1
|
Nguyen MTN, Nguyen TD, Han JH, Lee JS. Synthesis of PDMS Chain Structure with Introduced Dynamic Covalent Bonding for High-Performance Rehealable Tactile Sensor Application. SMALL METHODS 2024; 8:e2400163. [PMID: 38721965 DOI: 10.1002/smtd.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Indexed: 12/28/2024]
Abstract
In addressing the increasing demand for wearable sensing systems, the performance and lifespan of such devices must be improved by enhancing their sensitivity and healing capabilities. The present work introduces an innovative method for synthesizing a healable disulfide bond contained in a polydimethylsiloxane network (PDMS-SS) that incorporates ionic salts, which is designed to serve as a highly effective dielectric layer for capacitive tactile sensors. Within the polymer network structure, the cross-linking agent pentaerythritol tetrakis 3-mercaptopropionate (PTKPM) forms reversible disulfide bonds while simultaneously increasing polymer softness and the dielectric constant. The incorporation of dioctyl sulfosuccinate sodium salt (DOSS) significantly improves the capacitance and sensing properties by forming an electrical double-layer through interactions between the electrode charge and salt ions at the contact interface. The developed polymer material-based tactile sensor shows a strong response signal at low pressure (0.1 kPa) and maintains high sensitivity (0.175 kPa-1) over a wide pressure range (0.1-10 kPa). It also maintains the same sensitivity over 10 000 repeated applications of external pressure and is easily self-healed against mechanical deformation due to the dynamic disulfide covalent bonding, restoring ≈95% of its detection capacity.
Collapse
Affiliation(s)
- My Thi Ngoc Nguyen
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 13120, Republic of Korea
| | - Trong Danh Nguyen
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 13120, Republic of Korea
| | - Jae-Hee Han
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 13120, Republic of Korea
| | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 13120, Republic of Korea
| |
Collapse
|
2
|
Tezsezen E, Yigci D, Ahmadpour A, Tasoglu S. AI-Based Metamaterial Design. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29547-29569. [PMID: 38808674 PMCID: PMC11181287 DOI: 10.1021/acsami.4c04486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The use of metamaterials in various devices has revolutionized applications in optics, healthcare, acoustics, and power systems. Advancements in these fields demand novel or superior metamaterials that can demonstrate targeted control of electromagnetic, mechanical, and thermal properties of matter. Traditional design systems and methods often require manual manipulations which is time-consuming and resource intensive. The integration of artificial intelligence (AI) in optimizing metamaterial design can be employed to explore variant disciplines and address bottlenecks in design. AI-based metamaterial design can also enable the development of novel metamaterials by optimizing design parameters that cannot be achieved using traditional methods. The application of AI can be leveraged to accelerate the analysis of vast data sets as well as to better utilize limited data sets via generative models. This review covers the transformative impact of AI and AI-based metamaterial design for optics, acoustics, healthcare, and power systems. The current challenges, emerging fields, future directions, and bottlenecks within each domain are discussed.
Collapse
Affiliation(s)
- Ece Tezsezen
- Graduate
School of Science and Engineering, Koç
University, Istanbul 34450, Türkiye
| | - Defne Yigci
- School
of Medicine, Koç University, Istanbul 34450, Türkiye
| | - Abdollah Ahmadpour
- Department
of Mechanical Engineering, Koç University
Sariyer, Istanbul 34450, Türkiye
| | - Savas Tasoglu
- Department
of Mechanical Engineering, Koç University
Sariyer, Istanbul 34450, Türkiye
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Bogaziçi
Institute of Biomedical Engineering, Bogaziçi
University, Istanbul 34684, Türkiye
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
3
|
Li H, Ma C, Chen J, Wang H, Chen X, Li Z, Zhang Y. A Soft Robot Tactile Finger Using Oxidation-Reduction Graphene-Polyurethane Conductive Sponge. MICROMACHINES 2024; 15:628. [PMID: 38793201 PMCID: PMC11123064 DOI: 10.3390/mi15050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Currently, intelligent robotics is supplanting traditional industrial applications. It extends to business, service and care industries, and other fields. Stable robot grasping is a necessary prerequisite for all kinds of complex application scenarios. Herein, we propose a method for preparing an elastic porous material with adjustable conductivity, hardness, and elastic modulus. Based on this, we design a soft robot tactile fingertip that is gentle, highly sensitive, and has an adjustable range. It has excellent sensitivity (~1.089 kpa-1), fast response time (~35 ms), and measures minimum pressures up to 0.02 N and stability over 500 cycles. The baseline capacitance of a sensor of the same size can be increased by a factor of 5-6, and graphene adheres better to polyurethane sponge and has good shock absorption. In addition, we demonstrated the application of the tactile fingertip to a two-finger manipulator to achieve stable grasping. In this paper, we demonstrate the great potential of the soft robot tactile finger in the field of adaptive grasping for intelligent robots.
Collapse
Affiliation(s)
- Hangze Li
- School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325025, China; (H.L.); (C.M.); (J.C.); (H.W.); (X.C.)
| | - Chaolin Ma
- School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325025, China; (H.L.); (C.M.); (J.C.); (H.W.); (X.C.)
| | - Jinmiao Chen
- School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325025, China; (H.L.); (C.M.); (J.C.); (H.W.); (X.C.)
| | - Haojie Wang
- School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325025, China; (H.L.); (C.M.); (J.C.); (H.W.); (X.C.)
| | - Xiao Chen
- School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325025, China; (H.L.); (C.M.); (J.C.); (H.W.); (X.C.)
| | - Zhijing Li
- School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Youzhi Zhang
- School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325025, China; (H.L.); (C.M.); (J.C.); (H.W.); (X.C.)
| |
Collapse
|
4
|
Li X, Liu Y, Ding Y, Zhang M, Lin Z, Hao Y, Li Y, Chang J. Capacitive Pressure Sensor Combining Dual Dielectric Layers with Integrated Composite Electrode for Wearable Healthcare Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12974-12985. [PMID: 38416692 DOI: 10.1021/acsami.4c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Foot activity can reflect numerous physiological abnormalities in the human body, making gait a valuable metric in health monitoring. Research on flexible sensors for gait monitoring has focused on high sensitivity, wide working range, fast response, and low detection limit, but challenges remain in areas such as elasticity, antibacterial activity, user-friendliness, and long-term stability. In this study, we have developed a novel capacitive pressure sensor that offers an ultralow detection limit of 1 Pa, wide detection ranges from 1 Pa to 2 MPa, a high sensitivity of 0.091 kPa-1, a fast response time of 71 ms, and exceptional stability over 6000 cycles. This sensor not only has the ability of accurately discriminating mechanical stimuli but also meets the requirements of elasticity, antibacterial activity, wearable comfort, and long-term stability for gait monitoring. The fabrication method of a dual dielectric layer and integrated composite electrode is simple, cost-effective, stable, and amenable to mass production. Thereinto, the introduction of a dual dielectric layer, based on an optimized electrospinning network and micropillar array, has significantly improved the sensitivity, detection range, elasticity, and antibacterial performance of the sensor. The integrated flexible electrodes are made by template method using composite materials of carbon nanotubes (CNTs), two-dimensional titanium carbide Ti3C2Tx (MXene), and polydimethylsiloxane (PDMS), offering synergistic advantages in terms of conductivity, stability, sensitivity, and practicality. Additionally, we designed a smart insole that integrates the as-prepared sensors with a miniature instrument as a wearable platform for gait monitoring and disease warning. The developed sensor and wearable platform offer a cutting-edge solution for monitoring human activity and detecting diseases in a noninvasive manner, paving the way for future wearable devices and personalized healthcare technologies.
Collapse
Affiliation(s)
- Xinyue Li
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Yarong Ding
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Miao Zhang
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
| | - Zhenhua Lin
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yue Hao
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yingchun Li
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
| | - Jingjing Chang
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
| |
Collapse
|
5
|
Zhang H, Zhang Y. Rational Design of Flexible Mechanical Force Sensors for Healthcare and Diagnosis. MATERIALS (BASEL, SWITZERLAND) 2023; 17:123. [PMID: 38203977 PMCID: PMC10780056 DOI: 10.3390/ma17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Over the past decade, there has been a significant surge in interest in flexible mechanical force sensing devices and systems. Tremendous efforts have been devoted to the development of flexible mechanical force sensors for daily healthcare and medical diagnosis, driven by the increasing demand for wearable/portable devices in long-term healthcare and precision medicine. In this review, we summarize recent advances in diverse categories of flexible mechanical force sensors, covering piezoresistive, capacitive, piezoelectric, triboelectric, magnetoelastic, and other force sensors. This review focuses on their working principles, design strategies and applications in healthcare and diagnosis, with an emphasis on the interplay among the sensor architecture, performance, and application scenario. Finally, we provide perspectives on the remaining challenges and opportunities in this field, with particular discussions on problem-driven force sensor designs, as well as developments of novel sensor architectures and intelligent mechanical force sensing systems.
Collapse
Affiliation(s)
- Hang Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Hassan MS, Zaman S, Dantzler JZR, Leyva DH, Mahmud MS, Ramirez JM, Gomez SG, Lin Y. 3D Printed Integrated Sensors: From Fabrication to Applications-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3148. [PMID: 38133045 PMCID: PMC10745374 DOI: 10.3390/nano13243148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The integration of 3D printed sensors into hosting structures has become a growing area of research due to simplified assembly procedures, reduced system complexity, and lower fabrication cost. Embedding 3D printed sensors into structures or bonding the sensors on surfaces are the two techniques for the integration of sensors. This review extensively discusses the fabrication of sensors through different additive manufacturing techniques. Various additive manufacturing techniques dedicated to manufacture sensors as well as their integration techniques during the manufacturing process will be discussed. This review will also discuss the basic sensing mechanisms of integrated sensors and their applications. It has been proven that integrating 3D printed sensors into infrastructures can open new possibilities for research and development in additive manufacturing and sensor materials for smart goods and the Internet of Things.
Collapse
Affiliation(s)
- Md Sahid Hassan
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Saqlain Zaman
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Joshua Z. R. Dantzler
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Diana Hazel Leyva
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Shahjahan Mahmud
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jean Montes Ramirez
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sofia Gabriela Gomez
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Yirong Lin
- Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA; (S.Z.); (J.Z.R.D.); (D.H.L.); (M.S.M.); (J.M.R.); (S.G.G.)
- Aerospace Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
7
|
Peng N, Wang L, Jiang W, Li G, Chen B, Jiang W, Liu H. Flexible Platform Composed of T-Shaped Micropyramid Patterns toward a Waterproof Sensing Interface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56537-56546. [PMID: 37992157 DOI: 10.1021/acsami.3c13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Antifouling is essential to guaranteeing the sensitivity and precision of flexible sensing interfaces. Materials and structures are the two primary strategies. However, optimizing the inherent microstructures to integrate waterproofing and sensing is rarely reported. To improve the liquid repellency of micropyramid structures, this work presents a study of the design and fabrication of T-shaped micropyramid structures. These structures are patterned uniformly and largely on polydimethylsiloxane (PDMS) skin by the new process of two-step magnetic induction. The waterproofing is related to the breakthrough pressure and the liquid repellency, both of which are a function of structural characteristics, D, and material properties, θY. At the breakthrough transition, two failure models distinguished by θY appear: the depinning transition and the sagging transition. Meanwhile, when considering D in practice, some models will shift and occur early. The D value regulates the transition of the material's wettability to the liquid repellency. The influence of the material's inherent nonwettability on liquid repellency diminishes as D decreases, and the transition from completely wetting liquids to super-repellents can be achieved. Experiments demonstrate that for D = 0.3 under water the resistance is approximately 142 times larger than the depth of the structure, considerably facilitating the waterproofing of conventional micropyramid arrays. This work provides a novel method for fabricating flexible T-shaped micropyramid array structures and opens a new window on flexible sensing interfaces with excellent waterproofing.
Collapse
Affiliation(s)
- Niming Peng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lanlan Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guojun Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bangdao Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongzhong Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Zhao S, Nguyen CC, Hoang TT, Do TN, Phan HP. Transparent Pneumatic Tactile Sensors for Soft Biomedical Robotics. SENSORS (BASEL, SWITZERLAND) 2023; 23:5671. [PMID: 37420836 DOI: 10.3390/s23125671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Palpation is a simple but effective method to distinguish tumors from healthy tissues. The development of miniaturized tactile sensors embedded on endoscopic or robotic devices is key to achieving precise palpation diagnosis and subsequent timely treatment. This paper reports on the fabrication and characterization of a novel tactile sensor with mechanical flexibility and optical transparency that can be easily mounted on soft surgical endoscopes and robotics. By utilizing the pneumatic sensing mechanism, the sensor offers a high sensitivity of 1.25 mbar and negligible hysteresis, enabling the detection of phantom tissues with different stiffnesses ranging from 0 to 2.5 MPa. Our configuration, combining pneumatic sensing and hydraulic actuating, also eliminates electrical wiring from the functional elements located at the robot end-effector, thereby enhancing the system safety. The optical transparency path in the sensors together with its mechanical sensing capability open interesting possibilities in the early detection of solid tumor as well as in the development of all-in-one soft surgical robots that can perform visual/mechanical feedback and optical therapy.
Collapse
Affiliation(s)
- Sinuo Zhao
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia
| | - Chi Cong Nguyen
- Tyree Institute of Health Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia
| | - Trung Thien Hoang
- Tyree Institute of Health Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Kensington Campus, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Zou Q, Xie Y, Yin Y, Liu B, Yu Y. Flexible Pressure Sensors Based on Microcrack Structure and Composite Conductive Mechanism for Medical Robotic Applications. MICROMACHINES 2023; 14:1110. [PMID: 37374695 DOI: 10.3390/mi14061110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
With the advancement of intelligent medical robot technology, machine touch utilizing flexible sensors has emerged as a prominent research area. In this study, a flexible resistive pressure sensor was designed incorporating a microcrack structure with air pores and a composite conductive mechanism of silver/carbon. The aim was to achieve enhanced stability and sensitivity with the inclusion of macro through-holes (1-3 mm) to expand the sensitive range. This technology solution was specifically applied to the machine touch system of the B-ultrasound robot. Through meticulous experimentation, it was determined that the optimal approach involved uniformly blending ecoflex and nano carbon powder at a mass ratio of 5:1, and subsequently combining the mixture with an ethanol solution of silver nanowires (AgNWs) at a mass ratio of 6:1. This combination of components resulted in the fabrication of a pressure sensor with optimal performance. Under the pressure testing condition of 5 kPa, a comparison of the resistance change rate was conducted among samples using the optimal formulation from the three processes. It was evident that the sample of ecoflex-C-AgNWs/ethanol solution exhibited the highest sensitivity. Its sensitivity was increased by 19.5% compared to the sample (ecoflex-C) and by 11.3% compared to the sample (ecoflex-C-ethanol). The sample (ecoflex-C-AgNWs/ethanol solution), which only incorporated internal air pore microcracks without through-holes, exhibited sensitive response to pressures below 5 N. However, with the addition of through-holes, the measurement range of its sensitive response increased to 20 N, representing a 400% increase in the measurement range.
Collapse
Affiliation(s)
- Qiang Zou
- School of Microelectronics, Tianjin University, Tianjin 300072, China
- Tianjin International Joint Research Center for Internet of Things, Tianjin 300072, China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin 300072, China
| | - Yuheng Xie
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Yunjiang Yin
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Baoguo Liu
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Yi Yu
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Chefchaouni Moussaoui S, Cisneros-Limón R, Kaminaga H, Benallegue M, Nobeshima T, Kanazawa S, Kanehiro F. Spatial Calibration of Humanoid Robot Flexible Tactile Skin for Human-Robot Interaction. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094569. [PMID: 37177773 PMCID: PMC10181520 DOI: 10.3390/s23094569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Recent developments in robotics have enabled humanoid robots to be used in tasks where they have to physically interact with humans, including robot-supported caregiving. This interaction-referred to as physical human-robot interaction (pHRI)-requires physical contact between the robot and the human body; one way to improve this is to use efficient sensing methods for the physical contact. In this paper, we use a flexible tactile sensing array and integrate it as a tactile skin for the humanoid robot HRP-4C. As the sensor can take any shape due to its flexible property, a particular focus is given on its spatial calibration, i.e., the determination of the locations of the sensor cells and their normals when attached to the robot. For this purpose, a novel method of spatial calibration using B-spline surfaces has been developed. We demonstrate with two methods that this calibration method gives a good approximation of the sensor position and show that our flexible tactile sensor can be fully integrated on a robot and used as input for robot control tasks. These contributions are a first step toward the use of flexible tactile sensors in pHRI applications.
Collapse
Affiliation(s)
- Sélim Chefchaouni Moussaoui
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
- CNRS-AIST Joint Robotics Laboratory (JRL), AIST, Tsukuba 305-8560, Japan
| | - Rafael Cisneros-Limón
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
- CNRS-AIST Joint Robotics Laboratory (JRL), AIST, Tsukuba 305-8560, Japan
| | - Hiroshi Kaminaga
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
- CNRS-AIST Joint Robotics Laboratory (JRL), AIST, Tsukuba 305-8560, Japan
| | - Mehdi Benallegue
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
- CNRS-AIST Joint Robotics Laboratory (JRL), AIST, Tsukuba 305-8560, Japan
| | - Taiki Nobeshima
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
- Human Augmentation Research Center (HARC), AIST, Kashiwa 277-0882, Japan
| | - Shusuke Kanazawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
- Human Augmentation Research Center (HARC), AIST, Kashiwa 277-0882, Japan
| | - Fumio Kanehiro
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan
- CNRS-AIST Joint Robotics Laboratory (JRL), AIST, Tsukuba 305-8560, Japan
| |
Collapse
|
11
|
Application of High-Photoelasticity Polyurethane to Tactile Sensor for Robot Hands. Polymers (Basel) 2022; 14:polym14235057. [PMID: 36501451 PMCID: PMC9738735 DOI: 10.3390/polym14235057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
We developed a tactile sensor for robot hands that can measure normal force (FZ) and tangential forces (FX and FY) using photoelasticity. This tactile sensor has three photodiodes and three light-emitting diode (LED) white light sources. The sensor is composed of multiple elastic materials, including a highly photoelastic polyurethane sheet, and the sensor can detect both normal and tangential forces through the deformation, ben sding, twisting, and extension of the elastic materials. The force detection utilizes the light scattering resulting from birefringence.
Collapse
|
12
|
Bica I, Iacobescu GE, Chirigiu LME. Magneto-Tactile Sensor Based on a Commercial Polyurethane Sponge. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183231. [PMID: 36145019 PMCID: PMC9503655 DOI: 10.3390/nano12183231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/14/2023]
Abstract
In this paper, we present the procedure for fabricating a new magneto-tactile sensor (MTS) based on a low-cost commercial polyurethane sponge, including the experimental test configuration, the experimental process, and a description of the mechanisms that lead to obtaining the MTS and its characteristics. It is shown that by using a polyurethane sponge, microparticles of carbonyl iron, ethanol, and copper foil with electroconductive adhesive, we can obtain a high-performance and low-cost MTS. With the experimental assembly described in this paper, the variation in time of the electrical capacity of the MTS was measured in the presence of a deforming force field, a magnetic field, and a magnetic field superimposed over a deformation field. It is shown that, by using an external magnetic field, the sensitivity of the MTS can be increased. Using the magnetic dipole model and linear elasticity approximation, the qualitative mechanisms leading to the reported results are described in detail.
Collapse
Affiliation(s)
- Ioan Bica
- Advanced Environmental Research Institute, West University of Timisoara, Bulevardul Vasile Pârvan 4, Nr. 4, 300223 Timisoara, Romania
| | - Gabriela-Eugenia Iacobescu
- Department of Physics, University of Craiova, Strada Alexandru Ioan Cuza, Nr. 13, 200585 Craiova, Romania
- Correspondence:
| | | |
Collapse
|
13
|
Cho H, Kouh T. Static Tactile Sensing Based on Electrospun Piezoelectric Nanofiber Membrane. SENSORS (BASEL, SWITZERLAND) 2022; 22:6779. [PMID: 36146129 PMCID: PMC9504021 DOI: 10.3390/s22186779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Here, a static tactile sensing scheme based on a piezoelectric nanofiber membrane, prepared via the electrospinning method, is presented. When the nanofiber membrane is kept under a constant vibration, an external contact onto the membrane will attenuate its vibration. By monitoring this change in the oscillation amplitude due to the physical contact via the piezoelectrically coupled voltage from the nanofiber membrane, the strength and duration of the static contact can be determined. The proof-of-concept experiment demonstrated here shows that the realization of a static tactile sensor is possible by implementing the piezoelectric nanofiber membrane as an effective sensing element.
Collapse
Affiliation(s)
| | - Taejoon Kouh
- Department of Physics, Kookmin University, Seoul 136-702, Korea
| |
Collapse
|
14
|
Fakhri E, Plugaru R, Sultan MT, Hanning Kristinsson T, Örn Árnason H, Plugaru N, Manolescu A, Ingvarsson S, Svavarsson HG. Piezoresistance Characterization of Silicon Nanowires in Uniaxial and Isostatic Pressure Variation. SENSORS (BASEL, SWITZERLAND) 2022; 22:6340. [PMID: 36080796 PMCID: PMC9459738 DOI: 10.3390/s22176340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Silicon nanowires (SiNWs) are known to exhibit a large piezoresistance (PZR) effect, making them suitable for various sensing applications. Here, we report the results of a PZR investigation on randomly distributed and interconnected vertical silicon nanowire arrays as a pressure sensor. The samples were produced from p-type (100) Si wafers using a silver catalyzed top-down etching process. The piezoresistance response of these SiNW arrays was analyzed by measuring their I-V characteristics under applied uniaxial as well as isostatic pressure. The interconnected SiNWs exhibit increased mechanical stability in comparison with separated or periodic nanowires. The repeatability of the fabrication process and statistical distribution of measurements were also tested on several samples from different batches. A sensing resolution down to roughly 1m pressure was observed with uniaxial force application, and more than two orders of magnitude resistance variation were determined for isostatic pressure below atmospheric pressure.
Collapse
Affiliation(s)
- Elham Fakhri
- Department of Engineering, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland
| | - Rodica Plugaru
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 077190 Voluntari, Romania
| | - Muhammad Taha Sultan
- Department of Engineering, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland
- Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | | | - Hákon Örn Árnason
- Department of Engineering, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland
| | - Neculai Plugaru
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 077190 Voluntari, Romania
| | - Andrei Manolescu
- Department of Engineering, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland
| | - Snorri Ingvarsson
- Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | | |
Collapse
|
15
|
Aksoy B, Hao Y, Grasso G, Digumarti KM, Cacucciolo V, Shea H. Shielded soft force sensors. Nat Commun 2022; 13:4649. [PMID: 35945227 PMCID: PMC9363457 DOI: 10.1038/s41467-022-32391-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Force and strain sensors made of soft materials enable robots to interact intelligently with their surroundings. Capacitive sensing is widely adopted thanks to its low power consumption, fast response, and facile fabrication. Capacitive sensors are, however, susceptible to electromagnetic interference and proximity effects and thus require electrical shielding. Shielding has not been previously implemented in soft capacitive sensors due to the parasitic capacitance between the shield and sensing electrodes, which changes when the sensor is deformed. We address this crucial challenge by patterning the central sensing elastomer layer to control its compressibility. One design uses an ultrasoft silicone foam, and the other includes microchannels filled with liquid metal and air. The force resolution is sub-mN both in normal and shear directions, yet the sensor withstands large forces (>20 N), demonstrating a wide dynamic range. Performance is unaffected by nearby high DC and AC electric fields and even electric sparks. Capacitive soft force sensors require electrical shielding from electromagnetic interference, but this shielding can mess with the effectiveness of the sensing electrodes. Here, Aksoy et al. solve this problem by patterning the central sensing elastomer layer to control its compressibility.
Collapse
Affiliation(s)
- Bekir Aksoy
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Yufei Hao
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Giulio Grasso
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Krishna Manaswi Digumarti
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Vito Cacucciolo
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland
| | - Herbert Shea
- Soft Transducers Laboratory (LMTS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, 2000, Switzerland.
| |
Collapse
|
16
|
Pyroelectrically Charged Flexible Ferroelectret-Based Tactile Sensor for Surface Texture Detection. ELECTRONICS 2022. [DOI: 10.3390/electronics11152329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Texture detection is one of the essential features requested for artificial tactile sensing to push the demand for flexible low-cost tactile sensors in the robotics sector. In this manuscript, we demonstrate the ability of a ferroelectret-based pressure sensor together with a patterned elastomer layer to detect surface textures. The ferroelectret sensor was fabricated using fluorinated ethylene propylene (FEP) sheets bonded with a patterned adhesive layer to create cavities, integrated with the elastomer bumped surface, and finally charged using a pyroelectric method developed by our group. The ferroelectret-based sensor showed a linear response to the applied force in the range of 0.5 to 2 N, a piezoelectric coefficient of 150.1 ± 3.2 pC/N in the range of 10–80 Hz, and a flat dynamic response in the range of 10–1000 Hz. The tactile sensing characterization of the sensor, performed at different scanning speeds (10 to 30 mm/s) and gratings with different periodicities (0 to 0.8 mm), showed that the fundamental frequencies observed ranged from 12 Hz to 75 Hz, as expected from the model. These results lay the foundation for the adoption of such sensors in different applications that need fine tactile information, such as an autonomous or teleoperated robotic hand, prostheses, and wearable devices.
Collapse
|
17
|
Bubniene US, Ratautaite V, Ramanavicius A, Bucinskas V. Conducting Polymers for the Design of Tactile Sensors. Polymers (Basel) 2022; 14:polym14152984. [PMID: 35893948 PMCID: PMC9370767 DOI: 10.3390/polym14152984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
This paper provides an overview of the application of conducting polymers (CPs) used in the design of tactile sensors. While conducting polymers can be used as a base in a variety of forms, such as films, particles, matrices, and fillers, the CPs generally remain the same. This paper, first, discusses the chemical and physical properties of conducting polymers. Next, it discusses how these polymers might be involved in the conversion of mechanical effects (such as pressure, force, tension, mass, displacement, deformation, torque, crack, creep, and others) into a change in electrical resistance through a charge transfer mechanism for tactile sensing. Polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene), polydimethylsiloxane, and polyacetylene, as well as application examples of conducting polymers in tactile sensors, are overviewed. Attention is paid to the additives used in tactile sensor development, together with conducting polymers. There is a long list of additives and composites, used for different purposes, namely: cotton, polyurethane, PDMS, fabric, Ecoflex, Velostat, MXenes, and different forms of carbon such as graphene, MWCNT, etc. Some design aspects of the tactile sensor are highlighted. The charge transfer and operation principles of tactile sensors are discussed. Finally, some methods which have been applied for the design of sensors based on conductive polymers, are reviewed and discussed.
Collapse
Affiliation(s)
- Urte Samukaite Bubniene
- Department of Mechatronics, Robotics and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania;
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania;
- Correspondence: (U.S.B.); (A.R.)
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
- Correspondence: (U.S.B.); (A.R.)
| | - Vytautas Bucinskas
- Department of Mechatronics, Robotics and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, J. Basanaviciaus Str. 28, LT-03224 Vilnius, Lithuania;
| |
Collapse
|