applying air pressure in the range of 0 to 101.4 kPa, the skeleton is pulled back approximately 1 N to 7 N forces, minimizing the angle up to 12.44∘ with respect to the initial steady stage, which leads to a maximum posture correction of 32.55% angle (θ) of poor posture. From the above experiments, we ensure the functionality of the proposed posture corrector in producing backward forces to correct the posture automatically.
Collapse
|