1
|
Cha J, Kim C, Choi SH. Extrinsic Laryngeal Muscle Activity With Different Diameters and Water Depths in a Semi-Occluded Vocal Tract Exercise. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1324-1338. [PMID: 38592964 DOI: 10.1044/2024_jslhr-23-00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE Surface electromyography (sEMG) has been used to evaluate extrinsic laryngeal muscle activity during swallowing and phonation. In the current study, sEMG amplitudes were measured from the infrahyoid and suprahyoid muscles during phonation through a tube submerged in water. METHOD The sEMG amplitude values measured from the extrinsic laryngeal muscles and the electroglottographic contact quotient (CQ) were obtained simultaneously from 62 healthy participants (31 men, 31 women) during phonation through a tube at six different depths (2, 4, 7, 10, 15, and 20 cm) while using two tubes with different diameters (1 and 0.5 cm). RESULTS With increasing depth, the sEMG amplitude for the suprahyoid muscles increased in men and women. However, sEMG amplitudes for the infrahyoid muscles increased significantly only in men. Tube diameter had a significant effect on the suprahyoid sEMG amplitudes only for men, with higher sEMG amplitudes when phonating with a 1.0-cm tube. CQ values increased with submerged depth for both men and women. Tube diameter affected results such than CQ values were higher for men when using the wider tube and for women with the narrower tube. CONCLUSIONS Vocal fold vibratory patterns changed with the depth of tube submersion in water for both men and women, but the patterns of muscle activation differed between the sexes. This suggests that men and women use different strategies when confronted with increased intraoral pressure during semi-occluded vocal tract exercises. In this study, sEMG provided insight into the mechanism for differences between vocally normal individuals and could help detect compensatory muscle activation during tube phonation in water for people with voice disorders.
Collapse
Affiliation(s)
- Junseo Cha
- Department of Audiology and Speech-Language Pathology, Research Institute of Biomimetic Sensory Control, Catholic Hearing Voice Speech Center, Daegu Catholic University, Gyeongsan, South Korea
| | - Chaehyun Kim
- Department of Audiology and Speech-Language Pathology, Research Institute of Biomimetic Sensory Control, Catholic Hearing Voice Speech Center, Daegu Catholic University, Gyeongsan, South Korea
| | - Seong Hee Choi
- Department of Audiology and Speech-Language Pathology, Research Institute of Biomimetic Sensory Control, Catholic Hearing Voice Speech Center, Daegu Catholic University, Gyeongsan, South Korea
| |
Collapse
|
2
|
Rho S, Kim H, Lim D, Jeong W. Fabrication and Evaluation of Embroidery-Based Electrode for EMG Smart Wear Using Moss Stitch Technique. SENSORS (BASEL, SWITZERLAND) 2023; 23:9012. [PMID: 37960710 PMCID: PMC10648407 DOI: 10.3390/s23219012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Wearable 2.0 research has been conducted on the manufacture of smart fitness wear that collects bio-signals through the wearing of a textile-based electrode. Among them, the electromyography (EMG) suit measures the electrical signals generated by the muscles to check their activity, such as contraction and relaxation. General gel-type electrodes have been reported to cause skin diseases due to an uncomfortable feel and skin irritation when attached to the skin for a long time. Dry electrodes of various materials are being developed to solve this problem. Previous research has reported EMG detectio performance and conducted economic comparisons according to the size and shape of the embroidery electrode. On the other hand, these embroidery electrodes still have foreign body sensations. In this study, a moss sEMG electrode was produced with various shapes (W3 and WF) and loop lengths (1-5 mm). The optimized conditions of the embroidery-based electrodes were derived and analyzed with the tactile comfort factors and sensing performances. As the loop length of the electrode increased, MIU and Qmax increased, but the SMD decreased due to the free movement of the threads constituting the loop. Impedance and sEMG detection performance showed different trends depending on the electrode type.
Collapse
Affiliation(s)
- Soohyeon Rho
- Material and Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (S.R.); (H.K.); (D.L.)
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyelim Kim
- Material and Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (S.R.); (H.K.); (D.L.)
| | - Daeyoung Lim
- Material and Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (S.R.); (H.K.); (D.L.)
| | - Wonyoung Jeong
- Material and Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (S.R.); (H.K.); (D.L.)
| |
Collapse
|
3
|
Tu H, Li X, Lin X, Lang C, Gao Y. Washable and Flexible Screen-Printed Ag/AgCl Electrode on Textiles for ECG Monitoring. Polymers (Basel) 2023; 15:3665. [PMID: 37765519 PMCID: PMC10538005 DOI: 10.3390/polym15183665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Electrocardiogram (ECG) electrodes are important sensors for detecting heart disease whose performance determines the validity and accuracy of the collected original ECG signals. Due to the large drawbacks (e.g., allergy, shelf life) of traditional commercial gel electrodes, textile electrodes receive widespread attention for their excellent comfortability and breathability. This work demonstrated a dry electrode for ECG monitoring fabricated by screen printing silver/silver chloride (Ag/AgCl) conductive ink on ordinary polyester fabric. The results show that the screen-printed textile electrodes have good and stable electrical and electrochemical properties and excellent ECG signal acquisition performance. Furthermore, the resistance of the screen-printed textile electrode is maintained within 0.5 Ω/cm after 5000 bending cycles or 20 washing and drying cycles, exhibiting excellent flexibility and durability. This research provides favorable support for the design and preparation of flexible and wearable electrophysiological sensing platforms.
Collapse
Affiliation(s)
- Huating Tu
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (H.T.); (X.L.); (X.L.)
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoou Li
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (H.T.); (X.L.); (X.L.)
| | - Xiangde Lin
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (H.T.); (X.L.); (X.L.)
| | - Chenhong Lang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Gao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
4
|
Ravichandran V, Ciesielska-Wrobel I, Rumon MAA, Solanki D, Mankodiya K. Characterizing the Impedance Properties of Dry E-Textile Electrodes Based on Contact Force and Perspiration. BIOSENSORS 2023; 13:728. [PMID: 37504127 PMCID: PMC10377293 DOI: 10.3390/bios13070728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Biopotential electrodes play an integral role within smart wearables and clothing in capturing vital signals like electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). This study focuses on dry e-textile electrodes (E1-E6) and a laser-cut knit electrode (E7), to assess their impedance characteristics under varying contact forces and moisture conditions. Synthetic perspiration was applied using a moisture management tester and impedance was measured before and after exposure, followed by a 24 h controlled drying period. Concurrently, the signal-to-noise ratio (SNR) of the dry electrode was evaluated during ECG data collection on a healthy participant. Our findings revealed that, prior to moisture exposure, the impedance of electrodes E7, E5, and E2 was below 200 ohm, dropping to below 120 ohm post-exposure. Embroidered electrodes E6 and E4 exhibited an over 25% decrease in mean impedance after moisture exposure, indicating the impact of stitch design and moisture on impedance. Following the controlled drying, certain electrodes (E1, E2, E3, and E4) experienced an over 30% increase in mean impedance. Overall, knit electrode E7, and embroidered electrodes E2 and E6, demonstrated superior performance in terms of impedance, moisture retention, and ECG signal quality, revealing promising avenues for future biopotential electrode designs.
Collapse
Affiliation(s)
- Vignesh Ravichandran
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Izabela Ciesielska-Wrobel
- Department of Textiles, Fashion Merchandising and Design, University of Rhode Island, Kingston, RI 02881, USA
| | - Md Abdullah Al Rumon
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Dhaval Solanki
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Kunal Mankodiya
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
5
|
Vidhya CM, Maithani Y, Singh JP. Recent Advances and Challenges in Textile Electrodes for Wearable Biopotential Signal Monitoring: A Comprehensive Review. BIOSENSORS 2023; 13:679. [PMID: 37504078 PMCID: PMC10377545 DOI: 10.3390/bios13070679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
The technology of wearable medical equipment has advanced to the point where it is now possible to monitor the electrocardiogram and electromyogram comfortably at home. The transition from wet Ag/AgCl electrodes to various types of gel-free dry electrodes has made it possible to continuously and accurately monitor the biopotential signals. Fabrics or textiles, which were once meant to protect the human body, have undergone significant development and are now employed as intelligent textile materials for healthcare monitoring. The conductive textile electrodes provide the benefit of being breathable and comfortable. In recent years, there has been a significant advancement in the fabrication of wearable conductive textile electrodes for monitoring biopotential signals. This review paper provides a comprehensive overview of the advances in wearable conductive textile electrodes for biopotential signal monitoring. The paper covers various aspects of the technology, including the electrode design, various manufacturing techniques utilised to fabricate wearable smart fabrics, and performance characteristics. The advantages and limitations of various types of textile electrodes are discussed, and key challenges and future research directions are identified. This will allow them to be used to their fullest potential for signal gathering during physical activities such as running, swimming, and other exercises while being linked into wireless portable health monitoring systems.
Collapse
Affiliation(s)
- C M Vidhya
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Yogita Maithani
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jitendra P Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
6
|
Chun S, Kim S, Kim J. Human Arm Workout Classification by Arm Sleeve Device Based on Machine Learning Algorithms. SENSORS (BASEL, SWITZERLAND) 2023; 23:3106. [PMID: 36991817 PMCID: PMC10057383 DOI: 10.3390/s23063106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Wearables have been applied in the field of fitness in recent years to monitor human muscles by recording electromyographic (EMG) signals. Understanding muscle activation during exercise routines allows strength athletes to achieve the best results. Hydrogels, which are widely used as wet electrodes in the fitness field, are not an option for wearable devices due to their characteristics of being disposable and skin-adhesion. Therefore, a lot of research has been conducted on the development of dry electrodes that can replace hydrogels. In this study, to make it wearable, neoprene was impregnated with high-purity SWCNTs to develop a dry electrode with less noise than hydrogel. Due to the impact of COVID-19, the demand for workouts to improve muscle strength, such as home gyms and personal trainers (PT), has increased. Although there are many studies related to aerobic exercise, there is a lack of wearable devices that can assist in improving muscle strength. This pilot study proposed the development of a wearable device in the form of an arm sleeve that can monitor muscle activity by recording EMG signals of the arm using nine textile-based sensors. In addition, some machine learning models were used to classify three arm target movements such as wrist curl, biceps curl, and dumbbell kickback from the EMG signals recorded by fiber-based sensors. The results obtained show that the EMG signal recorded by the proposed electrode contains less noise compared to that collected by the wet electrode. This was also evidenced by the high accuracy of the classification model used to classify the three arms workouts. This work classification device is an essential step towards wearable devices that can replace next-generation PT.
Collapse
Affiliation(s)
- Sehwan Chun
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 156-743, Republic of Korea
| | - Sangun Kim
- Department of Smart Wearable Engineering, Soongsil University, Seoul 156-743, Republic of Korea
| | - Jooyong Kim
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 156-743, Republic of Korea
| |
Collapse
|
7
|
Fabrication of Textile-Based Dry Electrode and Analysis of Its Surface EMG Signal for Applying Smart Wear. Polymers (Basel) 2022; 14:polym14173641. [PMID: 36080714 PMCID: PMC9460933 DOI: 10.3390/polym14173641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Ag/AgCl hydrogel electrodes, which are wet electrodes, are generally used to acquire bio-signals non-invasively. Research concerning dry electrodes is ongoing due to the following limitations of wet electrodes: (1) skin irritation and disease when attached for a long time; (2) poor adhesion due to sweat; and (3) considerable cost due to disposable use. Accordingly, electrodes in film, embroidery, and knit forms were manufactured from conductive sheets and conductive yarns, which are typical textile-type dry electrode materials, using different manufacturing methods and conditions. The prepared electrodes were conducted to measure the morphology, surface resistance, skin-electrode impedance, EMG signal acquisition, and analysis. The conductive sheet type electrode exhibited a similar skin-impedance, noise, and muscle activation signal amplitude to the Ag/AgCl gel electrode due to the excellent adhesion and shape stabilization. Embroidery electrodes were manufactured based on two-dimension lock stitch (Em_LS) and three-dimension moss-stitch (Em_MS). More stable EMG signal acquisition than Em_LS was possible when manufactured with Em_MS. The knit electrode was manufactured with the typical structures of plain, purl, and interlock. Although it was possible to acquire EMG signals, considerable noise was generated as the shape and size of the electrodes were changed due to the stretch characteristics of the knit structure. Finally, the applicability of the textile-type dry electrode was confirmed by combining it with a wearable device. More stable and accurate EMG signal acquirement will be possible through more precise parameter control in the future.
Collapse
|