1
|
Lian T, Lv Y, Guo K, Li Z, Li J, Wang G, Lin J, Cao Y, Liu Q, Song X. Generative priors-constraint accelerated iterative reconstruction for extremely sparse photoacoustic tomography boosted by mean-reverting diffusion model: Towards 8 projections. PHOTOACOUSTICS 2025; 43:100709. [PMID: 40161358 PMCID: PMC11951203 DOI: 10.1016/j.pacs.2025.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/16/2025] [Accepted: 03/02/2025] [Indexed: 04/02/2025]
Abstract
As a novel non-invasive hybrid biomedical imaging technology, photoacoustic tomography combines the advantages of high contrast of optical imaging and high penetration of acoustic imaging. However, the conventional standard reconstruction methods under sparse view may lead to low-quality image in photoacoustic tomography. To address this problem, an advanced sparse reconstruction method for photoacoustic tomography based on the mean-reverting diffusion model is proposed. By modeling the degradation process from a high-quality image under full-view scanning (512 projections) to a sparse image with stable Gaussian noise (i.e., mean state), a mean-reverting diffusion model is trained to learn prior information of the data distribution. Then the learned prior information is employed to generate a high-quality image from the sparse image by iteratively sampling the noisy state. Blood vessels simulation data and the animal in vivo experimental data were used to evaluate the performance of the proposed method. The results demonstrate that the proposed method achieves higher-quality sparse reconstruction compared with conventional reconstruction methods and U-Net method. In addition, the proposed method dramatically speeds up the sparse reconstruction and achieves better reconstruction results for extremely sparse images compared with the method based on conventional diffusion model. The proposed method achieves an improvement of 0.52 (∼289 %) in structural similarity and 10.01 dB (∼59 %) in peak signal-to-noise ratio for extremely sparse projections (8 projections), compared with the conventional delay-and-sum method. This method is expected to shorten the acquisition time and reduce the cost of photoacoustic tomography, thus further expanding the range of applications.
Collapse
Affiliation(s)
- Teng Lian
- Jiluan Academy, Nanchang University, Nanchang 330031, China
| | - Yichen Lv
- School of Information Engineering, Nanchang University, Nanchang 330031, China
- Jiluan Academy, Nanchang University, Nanchang 330031, China
| | - Kangjun Guo
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Zilong Li
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Jiahong Li
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Guijun Wang
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Jiabin Lin
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Yiyang Cao
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Qiegen Liu
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Xianlin Song
- School of Information Engineering, Nanchang University, Nanchang 330031, China
- Jiangxi Provincial Key Laboratory of Advanced Signal Processing and Intelligent Communications, Nanchang University, Nanchang 330031, China
- Jiangxi Provincial Engineering Research Center for Intelligent Medical Information Detection and Internet of Things, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Wang DD, Lin S, Lyu GR. Advances in the Application of Artificial Intelligence in the Ultrasound Diagnosis of Vulnerable Carotid Atherosclerotic Plaque. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:607-614. [PMID: 39828500 DOI: 10.1016/j.ultrasmedbio.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Vulnerable atherosclerotic plaque is a type of plaque that poses a significant risk of high mortality in patients with cardiovascular disease. Ultrasound has long been used for carotid atherosclerosis screening and plaque assessment due to its safety, low cost and non-invasive nature. However, conventional ultrasound techniques have limitations such as subjectivity, operator dependence, and low inter-observer agreement, leading to inconsistent and possibly inaccurate diagnoses. In recent years, a promising approach to address these limitations has emerged through the integration of artificial intelligence (AI) into ultrasound imaging. It was found that by training AI algorithms with large data sets of ultrasound images, the technology can learn to recognize specific characteristics and patterns associated with vulnerable plaques. This allows for a more objective and consistent assessment, leading to improved diagnostic accuracy. This article reviews the application of AI in the field of diagnostic ultrasound, with a particular focus on carotid vulnerable plaques, and discusses the limitations and prospects of AI-assisted ultrasound. This review also provides a deeper understanding of the role of AI in diagnostic ultrasound and promotes more research in the field.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Guo-Rong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Departments of Medical Imaging, Quanzhou Medical College, Quanzhou, China.
| |
Collapse
|
3
|
Verma N, Setia A, Mehata AK, Randhave N, Badgujar P, Malik AK, Muthu MS. Recent Advancement of Indocyanine Green Based Nanotheranostics for Imaging and Therapy of Coronary Atherosclerosis. Mol Pharm 2024; 21:4804-4826. [PMID: 39225111 DOI: 10.1021/acs.molpharmaceut.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is a vascular intima condition in which any part of the circulatory system is affected, including the aorta and coronary arteries. Indocyanine green (ICG), a theranostic compound approved by the FDA, has shown promise in the treatment of coronary atherosclerosis after incorporation into nanoplatforms. By integration of ICG with targeting agents such as peptides or antibodies, it is feasible to increase its concentration in damaged arteries, hence increasing atherosclerosis detection. Nanotheranostics offers cutting-edge techniques for the clinical diagnosis and therapy of atherosclerotic plaques. Combining the optical properties of ICG with those of nanocarriers enables the improved imaging of atherosclerotic plaques and targeted therapeutic interventions. Several ICG-based nanotheranostics platforms have been developed such as polymeric nanoparticles, iron oxide nanoparticles, biomimetic systems, liposomes, peptide-based systems, etc. Theranostics for atherosclerosis diagnosis use magnetic resonance imaging (MRI), computed tomography (CT), near-infrared fluorescence (NIRF) imaging, photoacoustic/ultrasound imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) imaging techniques. In addition to imaging, there is growing interest in employing ICG to treat atherosclerosis. In this review, we provide a conceptual explanation of ICG-based nanotheranostics for the imaging and therapy of coronary atherosclerosis. Moreover, advancements in imaging modalities such as MRI, CT, PET, SPECT, and ultrasound/photoacoustic have been discussed. Furthermore, we highlight the applications of ICG for coronary atherosclerosis.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
4
|
Ouyang Q, Xu R, Lin Q, Yan J, Zhang L, Zhao H. Multimodal ultrasound imaging of a rat model with ischemic heart failure and its relationship to histopathology. Am J Transl Res 2024; 16:4589-4600. [PMID: 39398608 PMCID: PMC11470326 DOI: 10.62347/fiwe8677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To investigate the value of multimodal ultrasound imaging in assessing ischemic heart failure, and to analyze the relationship between ultrasound parameters and histopathology. METHODS Thirty male healthy SD rats were randomly divided into a control (n = 10) and a model group (n = 20). The rat model of ischemic heart failure (IHF) was established by the ligation of left anterior descending artery for 4 weeks. Left ventricular ejection fraction (LVEF) and left ventricular cardiac output (LVCO) were determined with routine echocardiography. Global longitudinal strain (GLS) and global circumferential strain (GCS) were determined with Speckle Tracking. Myocardial oxygen saturation (sO2) was measured with photoacoustic (PA) imaging. Hematoxylin and eosin (H&E) staining, transmission electron microscopy, and Masson staining were performed to determine mitochondrial damage and myocardial fibrosis. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the serum levels of cardiac troponin I (cTNT) and N-terminal B-type natriuretic peptide (NT-pro BNP). Pearson correlation analysis was employed to analyze the correlation among LVEF, LVCO, GLS, GCS, sO2, mitochondrial impairment, fibrosis, cTNT and NT-pro BNP. RESULTS Echocardiography revealed significant systolic function changes in the model group as compared to the control group, characterized by decreased LVEF and CO. The serum levels of cTn-T and NT-proBNP were increased, suggesting myocardial injury and functional impairment. GLS and GCS in the model group was reduced as compared to the control group. Concurrently, a marked reduction in sO2 was observed in the anterior wall of the model rats, whereas that in the posterior wall showed no significant change. Histopathologic examinations unveiled pronounced cellular and subcellular damage, such as disorganization of myocardial fibers and mitochondrial impairment, with the model group presenting a higher Flameng score. Masson's trichrome staining revealed increased myocardial fibrosis. Correlation analyses pinpointed significant associations between echocardiographic parameters, degree of mitochondrial damage, fibrosis, and the levels of cTn-T and NT-proBNP in the model group. This indicated the interrelated nature of structural changes and functional impairment in IHF. Notably, GLS showed the strongest correlations with indicators of myocardial injury. However, anterior wall sO2 did not demonstrate a significant correlation with either histopathologic damage or serum biomarker levels. CONCLUSIONS Myocardial GLS is a sensitive indicator of pathological myocardial remodeling in heart failure. The multimodal ultrasound can be applied to assess pathologic remodeling in IHF rats.
Collapse
Affiliation(s)
- Qiufang Ouyang
- Ultrasound Department, The Second Affiliated Hospital of Fujian University of Traditional Chinese MedicineFuzhou 350003, Fujian, China
| | - Rong Xu
- Ultrasound Department, The Second Affiliated Hospital of Fujian University of Traditional Chinese MedicineFuzhou 350003, Fujian, China
| | - Qing Lin
- Ultrasound Department, The Second Affiliated Hospital of Fujian University of Traditional Chinese MedicineFuzhou 350003, Fujian, China
| | - Jinxian Yan
- Key Laboratory of Chinese Medicine Preparation for Medical Institutions in Fujian Province (Fujian University of Traditional Chinese Medicine)Fuzhou 350003, Fujian, China
| | - Luting Zhang
- Ultrasound Department, The Second Affiliated Hospital of Fujian University of Traditional Chinese MedicineFuzhou 350003, Fujian, China
| | - Hongjia Zhao
- Fujian University of Traditional Chinese MedicineFuzhou 350122, Fujian, China
| |
Collapse
|
5
|
Shen M, Liu Y, Chen J, Ye K, Gao H, Che J, Wang Q, He H, Liu J, Wang Y, Jiang Y. Defect detection of printed circuit board assembly based on YOLOv5. Sci Rep 2024; 14:19287. [PMID: 39164348 PMCID: PMC11335752 DOI: 10.1038/s41598-024-70176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Detection of printed circuit board assembly (PCBA) defects is crucial for improving the efficiency of PCBA manufacturing. This paper proposes PCBA-YOLO, a YOLOv5-based method that can effectively increase the accuracy of PCBA defect detection. First, the spatial pyramid pooling module with cross-stage partial structure is replaced in the neck network of YOLOv5 to capture the resolution features at multiple scales. Second, large kernel convolution is introduced in the backbone network to obtain larger effective receptive fields while reducing computational overhead. Finally, an SIoU loss function that considers the angular cost is utilized to enhance the convergence speed of the model. In addition, an assembled PCBA defect detection dataset named PCBA-DET is created in this paper, containing the corresponding defect categories and annotations of defect locations. The experimental results on the PCB defect dataset demonstrate that the improved method has lower loss values and higher accuracy. Evaluated on the PCBA-DET dataset, the mean average precision reaches 97.3 % , achieving a real-time detection performance of 322.6 frames per second, which considers both the detection accuracy and the model size compared to the YOLO series of detection networks. The source code and PCBA-DET dataset can be accessed at https://github.com/ismh16/PCBA-Dataset .
Collapse
Affiliation(s)
- Minghui Shen
- School of Computing and Information Technology, Hefei University of Technology, Xuancheng, 242000, China
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yujie Liu
- School of Computing and Information Technology, Hefei University of Technology, Xuancheng, 242000, China
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Chen
- School of Computing and Information Technology, Hefei University of Technology, Xuancheng, 242000, China
| | - Kangqi Ye
- School of Computing and Information Technology, Hefei University of Technology, Xuancheng, 242000, China
| | - Heyuan Gao
- School of Computing and Information Technology, Hefei University of Technology, Xuancheng, 242000, China
| | - Jie Che
- School of Computing and Information Technology, Hefei University of Technology, Xuancheng, 242000, China
| | - Qingyang Wang
- School of Reading, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hao He
- School of Computer and Software Engineering, Anhui Institute of Information Technology, Wuhu, 241100, China.
| | - Jian Liu
- School of Computing and Information Technology, Hefei University of Technology, Xuancheng, 242000, China.
| | - Yan Wang
- School of Computer and Software Engineering, Anhui Institute of Information Technology, Wuhu, 241100, China
| | - Ye Jiang
- School of Computing and Information Technology, Hefei University of Technology, Xuancheng, 242000, China
| |
Collapse
|
6
|
Zhong W, Li T, Hou S, Zhang H, Li Z, Wang G, Liu Q, Song X. Unsupervised disentanglement strategy for mitigating artifact in photoacoustic tomography under extremely sparse view. PHOTOACOUSTICS 2024; 38:100613. [PMID: 38764521 PMCID: PMC11101706 DOI: 10.1016/j.pacs.2024.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Traditional methods under sparse view for reconstruction of photoacoustic tomography (PAT) often result in significant artifacts. Here, a novel image to image transformation method based on unsupervised learning artifact disentanglement network (ADN), named PAT-ADN, was proposed to address the issue. This network is equipped with specialized encoders and decoders that are responsible for encoding and decoding the artifacts and content components of unpaired images, respectively. The performance of the proposed PAT-ADN was evaluated using circular phantom data and the animal in vivo experimental data. The results demonstrate that PAT-ADN exhibits excellent performance in effectively removing artifacts. In particular, under extremely sparse view (e.g., 16 projections), structural similarity index and peak signal-to-noise ratio are improved by ∼188 % and ∼85 % in in vivo experimental data using the proposed method compared to traditional reconstruction methods. PAT-ADN improves the imaging performance of PAT, opening up possibilities for its application in multiple domains.
Collapse
Affiliation(s)
- Wenhua Zhong
- Nanchang University, School of Information Engineering, Nanchang, China
| | - Tianle Li
- Nanchang University, Jiluan Academy, Nanchang, China
| | - Shangkun Hou
- Nanchang University, School of Information Engineering, Nanchang, China
| | - Hongyu Zhang
- Nanchang University, School of Information Engineering, Nanchang, China
| | - Zilong Li
- Nanchang University, School of Information Engineering, Nanchang, China
| | - Guijun Wang
- Nanchang University, School of Information Engineering, Nanchang, China
| | - Qiegen Liu
- Nanchang University, School of Information Engineering, Nanchang, China
| | - Xianlin Song
- Nanchang University, School of Information Engineering, Nanchang, China
| |
Collapse
|
7
|
Setiawan A, Huang C, Mitrayana M. Development of non-contact foreign body imaging base on photoacoustic signal intensity measurement. J Appl Clin Med Phys 2024; 25:e14230. [PMID: 38014732 PMCID: PMC11087178 DOI: 10.1002/acm2.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND It is challenging to visually identify tiny and concealed foreign objects within the body due to their small size and subcutaneous location while they can cause infections. METHODS A non-contact photoacoustic system based on Rosencwaig-Gersho photoacoustic theory and dual modulator method is developed for detecting foreign objects in meat. RESULT The experiments conducted validate the successful development of this measurement technique with 10 μm spatial resolution and its corresponding mathematical model, demonstrating an 11% Mean Absolute Percentage Error (MAPE) in comparison to the experimental results. Dual modulator successfully regulates laser energy at MPE limit. CONCLUSION The utilization of non-contact photoacoustic signal intensity measurements enables the identification of foreign objects within the body. Further, the application of mathematical modelling can validate the measurement outcomes. These findings serve as a foundation for creating an affordable and straightforward foreign body detector.
Collapse
Affiliation(s)
- Andreas Setiawan
- Department of PhysicsUniversitas Kristen Satya WacanaSalatigaIndonesia
| | - Chia‐Yi Huang
- Department of Applied PhysicsTunghai UniversityTaichungTaiwan R.O.C
| | - Mitrayana Mitrayana
- Department of PhysicsFaculty of Mathematics and Natural Sciences Universitas Gadjah MadaSekip Utara BulaksumurYogyakartaIndonesia
| |
Collapse
|
8
|
Zhang L, Du W, Kim JH, Yu CC, Dagdeviren C. An Emerging Era: Conformable Ultrasound Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307664. [PMID: 37792426 DOI: 10.1002/adma.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Conformable electronics are regarded as the next generation of personal healthcare monitoring and remote diagnosis devices. In recent years, piezoelectric-based conformable ultrasound electronics (cUSE) have been intensively studied due to their unique capabilities, including nonradiative monitoring, soft tissue imaging, deep signal decoding, wireless power transfer, portability, and compatibility. This review provides a comprehensive understanding of cUSE for use in biomedical and healthcare monitoring systems and a summary of their recent advancements. Following an introduction to the fundamentals of piezoelectrics and ultrasound transducers, the critical parameters for transducer design are discussed. Next, five types of cUSE with their advantages and limitations are highlighted, and the fabrication of cUSE using advanced technologies is discussed. In addition, the working function, acoustic performance, and accomplishments in various applications are thoroughly summarized. It is noted that application considerations must be given to the tradeoffs between material selection, manufacturing processes, acoustic performance, mechanical integrity, and the entire integrated system. Finally, current challenges and directions for the development of cUSE are highlighted, and research flow is provided as the roadmap for future research. In conclusion, these advances in the fields of piezoelectric materials, ultrasound transducers, and conformable electronics spark an emerging era of biomedicine and personal healthcare.
Collapse
Affiliation(s)
- Lin Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wenya Du
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jin-Hoon Kim
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chia-Chen Yu
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Zhu L, Cao H, Ma J, Wang L. Optical ultrasound sensors for photoacoustic imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11523. [PMID: 38303991 PMCID: PMC10831871 DOI: 10.1117/1.jbo.29.s1.s11523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Significance Photoacoustic (PA) imaging is an emerging biomedical imaging modality that can map optical absorption contrast in biological tissues by detecting ultrasound signal. Piezoelectric transducers are commonly used in PA imaging to detect the ultrasound signals. However, piezoelectric transducers suffer from low sensitivity when the dimensions are reduced and are easily influenced by electromagnetic interference. To avoid these limitations, various optical ultrasound sensors have been developed and shown their great potential in PA imaging. Aim Our study aims to summarize recent progress in optical ultrasound sensor technologies and their applications in PA imaging. Approach The commonly used optical ultrasound sensing techniques and their applications in PA systems are reviewed. The technical advances of different optical ultrasound sensors are summarized. Results Optical ultrasound sensors can provide wide bandwidth and improved sensitivity with miniatured size, which enables their applications in PA imaging. Conclusions The optical ultrasound sensors are promising transducers in PA imaging to provide higher-resolution images and can be used in new applications with their unique advantages.
Collapse
Affiliation(s)
- Liying Zhu
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Hongming Cao
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| | - Jun Ma
- Nanfang Hospital, Southern Medical University, Department of Burns, Guangzhou, China
| | - Lidai Wang
- City University of Hong Kong, Department of Biomedical Engineering, Kowloon, Hong Kong, China
| |
Collapse
|
10
|
Song X, Zhong W, Li Z, Peng S, Zhang H, Wang G, Dong J, Liu X, Xu X, Liu Q. Accelerated model-based iterative reconstruction strategy for sparse-view photoacoustic tomography aided by multi-channel autoencoder priors. JOURNAL OF BIOPHOTONICS 2024; 17:e202300281. [PMID: 38010827 DOI: 10.1002/jbio.202300281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Photoacoustic tomography (PAT) commonly works in sparse view due to data acquisition limitations. However, reconstruction suffers from serious deterioration (e.g., severe artifacts) using traditional algorithms under sparse view. Here, a novel accelerated model-based iterative reconstruction strategy for sparse-view PAT aided by multi-channel autoencoder priors was proposed. A multi-channel denoising autoencoder network was designed to learn prior information, which provides constraints for model-based iterative reconstruction. This integration accelerates the iteration process, leading to optimal reconstruction outcomes. The performance of the proposed method was evaluated using blood vessel simulation data and experimental data. The results show that the proposed method can achieve superior sparse-view reconstruction with a significant acceleration of iteration. Notably, the proposed method exhibits excellent performance under extremely sparse condition (e.g., 32 projections) compared with the U-Net method, with an improvement of 48% in PSNR and 12% in SSIM for in vivo experimental data.
Collapse
Affiliation(s)
- Xianlin Song
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Wenhua Zhong
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Zilong Li
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Shuchong Peng
- Ji luan Academy, Nanchang University, Nanchang, China
| | - Hongyu Zhang
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Guijun Wang
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Jiaqing Dong
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Xuan Liu
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Xiaoling Xu
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Qiegen Liu
- School of Information Engineering, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Fernandes GS, Uliana JH, Bachmann L, Carneiro AA, Lediju Bell MA, Pavan TZ. Mitigating skin tone bias in linear array in vivo photoacoustic imaging with short-lag spatial coherence beamforming. PHOTOACOUSTICS 2023; 33:100555. [PMID: 38021286 PMCID: PMC10658615 DOI: 10.1016/j.pacs.2023.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 12/01/2023]
Abstract
Photoacoustic (PA) imaging has the potential to deliver non-invasive diagnostic information. However, skin tone differences bias PA target visualization, as the elevated optical absorption of melanated skin decreases optical fluence within the imaging plane and increases the presence of acoustic clutter. This paper demonstrates that short-lag spatial coherence (SLSC) beamforming mitigates this bias. PA data from the forearm of 18 volunteers were acquired with 750-, 810-, and 870-nm wavelengths. Skin tones ranging from light to dark were objectively quantified using the individual typology angle (ITA° ). The signal-to-noise ratio (SNR) of the radial artery (RA) and surrounding clutter were measured. Clutter was minimal (e.g., -16 dB relative to the RA) with lighter skin tones and increased to -8 dB with darker tones, which compromised RA visualization in conventional PA images. SLSC beamforming achieved a median SNR improvement of 3.8 dB, resulting in better RA visualization for all skin tones.
Collapse
Affiliation(s)
- Guilherme S.P. Fernandes
- Department of Physics, FFCLRP, University of Sao Paulo, Brazil
- Department of Electrical and Computer Engineering, Johns Hopkins University, USA
| | - João H. Uliana
- Department of Physics, FFCLRP, University of Sao Paulo, Brazil
| | | | | | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, USA
- Department of Biomedical Engineering, Johns Hopkins University, USA
- Department of Computer Science, Johns Hopkins University, USA
| | - Theo Z. Pavan
- Department of Physics, FFCLRP, University of Sao Paulo, Brazil
| |
Collapse
|
12
|
Song X, Wang G, Zhong W, Guo K, Li Z, Liu X, Dong J, Liu Q. Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration. PHOTOACOUSTICS 2023; 33:100558. [PMID: 38021282 PMCID: PMC10658608 DOI: 10.1016/j.pacs.2023.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/14/2023] [Accepted: 09/16/2023] [Indexed: 12/01/2023]
Abstract
As a non-invasive hybrid biomedical imaging technology, photoacoustic tomography combines high contrast of optical imaging and high penetration of acoustic imaging. However, the conventional standard reconstruction under sparse view could result in low-quality image in photoacoustic tomography. Here, a novel model-based sparse reconstruction method for photoacoustic tomography via diffusion model was proposed. A score-based diffusion model is designed for learning the prior information of the data distribution. The learned prior information is utilized as a constraint for the data consistency term of an optimization problem based on the least-square method in the model-based iterative reconstruction, aiming to achieve the optimal solution. Blood vessels simulation data and the animal in vivo experimental data were used to evaluate the performance of the proposed method. The results demonstrate that the proposed method achieves higher-quality sparse reconstruction compared with conventional reconstruction methods and U-Net. In particular, under the extreme sparse projection (e.g., 32 projections), the proposed method achieves an improvement of ∼ 260 % in structural similarity and ∼ 30 % in peak signal-to-noise ratio for in vivo data, compared with the conventional delay-and-sum method. This method has the potential to reduce the acquisition time and cost of photoacoustic tomography, which will further expand the application range.
Collapse
Affiliation(s)
| | | | - Wenhua Zhong
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Kangjun Guo
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Zilong Li
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Xuan Liu
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Jiaqing Dong
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| | - Qiegen Liu
- School of Information Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
13
|
Laboyrie SL, de Vries MR, Bijkerk R, Rotmans JI. Building a Scaffold for Arteriovenous Fistula Maturation: Unravelling the Role of the Extracellular Matrix. Int J Mol Sci 2023; 24:10825. [PMID: 37446003 DOI: 10.3390/ijms241310825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Vascular access is the lifeline for patients receiving haemodialysis as kidney replacement therapy. As a surgically created arteriovenous fistula (AVF) provides a high-flow conduit suitable for cannulation, it remains the vascular access of choice. In order to use an AVF successfully, the luminal diameter and the vessel wall of the venous outflow tract have to increase. This process is referred to as AVF maturation. AVF non-maturation is an important limitation of AVFs that contributes to their poor primary patency rates. To date, there is no clear overview of the overall role of the extracellular matrix (ECM) in AVF maturation. The ECM is essential for vascular functioning, as it provides structural and mechanical strength and communicates with vascular cells to regulate their differentiation and proliferation. Thus, the ECM is involved in multiple processes that regulate AVF maturation, and it is essential to study its anatomy and vascular response to AVF surgery to define therapeutic targets to improve AVF maturation. In this review, we discuss the composition of both the arterial and venous ECM and its incorporation in the three vessel layers: the tunica intima, media, and adventitia. Furthermore, we examine the effect of chronic kidney failure on the vasculature, the timing of ECM remodelling post-AVF surgery, and current ECM interventions to improve AVF maturation. Lastly, the suitability of ECM interventions as a therapeutic target for AVF maturation will be discussed.
Collapse
Affiliation(s)
- Suzanne L Laboyrie
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Vascular Surgery, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
14
|
Mobadersany N, Meshram NH, Kemper P, Sise CV, Karageorgos GM, Liang P, Ateshian GA, Konofagou EE. Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation. J Biomech 2023; 149:111502. [PMID: 36842406 PMCID: PMC10392770 DOI: 10.1016/j.jbiomech.2023.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Vulnerable plaques associated with softer components may rupture, releasing thrombotic emboli to smaller vessels in the brain, thus causing an ischemic stroke. Pulse Wave Imaging (PWI) is an ultrasound-based method that allows for pulse wave visualization while the regional pulse wave velocity (PWV) is mapped along the arterial wall to infer the underlying wall compliance. One potential application of PWI is the non-invasive estimation of plaque's mechanical properties for investigating its vulnerability. In this study, the accuracy of PWV estimation in stenotic vessels was investigated by computational simulation and PWI in validation phantoms to evaluate this modality for assessing future stroke risk. Polyvinyl alcohol (PVA) phantoms with plaque constituents of different stiffnesses were designed and constructed to emulate stenotic arteries in the experiment, and the novel fabrication process was described. Finite-element fluid-structure interaction simulations were performed in a stenotic phantom model that matched the geometry and parameters of the experiment in phantoms. The peak distension acceleration of the phantom wall was tracked to estimate PWV. PWVs of 2.57 ms-1, 3.41 ms-1, and 4.48 ms-1 were respectively obtained in the soft, intermediate, and stiff plaque material in phantoms during the experiment using PWI. PWVs of 2.10 ms-1, 3.33 ms-1, and 4.02 ms-1 were respectively found in the soft, intermediate, and stiff plaque material in the computational simulation. These results demonstrate that PWI can effectively distinguish the mechanical properties of plaque in phantoms as compared to computational simulation.
Collapse
Affiliation(s)
- Nima Mobadersany
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Nirvedh H Meshram
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Paul Kemper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - C V Sise
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Pengcheng Liang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Radiology, Columbia University, New York, New York, NY, United States.
| |
Collapse
|
15
|
Hsu KT, Guan S, Chitnis PV. Fast iterative reconstruction for photoacoustic tomography using learned physical model: Theoretical validation. PHOTOACOUSTICS 2023; 29:100452. [PMID: 36700132 PMCID: PMC9867977 DOI: 10.1016/j.pacs.2023.100452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Iterative reconstruction has demonstrated superior performance in medical imaging under compressed, sparse, and limited-view sensing scenarios. However, iterative reconstruction algorithms are slow to converge and rely heavily on hand-crafted parameters to achieve good performance. Many iterations are usually required to reconstruct a high-quality image, which is computationally expensive due to repeated evaluations of the physical model. While learned iterative reconstruction approaches such as model-based learning (MBLr) can reduce the number of iterations through convolutional neural networks, it still requires repeated evaluations of the physical models at each iteration. Therefore, the goal of this study is to develop a Fast Iterative Reconstruction (FIRe) algorithm that incorporates a learned physical model into the learned iterative reconstruction scheme to further reduce the reconstruction time while maintaining robust reconstruction performance. We also propose an efficient training scheme for FIRe, which releases the enormous memory footprint required by learned iterative reconstruction methods through the concept of recursive training. The results of our proposed method demonstrate comparable reconstruction performance to learned iterative reconstruction methods with a 9x reduction in computation time and a 620x reduction in computation time compared to variational reconstruction.
Collapse
|
16
|
Wen Y, Guo D, Zhang J, Liu X, Liu T, Li L, Jiang S, Wu D, Jiang H. Clinical photoacoustic/ultrasound dual-modal imaging: Current status and future trends. Front Physiol 2022; 13:1036621. [PMID: 36388111 PMCID: PMC9651137 DOI: 10.3389/fphys.2022.1036621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 08/24/2023] Open
Abstract
Photoacoustic tomography (PAT) is an emerging biomedical imaging modality that combines optical and ultrasonic imaging, providing overlapping fields of view. This hybrid approach allows for a natural integration of PAT and ultrasound (US) imaging in a single platform. Due to the similarities in signal acquisition and processing, the combination of PAT and US imaging creates a new hybrid imaging for novel clinical applications. Over the recent years, particular attention is paid to the development of PAT/US dual-modal systems highlighting mutual benefits in clinical cases, with an aim of substantially improving the specificity and sensitivity for diagnosis of diseases. The demonstrated feasibility and accuracy in these efforts open an avenue of translating PAT/US imaging to practical clinical applications. In this review, the current PAT/US dual-modal imaging systems are discussed in detail, and their promising clinical applications are presented and compared systematically. Finally, this review describes the potential impacts of these combined systems in the coming future.
Collapse
Affiliation(s)
- Yanting Wen
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dan Guo
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jing Zhang
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiaotian Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Ting Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Lu Li
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Dan Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
17
|
Guo S, Li L, Guo T, Cao Y, Li Y. Research on Mask-Wearing Detection Algorithm Based on Improved YOLOv5. SENSORS (BASEL, SWITZERLAND) 2022; 22:4933. [PMID: 35808418 PMCID: PMC9269836 DOI: 10.3390/s22134933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
COVID-19 is highly contagious, and proper wearing of a mask can hinder the spread of the virus. However, complex factors in natural scenes, including occlusion, dense, and small-scale targets, frequently lead to target misdetection and missed detection. To address these issues, this paper proposes a YOLOv5-based mask-wearing detection algorithm, YOLOv5-CBD. Firstly, the Coordinate Attention mechanism is introduced into the feature fusion process to stress critical features and decrease the impact of redundant features after feature fusion. Then, the original feature pyramid network module in the feature fusion module was replaced with a weighted bidirectional feature pyramid network to achieve efficient bidirectional cross-scale connectivity and weighted feature fusion. Finally, we combined Distance Intersection over Union with Non-Maximum Suppression to improve the missed detection of overlapping targets. Experiments show that the average detection accuracy of the YOLOv5-CBD model is 96.7%-an improvement of 2.1% compared to the baseline model (YOLOv5).
Collapse
|
18
|
Deep-Learning-Based Algorithm for the Removal of Electromagnetic Interference Noise in Photoacoustic Endoscopic Image Processing. SENSORS 2022; 22:s22103961. [PMID: 35632370 PMCID: PMC9147354 DOI: 10.3390/s22103961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022]
Abstract
Despite all the expectations for photoacoustic endoscopy (PAE), there are still several technical issues that must be resolved before the technique can be successfully translated into clinics. Among these, electromagnetic interference (EMI) noise, in addition to the limited signal-to-noise ratio (SNR), have hindered the rapid development of related technologies. Unlike endoscopic ultrasound, in which the SNR can be increased by simply applying a higher pulsing voltage, there is a fundamental limitation in leveraging the SNR of PAE signals because they are mostly determined by the optical pulse energy applied, which must be within the safety limits. Moreover, a typical PAE hardware situation requires a wide separation between the ultrasonic sensor and the amplifier, meaning that it is not easy to build an ideal PAE system that would be unaffected by EMI noise. With the intention of expediting the progress of related research, in this study, we investigated the feasibility of deep-learning-based EMI noise removal involved in PAE image processing. In particular, we selected four fully convolutional neural network architectures, U-Net, Segnet, FCN-16s, and FCN-8s, and observed that a modified U-Net architecture outperformed the other architectures in the EMI noise removal. Classical filter methods were also compared to confirm the superiority of the deep-learning-based approach. Still, it was by the U-Net architecture that we were able to successfully produce a denoised 3D vasculature map that could even depict the mesh-like capillary networks distributed in the wall of a rat colorectum. As the development of a low-cost laser diode or LED-based photoacoustic tomography (PAT) system is now emerging as one of the important topics in PAT, we expect that the presented AI strategy for the removal of EMI noise could be broadly applicable to many areas of PAT, in which the ability to apply a hardware-based prevention method is limited and thus EMI noise appears more prominently due to poor SNR.
Collapse
|
19
|
Pang Z, Wang Y, Qin W, Qi W, Xi L. Handheld volumetric photoacoustic/ultrasound imaging using an internal scanning mechanism. OPTICS LETTERS 2022; 47:2418-2421. [PMID: 35561365 DOI: 10.1364/ol.458274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Photoacoustic/ultrasound (PA/US) dual-modality imaging has been evolving rapidly for the last two decades. Handheld PA/US probes with different implementations have attracted particular attention due to their convenience and high applicability. However, developing a volumetric dual-modality PA/US imaging probe with a compact design remains a challenge. Here, we develop a handheld volumetric PA/US imaging probe with a special light-ultrasound coupling design and an internal scanning mechanism. A coaxial design for the excitation and detection paths in a customized 3D-printed housing with a size of 110 × 90 × 64 mm3 is proposed to optimize the signal-to-noise ratio (SNR) of the handheld probe for deep tissue imaging. Two parallel and synchronously rotational acoustic reflectors allow for volumetric imaging with an effective field of view (FOV) of more than 30 mm × 20 mm × 8 mm. In addition to simulation and phantom validations, in vivo human trials are successfully carried out, demonstrating the high imaging quality and stability of the system for potential clinical translations.
Collapse
|