1
|
Pescari D, Mihuta MS, Bena A, Stoian D. Quantitative analysis of the caloric restriction versus isocaloric diets models based on macronutrients composition: impacts on body weight regulation, anthropometric, and bioimpedance parameters in women with obesity. Front Nutr 2024; 11:1493954. [PMID: 39726871 PMCID: PMC11670075 DOI: 10.3389/fnut.2024.1493954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Obesity is a growing public health issue, especially among young adults, with long-term management strategies still under debate. This prospective study compares the effects of caloric restriction and isocaloric diets with different macronutrient distributions on body composition and anthropometric parameters in obese women during a 12-week weight loss program, aiming to identify the most effective dietary strategies for managing obesity-related health outcomes. Methods A certified clinical nutritionist assigned specific diets over a 12-week period to 150 participants, distributed as follows: hypocaloric diets-low-energy diet (LED, 31 subjects) and very low-energy diet (VLED, 13 subjects); isocaloric diets with macronutrient distribution-low-carbohydrate diet (LCD, 48 subjects), ketogenic diet (KD, 23 subjects), and high-protein diet (HPD, 24 subjects); and isocaloric diet without macronutrient distribution-time-restricted eating (TRE, 11 subjects). Participants were dynamically monitored using anthropometric parameters: body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR) and bioelectrical impedance analysis (BIA) using the TANITA Body Composition Analyzer BC-418 MA III (T5896, Tokyo, Japan) at three key intervals-baseline, 6 weeks, and 12 weeks. The following parameters were evaluated: body weight, basal metabolic rate (BMR), percentage of total body fat, trunk fat, muscle mass, fat-free mass, and hydration status. Results All diets led to weight loss, but differences emerged over time. The TRE model resulted in significantly less weight loss compared to LED at the final follow-up (6.30 kg, p < 0.001), similar to the VLED (4.69 kg, p < 0.001). Isocaloric diets with varied macronutrient distributions showed significant weight loss compared to LED (p < 0.001). The KD reduced waist circumference at both 6 and 12 weeks (-4.08 cm, p < 0.001), while significant differences in waist-to-hip ratio reduction were observed across diet groups at 12 weeks (p = 0.01). Post-hoc analysis revealed significant fat mass differences at 12 weeks, with HPD outperforming IF (p = 0.01) and VLED (p = 0.003). LCD reduced trunk fat at 6 weeks (-2.36%, p = 0.001) and 12 weeks (-3.79%, p < 0.001). HPD increased muscle mass at 12 weeks (2.95%, p = 0.001), while VLED decreased it (-2.02%, p = 0.031). TRE showed a smaller BMR reduction at 12 weeks compared to LED. Conclusion This study highlights the superior long-term benefits of isocaloric diets with macronutrients distribution over calorie-restrictive diets in optimizing weight, BMI, body composition, and central adiposity.
Collapse
Affiliation(s)
- Denisa Pescari
- Department of Doctoral Studies, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
| | - Monica Simina Mihuta
- Center for Molecular Research in Nephrology and Vascular Disease, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
| | - Andreea Bena
- Center for Molecular Research in Nephrology and Vascular Disease, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
- Discipline of Endocrinology, Second Department of Internal Medicine, Victor Babeș University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Dana Stoian
- Center for Molecular Research in Nephrology and Vascular Disease, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
- Discipline of Endocrinology, Second Department of Internal Medicine, Victor Babeș University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
2
|
Eshaghhosseiny N, Ahmadi M, Izadi B, Vali M, Akbari M, Azari I, Akbari H. The effects of ketogenic diet on metabolic and hormonal parameters in patients with polycystic ovary syndrome: a systematic review and meta-analysis of clinical trials. J Diabetes Metab Disord 2024; 23:1573-1587. [PMID: 39610476 PMCID: PMC11599545 DOI: 10.1007/s40200-024-01441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/30/2024] [Indexed: 11/30/2024]
Abstract
Purpose In recent years, using the ketogenic diet (KD) as a potential intervention for polycystic ovary syndrome (PCOS) has gained attention. Therefore, this study aimed to conduct a meta-analysis to determine the effects of KD on sexual hormones, glycemic and lipid parameters in women diagnosed with PCOS. Methods A comprehensive literature search was performed using online databases such as Medline/PubMed, Scopus, Web of Science (ISI), Embase, and the Cochrane Library and clinical trials were selected based on the inclusion criteria. Data extraction and quality assessment were conducted independently by two investigators using appropriate tools. The effects of a KD on metabolic biomarkers and hormonal parameters were pooled using a random-effects model and were considered as the weighted mean difference (WMD) with corresponding 95% confidence intervals (CIs). Heterogeneity across studies was assessed using Cochran's Q test and the I-square test. Results Ten studies including 408 women were analyzed in this analysis. Findings showed that KD significantly decreased triglycerides levels (WMD = -44.03 mg/dL; 95% CI, -56.29, -31.76), total cholesterol (-18.95 mg/dL; -29.06, -8.83), and low-density lipoprotein cholesterol (LDL) (-18.11 mg/dL; -29.56, -6.67) compared to the control groups. KD also led to a notable reduction in fasting glucose (-10.30 mg/dL; -14.10, -6.50) and HOMA-IR (-1.93; -3.66, -0.19). Also, this diet led to a significant decrease in luteinizing hormone (LH) levels (-3.75 mIU/mL; -3.84, -3.65) and total testosterone levels (-7.71 ng/dL); -12.08, -3.35), while follicle-stimulating hormone (FSH) increased (0.43 mIU/mL; 0.29, 0.57). Conclusion The KD demonstrated promising outcomes in improving metabolic and hormonal parameters in women diagnosed with PCOS.
Collapse
Affiliation(s)
| | - Mohammad Ahmadi
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Izadi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohebat Vali
- Epidemiology Department, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Akbari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Isaac Azari
- Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Akbari
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta Canada
| |
Collapse
|
3
|
Vargas-Molina S, Murri M, Gonzalez-Jimenez A, Gómez-Urquiza JL, Benítez-Porres J. Effects of the Ketogenic Diet on Strength Performance in Trained Men and Women: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:2200. [PMID: 39064644 PMCID: PMC11279805 DOI: 10.3390/nu16142200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Ketogenic diets (KDs) are an alternative to improve strength performance and body composition in resistance training participants. The objective of this review and meta-analysis is to verify whether a ketogenic diet produces an increase in the strength of resistance-trained participants. We have evaluated the effect of the ketogenic diet in conjunction with resistance training on the strength levels in trained participants. Boolean algorithms from various databases (PubMed, Scopus, and Web of Science) were used. Meta-analyses were carried out, one on the 1-RM squat (SQ), with 106 trained participants or athletes, and another on the 1-RM on the bench press (BP), evaluating 119 participants. We did not find significant differences between the groups in the variables of SQ or BP, although the size of the effect was slightly higher in the ketogenic group. Conclusions: KDs do not appear to impair 1-RM performance; however, this test does not appear to be the most optimal tool for assessing hypertrophy-based strength session performance in resistance-trained participants.
Collapse
Affiliation(s)
- Salvador Vargas-Molina
- Physical Education and Sports Area, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Research Division, Dynamical Business and Science Society—DBSS International SAS, Bogotá 110311, Colombia
| | - Mora Murri
- Instituto de Investigacion Biomedica de Malaga, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain;
- Endocrinology and Nutrition Clinical Management Unit, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III, 29016 Madrid, Spain
| | - Andrés Gonzalez-Jimenez
- Instituto de Investigacion Biomedica de Malaga, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain;
| | - José Luis Gómez-Urquiza
- Department of Nursing, Faculty of Health Sciences, University of Granada, 51005 Ceuta, Spain;
| | - Javier Benítez-Porres
- Physical Education and Sports Area, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Instituto de Investigacion Biomedica de Malaga, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain;
| |
Collapse
|
4
|
Bellamy EL, Hadjiefthyvoulou F, Walsh J, Brown J, Turner J. Understanding the experiences of ketogenic metabolic therapy for people living with varying levels of depressive symptoms: a thematic analysis. Front Nutr 2024; 11:1397546. [PMID: 38903620 PMCID: PMC11188922 DOI: 10.3389/fnut.2024.1397546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
Background Evidence suggests that a ketogenic diet (KD) may help to alleviate psychiatric symptoms, including depression and anxiety. Positive changes have been reported such as improvements in cognition, concentration, and sleep, a reduction in hunger, and an increase in well-being, energy, confidence, and resilience. This research aims to understand the impact of a non-calorie-restricted KD on depression and aspects of psychological well-being in those with varying degrees of depressive symptoms. Though there are a few studies directly exploring the experiences of those following a KD, this will be the first study to explore the narrative from a mental health and psychological well-being viewpoint. Method A sample of nine participants who had followed a non-calorie restricted KD intervention of 50 g of carbohydrates or less per day for at least 12 weeks were recruited. Participants were split into 'healthy adults' group who had no to low depressive symptoms and 'depressive symptoms' group who had mild to moderate depressive symptoms. A reflexive thematic analysis was considered suitable for this study. Findings Five core themes and 24 subthemes were created. These were, (1) Poor health prior to program; (2) Hunger and cravings-the food and mood connection; (3) Psychological well-being improvements; (4) It becomes a lifestyle; and (5) Implementation difficulties. Participants experienced mental health improvements such as increased self-esteem, confidence, motivation, and achievement. Some experienced more control in life and a greater sense of reward. Those with depressive symptoms who initially reported low self-worth and hopelessness later reported increased self-esteem and renewed meaning and purpose in life. The findings from this study reflect the previous reports that the diet implementation can be difficult initially, but soon becomes easy to follow and turns into a lifestyle. Conclusion In the literature, there are very few qualitative studies that explore the accounts and lived experiences of those following a KD. From the participants' accounts in this study, it appears that the benefits and positive outcomes of this diet outweigh any negative side-effects experienced. This is encouraging for those who are looking for adjunctive therapies to address and improve their depressive symptoms and overall mental health.
Collapse
Affiliation(s)
- Erin L. Bellamy
- School of Psychology, University of East London, London, United Kingdom
| | | | - James Walsh
- School of Psychology, University of East London, London, United Kingdom
| | - Jennie Brown
- School of Health Sciences, City, University of London, London, United Kingdom
| | - John Turner
- School of Psychology, University of East London, London, United Kingdom
| |
Collapse
|
5
|
Al-Ghamdi BA, Al-Shamrani JM, El-Shehawi AM, Al-Johani I, Al-Otaibi BG. Role of mitochondrial DNA in diabetes Mellitus Type I and Type II. Saudi J Biol Sci 2022; 29:103434. [PMID: 36187456 PMCID: PMC9523097 DOI: 10.1016/j.sjbs.2022.103434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/01/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Morbidity and mortality from diabetes mellitus and associated illnesses is a major problem across the globe. Anti-diabetic medicines must be improved despite existing breakthroughs in treatment approaches. Diabetes has been linked to mitochondrial dysfunction. As a result, particular mitochondrial diabetes kinds like MIDD (maternally inherited diabetes & deafness) and DAD (diabetic autonomic dysfunction) have been identified and studied (diabetes and Deafness). Some mutations as in mitochondrial DNA (mtDNA), that encodes for a significant portion of mitochondrial proteins as well as mitochondrial tRNA essential for mitochondrial protein biosynthesis, are responsible for hereditary mitochondrial diseases. Tissue-specificity and heteroplasmy have a role in the harmful phenotype of mtDNA mutations, making it difficult to generalise findings from one study to another. There are a huge increase in the number for mtDNA mutations related with human illnesses that have been identified using current sequencing technologies. In this study, we make a list on mtDNA mutations linked with diseases and diabetic illnesses and explore the methods by which they contribute to the pathology's emergence.
Collapse
Affiliation(s)
- Bandar Ali Al-Ghamdi
- Department of Cardiology and Cardiac Surgery, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia.,Department of Biotechnology, Taif University, Taif City, Saudi Arabia
| | | | | | - Intisar Al-Johani
- Department of Biotechnology, Taif University, Taif City, Saudi Arabia
| | | |
Collapse
|
6
|
Dolan LC, Karikachery AR, Thipe VC, Arceneaux BG, Katti KK, Katti KV, Chesne AM. Toxicity Investigations of (R)-3-Hydroxybutyrate Glycerides In Vitro and in Male and Female Rats. Nutrients 2022; 14:nu14204426. [PMID: 36297110 PMCID: PMC9610502 DOI: 10.3390/nu14204426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
TCN006, a formulation of (R)-3-Hydroxybutyrate glycerides, is a promising ingredient for enhancing ketone intake of humans. Ketones have been shown to have beneficial effects on human health. To be used by humans, TCN006 must be determined safe in appropriately designed safety studies. The results of a bacterial reverse mutation assay, an in vitro mammalian micronucleus study, and 14-and 90-day repeat dose toxicity studies in rats are reported herein. In the 14- and 90-day studies, male and female Wistar rats had free access to drinking water containing 0, 75,000, 125,000 or 200,000 ppm TCN006 for 92 and 93 days, respectively. TCN006 tested negative for genotoxicity and the no observed adverse effect level (NOAEL) for toxicity in the 14- and 90-day studies was 200,000 ppm, the highest dose administered. In the longer term study, the mean overall daily intake of TCN006 in the 200,000 ppm groups was 14,027.9 mg/kg bw/day for males and 20,507.0 mg/kg bw/day for females. At this concentration, palatability of water was likely affected, which led to a decrease in water consumption in both males and females compared to respective controls. This had no effect on the health of the animals. Although the rats were administered very high levels of (R)-3-Hydroxybutyrate glycerides, there were no signs of ketoacidosis.
Collapse
Affiliation(s)
- Laurie C. Dolan
- GRAS Associates, LLC., 11810 Grand Park Avenue, Suite 500, North Bethesda, MD 20852, USA
| | - Alice Raphael Karikachery
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65212, USA
| | - Velaphi C. Thipe
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65212, USA
| | - Benjamin G. Arceneaux
- GRAS Associates, LLC., 11810 Grand Park Avenue, Suite 500, North Bethesda, MD 20852, USA
| | - Kavita K. Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65212, USA
| | - Kattesh V. Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65212, USA
| | - Alton M. Chesne
- Tecton Group, LLC., 370 River Rd., Alexandria, LA 71302, USA
- Correspondence:
| |
Collapse
|
7
|
Vargas-Molina S, Gómez-Urquiza JL, García-Romero J, Benítez-Porres J. Effects of the Ketogenic Diet on Muscle Hypertrophy in Resistance-Trained Men and Women: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912629. [PMID: 36231929 PMCID: PMC9564904 DOI: 10.3390/ijerph191912629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 05/22/2023]
Abstract
Reviews focused on the ketogenic diet (KD) based on the increase in fat-free mass (FFM) have been carried out with pathological populations or, failing that, without population differentiation. The aim of this review and meta-analysis was to verify whether a ketogenic diet without programmed energy restriction generates increases in fat-free mass (FFM) in resistance-trained participants. We evaluated the effect of the ketogenic diet, in conjunction with resistance training, on fat-free mass in trained participants. Boolean algorithms from various databases (PubMed, Scopus. and Web of Science) were used, and a total of five studies were located that related to both ketogenic diets and resistance-trained participants. In all, 111 athletes or resistance-trained participants (87 male and 24 female) were evaluated in the studies analyzed. We found no significant differences between groups in the FFM variables, and more research is needed to perform studies with similar ketogenic diets and control diet interventions. Ketogenic diets, taking into account the possible side effects, can be an alternative for increasing muscle mass as long as energy surplus is generated; however, their application for eight weeks or more without interruption does not seem to be the best option due to the satiety and lack of adherence generated.
Collapse
Affiliation(s)
- Salvador Vargas-Molina
- Department of Physical Education and Sport, Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain
- Physical Education and Sports Area, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - José L. Gómez-Urquiza
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain
| | - Jerónimo García-Romero
- Physical Education and Sports Area, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Javier Benítez-Porres
- Physical Education and Sports Area, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Correspondence:
| |
Collapse
|
8
|
Krakovski MA, Arora N, Jain S, Glover J, Dombrowski K, Hernandez B, Yadav H, Sarma AK. Diet-microbiome-gut-brain nexus in acute and chronic brain injury. Front Neurosci 2022; 16:1002266. [PMID: 36188471 PMCID: PMC9523267 DOI: 10.3389/fnins.2022.1002266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, appreciation for the gut microbiome and its relationship to human health has emerged as a facilitator of maintaining healthy physiology and a contributor to numerous human diseases. The contribution of the microbiome in modulating the gut-brain axis has gained significant attention in recent years, extensively studied in chronic brain injuries such as Epilepsy and Alzheimer’s Disease. Furthermore, there is growing evidence that gut microbiome also contributes to acute brain injuries like stroke(s) and traumatic brain injury. Microbiome-gut-brain communications are bidirectional and involve metabolite production and modulation of immune and neuronal functions. The microbiome plays two distinct roles: it beneficially modulates immune system and neuronal functions; however, abnormalities in the host’s microbiome also exacerbates neuronal damage or delays the recovery from acute injuries. After brain injury, several inflammatory changes, such as the necrosis and apoptosis of neuronal tissue, propagates downward inflammatory signals to disrupt the microbiome homeostasis; however, microbiome dysbiosis impacts the upward signaling to the brain and interferes with recovery in neuronal functions and brain health. Diet is a superlative modulator of microbiome and is known to impact the gut-brain axis, including its influence on acute and neuronal injuries. In this review, we discussed the differential microbiome changes in both acute and chronic brain injuries, as well as the therapeutic importance of modulation by diets and probiotics. We emphasize the mechanistic studies based on animal models and their translational or clinical relationship by reviewing human studies.
Collapse
Affiliation(s)
| | - Niraj Arora
- Department of Neurology, University of Missouri, Columbia, MO, United States
| | - Shalini Jain
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Jennifer Glover
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Keith Dombrowski
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
| | - Beverly Hernandez
- Clinical Nutrition Services, Tampa General Hospital, Tampa, FL, United States
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, United States
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, United States
- *Correspondence: Hariom Yadav,
| | - Anand Karthik Sarma
- Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
- Anand Karthik Sarma,
| |
Collapse
|
9
|
Abstract
Obesity remains a serious relevant public health concern throughout the world despite related countermeasures being well understood (i.e. mainly physical activity and an adjusted diet). Among different nutritional approaches, there is a growing interest in ketogenic diets (KD) to manipulate body mass (BM) and to enhance fat mass loss. KD reduce the daily amount of carbohydrate intake drastically. This results in increased fatty acid utilisation, leading to an increase in blood ketone bodies (acetoacetate, 3-β-hydroxybutyrate and acetone) and therefore metabolic ketosis. For many years, nutritional intervention studies have focused on reducing dietary fat with little or conflicting positive results over the long term. Moreover, current nutritional guidelines for athletes propose carbohydrate-based diets to augment muscular adaptations. This review discusses the physiological basis of KD and their effects on BM reduction and body composition improvements in sedentary individuals combined with different types of exercise (resistance training or endurance training) in individuals with obesity and athletes. Ultimately, we discuss the strengths and the weaknesses of these nutritional interventions together with precautionary measures that should be observed in both individuals with obesity and athletic populations. A literature search from 1921 to April 2021 using Medline, Google Scholar, PubMed, Web of Science, Scopus and Sportdiscus Databases was used to identify relevant studies. In summary, based on the current evidence, KD are an efficient method to reduce BM and body fat in both individuals with obesity and athletes. However, these positive impacts are mainly because of the appetite suppressive effects of KD, which can decrease daily energy intake. Therefore, KD do not have any superior benefits to non-KD in BM and body fat loss in individuals with obesity and athletic populations in an isoenergetic situation. In sedentary individuals with obesity, it seems that fat-free mass (FFM) changes appear to be as great, if not greater, than decreases following a low-fat diet. In terms of lean mass, it seems that following a KD can cause FFM loss in resistance-trained individuals. In contrast, the FFM-preserving effects of KD are more efficient in endurance-trained compared with resistance-trained individuals.
Collapse
|
10
|
Zhou Y, Cao F, Luo F, Lin Q. Octacosanol and health benefits: Biological functions and mechanisms of action. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
The Therapeutic Role of Ketogenic Diet in Neurological Disorders. Nutrients 2022; 14:nu14091952. [PMID: 35565918 PMCID: PMC9102882 DOI: 10.3390/nu14091952] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate and adequate-protein diet that has gained popularity in recent years in the context of neurological diseases (NDs). The complexity of the pathogenesis of these diseases means that effective forms of treatment are still lacking. Conventional therapy is often associated with increasing tolerance and/or drug resistance. Consequently, more effective therapeutic strategies are being sought to increase the effectiveness of available forms of therapy and improve the quality of life of patients. For the moment, it seems that KD can provide therapeutic benefits in patients with neurological problems by effectively controlling the balance between pro- and antioxidant processes and pro-excitatory and inhibitory neurotransmitters, and modulating inflammation or changing the composition of the gut microbiome. In this review we evaluated the potential therapeutic efficacy of KD in epilepsy, depression, migraine, Alzheimer’s disease and Parkinson’s disease. In our opinion, KD should be considered as an adjuvant therapeutic option for some neurological diseases.
Collapse
|
12
|
Moreno-Villanueva A, Rico-González M, Pino-Ortega J. The Effects of a Ketogenic Diet on Anthropometric Parameters, Metabolic Adaptation, and Physical Fitness Performance in Amateur Endurance Athletes: A Systematic Review. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
The effect of a low carbohydrate ketogenic diet with or without exercise on postpartum weight retention, metabolic profile and physical activity performance in postpartum mice. J Nutr Biochem 2022; 102:108941. [PMID: 35017000 DOI: 10.1016/j.jnutbio.2022.108941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE the present study examined the effect of the isocaloric low-carbohydrate ketogenic diet (LCKD) with or without exercise training for 6 weeks on postpartum weight retention (PPWR), body composition, metabolic profile and physical activity performance in postpartum mice. METHODS postpartum mice were assigned to 4 groups (n=8/group) as follows: (1) those on a control diet without aerobic exercise (CN); (2) those on a control diet with aerobic exercise (CN+EX), (3); those on a LCKD without aerobic exercise (LCKD); (4) those on a LCKD with aerobic exercise (LCKD+EX). CN+EX and LCKD+EX mice performed 6 weeks of exercise training on a treadmill. After the 6-week intervention, physical activity performance was determined. RESULTS postpartum mice in all groups experienced progressive reductions in body weight over the study period. The LCKD group had the smallest reduction in PPWR (p<0.05). The LCKD group had significantly higher total cholesterol, low-density lipoprotein cholesterol and lactate dehydrogenase levels, and liver lipid concentrations with a worsened glucose tolerance, compared to the CN group (p<0.05). The LCKD group showed significant reductions in physical activity performance, whilst the LCKD+EX group showed significantly improvement in endurance performance, and paralleled the concomitant elevation in blood ketone levels. CONCLUSIONS 6-week LCKD feeding on its own was less effective for reducing PPWR, and more detrimental to postpartum metabolic outcomes and physical activity performance of the postpartum mice. The feasibility of a LCKD with or without exercise during the postpartum period as a strategy for managing PPWR and improving postpartum metabolic profiles should be carefully considered.
Collapse
|
14
|
Yan K, Gao H, Liu X, Zhao Z, Gao B, Zhang L. Establishment and identification of an animal model of long-term exercise-induced fatigue. Front Endocrinol (Lausanne) 2022; 13:915937. [PMID: 36093084 PMCID: PMC9459130 DOI: 10.3389/fendo.2022.915937] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022] Open
Abstract
In competitive sports, the training load is close to the human physiological limit, which will inevitably lead to exercise-induced fatigue. If fatigue cannot be recovered in time, it will eventually lead to excessive training and affect sport performance. Therefore, fatigue has become an important part of the physical function assessment for athletes. This paper will review animal models of long-term exercise-induced fatigue, modeling schemes of mice under treadmill and swimming training, phenotypes of long-term exercise-induced fatigue (e.g., nervous system damage, myocardial cell damage, bone mineral density changes, and skeletal muscle damage), and fatigue indicators. The relationship between physiological indicators and biomarkers and long-term exercise-induced fatigue is analyzed to promote exercise-induced fatigue monitoring. This paper attempts to provide a reference for the selection of animal models of long-term exercise-induced fatigue and provide a new theoretical basis for medical supervision and recovery of exercise-induced fatigue.
Collapse
Affiliation(s)
- Kai Yan
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Haoyang Gao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaohua Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhonghan Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Lingli Zhang, ; Bo Gao,
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lingli Zhang, ; Bo Gao,
| |
Collapse
|
15
|
Comparing Acute, High Dietary Protein and Carbohydrate Intake on Transcriptional Biomarkers, Fuel Utilisation and Exercise Performance in Trained Male Runners. Nutrients 2021; 13:nu13124391. [PMID: 34959943 PMCID: PMC8706924 DOI: 10.3390/nu13124391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Manipulating dietary macronutrient intake may modulate adaptive responses to exercise, and improve endurance performance. However, there is controversy as to the impact of short-term dietary modification on athletic performance. In a parallel-groups, repeated measures study, 16 trained endurance runners (maximal oxygen uptake (V˙O2max): 64.2 ± 5.6 mL·kg-1·min-1) were randomly assigned to, and provided with, either a high-protein, reduced-carbohydrate (PRO) or a high-carbohydrate (CHO) isocaloric-matched diet. Participants maintained their training load over 21-consecutive days with dietary intake consisting of 7-days habitual intake (T1), 7-days intervention diet (T2) and 7-days return to habitual intake (T3). Following each 7-day dietary period (T1-T3), a micro-muscle biopsy was taken for assessment of gene expression, before participants underwent laboratory assessment of a 10 km treadmill run at 75% V˙O2max, followed by a 95% V˙O2max time to exhaustion (TTE) trial. The PRO diet resulted in a modest change (1.37-fold increase, p = 0.016) in AMPK expression, coupled with a significant increase in fat oxidation (0.29 ± 0.05 to 0.59 ± 0.05 g·min-1, p < 0.0001). However, a significant reduction of 23.3% (p = 0.0003) in TTE post intervention was observed; this reverted back to pre levels following a return to the habitual diet. In the CHO group, whilst no change in sub-maximal fuel utilisation occurred at T2, a significant 6.5% increase in TTE performance (p = 0.05), and a modest, but significant, increase in AMPK (p = 0.042) and PPAR (p = 0.029) mRNA expression compared to T1 were observed; with AMPK (p = 0.011) and PPAR (p = 0.044) remaining significantly elevated at T3. In conclusion, a 7-day isocaloric high protein diet significantly compromised high intensity exercise performance in trained runners with no real benefit on gene markers of training adaptation. A significant increase in fat oxidation during submaximal exercise was observed post PRO intervention, but this returned to pre levels once the habitual diet was re-introduced, suggesting that the response was driven via fuel availability rather than cellular adaptation. A short-term high protein, low carbohydrate diet in combination with endurance training is not preferential for endurance running performance.
Collapse
|
16
|
Suzuki K. Recent Progress in Applicability of Exercise Immunology and Inflammation Research to Sports Nutrition. Nutrients 2021; 13:nu13124299. [PMID: 34959851 PMCID: PMC8709237 DOI: 10.3390/nu13124299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
This article focuses on how nutrition may help prevent and/or assist with recovery from the harmful effects of strenuous acute exercise and physical training (decreased immunity, organ injury, inflammation, oxidative stress, and fatigue), with a focus on nutritional supplements. First, the effects of ketogenic diets on metabolism and inflammation are considered. Second, the effects of various supplements on immune function are discussed, including antioxidant defense modulators (vitamin C, sulforaphane, taheebo), and inflammation reducers (colostrum and hyperimmunized milk). Third, how 3-hydroxy-3-methyl butyrate monohydrate (HMB) may offset muscle damage is reviewed. Fourth and finally, the relationship between exercise, nutrition and COVID-19 infection is briefly mentioned. While additional verification of the safety and efficacy of these supplements is still necessary, current evidence suggests that these supplements have potential applications for health promotion and disease prevention among athletes and more diverse populations.
Collapse
Affiliation(s)
- Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| |
Collapse
|
17
|
The Role of Mitochondrial Mutations and Chronic Inflammation in Diabetes. Int J Mol Sci 2021; 22:ijms22136733. [PMID: 34201756 PMCID: PMC8268113 DOI: 10.3390/ijms22136733] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus and related disorders significantly contribute to morbidity and mortality worldwide. Despite the advances in the current therapeutic methods, further development of anti-diabetic therapies is necessary. Mitochondrial dysfunction is known to be implicated in diabetes development. Moreover, specific types of mitochondrial diabetes have been discovered, such as MIDD (maternally inherited diabetes and deafness) and DAD (diabetes and Deafness). Hereditary mitochondrial disorders are caused by certain mutations in the mitochondrial DNA (mtDNA), which encodes for a substantial part of mitochondrial proteins and mitochondrial tRNA necessary for mitochondrial protein synthesis. Study of mtDNA mutations is challenging because the pathogenic phenotype associated with such mutations depends on the level of its heteroplasmy (proportion of mtDNA copies carrying the mutation) and can be tissue-specific. Nevertheless, modern sequencing methods have allowed describing and characterizing a number of mtDNA mutations associated with human disorders, and the list is constantly growing. In this review, we provide a list of mtDNA mutations associated with diabetes and related disorders and discuss the mechanisms of their involvement in the pathology development.
Collapse
|
18
|
A Low-Protein High-Fat Diet Leads to Loss of Body Weight and White Adipose Tissue Weight via Enhancing Energy Expenditure in Mice. Metabolites 2021; 11:metabo11050301. [PMID: 34064590 PMCID: PMC8150844 DOI: 10.3390/metabo11050301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
Obesity has become a worldwide health problem over the past three decades. During obesity, metabolic dysfunction of white adipose tissue (WAT) is a key factor increasing the risk of type 2 diabetes. A variety of diet approaches have been proposed for the prevention and treatment of obesity. The low-protein high-fat diet (LPHF) is a special kind of high-fat diet, characterized by the intake of a low amount of protein, while compared to typical high-fat diet, may induce weight loss and browning of WAT. Physical activity is another effective intervention to treat obesity by reducing WAT mass, inducing browning of WAT. In order to determine whether an LPHF, along with exercise enhanced body weight loss and body fat loss as well as the synergistic effect of an LPHF and exercise on energy expenditure in a mice model, we combined a 10-week LPHF with an 8-week forced treadmill training. Meanwhile, a traditional high-fat diet (HPHF) containing the same fat and relatively more protein was introduced as a comparison. In the current study, we further analyzed energy metabolism-related gene expression, plasma biomarkers, and related physiological changes. When comparing to HPHF, which induced a dramatic increase in body weight and WAT weight, the LPHF led to considerable loss of body weight and WAT, without muscle mass and strength decline, while it exhibited a risk of liver and pancreas damage. The mechanism underlying the LPHF-induced loss of body weight and WAT may be attributed to the synergistically upregulated expression of Ucp1 in WAT and Fgf21 in the liver, which may enhance energy expenditure. The 8-week training did not further enhance weight loss and increased plasma biomarkers of muscle damage when combined with LPHF. Furthermore, LPHF reduced the expression of fatty acid oxidation-related genes in adipose tissues, muscle tissues, and liver. Our results indicated that an LPHF has potential for obesity treatment, while the physiological condition should be monitored during application.
Collapse
|
19
|
Carey RA, Montag D. Exploring the relationship between gut microbiota and exercise: short-chain fatty acids and their role in metabolism. BMJ Open Sport Exerc Med 2021; 7:e000930. [PMID: 33981447 PMCID: PMC8061837 DOI: 10.1136/bmjsem-2020-000930] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
The human body is host to a multitude of bacteria, fungi, viruses and other species in the intestine, collectively known as the microbiota. Dietary carbohydrates which bypass digestion and absorption are broken down and fermented by the microbiota to produce short-chain fatty acids (SCFAs). Previous research has established the role of SCFAs in the control of human metabolic pathways. In this review, we evaluate SCFAs as a metabolic regulator and how they might improve endurance performance in athletes. By looking at research conducted in animal models, we identify several pathways downstream of SCFAs, either directly modulating metabolic pathways through second messenger pathways or through neuronal pathways, that contribute to energy utilisation. These pathways contribute to efficient energy metabolism and are thus key to maximising substrate utilisation in endurance exercise. Future research may prove the usefulness of targeted dietary interventions allowing athletes to maximise their performance in competition.
Collapse
Affiliation(s)
- Ryan A Carey
- Global Public Health, Queen Mary University of London, London, UK
| | - Doreen Montag
- Global Public Health, Queen Mary University of London, London, UK
| |
Collapse
|
20
|
Ma S, Yang J, Tominaga T, Liu C, Suzuki K. A Low-Carbohydrate Ketogenic Diet and Treadmill Training Enhanced Fatty Acid Oxidation Capacity but Did Not Enhance Maximal Exercise Capacity in Mice. Nutrients 2021; 13:nu13020611. [PMID: 33668504 PMCID: PMC7918427 DOI: 10.3390/nu13020611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
The low-carbohydrate ketogenic diet (LCKD) is a dietary approach characterized by the intake of high amounts of fat, a balanced amount of protein, and low carbohydrates, which is insufficient for metabolic demands. Previous studies have shown that an LCKD alone may contribute to fatty acid oxidation capacity, along with endurance. In the present study, we combined a 10-week LCKD with an 8-week forced treadmill running program to determine whether training in conjunction with LCKD enhanced fatty acid oxidation capacity, as well as whether the maximal exercise capacity would be affected by an LCKD or training in a mice model. We found that the lipid pool and fatty acid oxidation capacity were both enhanced following the 10-week LCKD. Further, key fatty acid oxidation related genes were upregulated. In contrast, the 8-week training regimen had no effect on fatty acid and ketone body oxidation. Key genes involved in carbohydrate utilization were downregulated in the LCKD groups. However, the improved fatty acid oxidation capacity did not translate into an enhanced maximal exercise capacity. In summary, while favoring the fatty acid oxidation system, an LCKD, alone or combined with training, had no beneficial effects in our intensive exercise-evaluation model. Therefore, an LCKD may be promising to improve endurance in low- to moderate-intensity exercise, and may not be an optimal choice for those partaking in high-intensity exercise.
Collapse
Affiliation(s)
- Sihui Ma
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591192, Japan;
- Japan Society for the Promotion of Sciences, Chiyoda-ku, Tokyo 1020083, Japan;
| | - Jiao Yang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 3591192, Japan;
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Takaki Tominaga
- Japan Society for the Promotion of Sciences, Chiyoda-ku, Tokyo 1020083, Japan;
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 3591192, Japan;
| | - Chunhong Liu
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
- Correspondence: (C.L.); (K.S.); Tel.: +86-020-8528-3448 (C.L.); +81-04-2947-6898 (K.S.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591192, Japan;
- Correspondence: (C.L.); (K.S.); Tel.: +86-020-8528-3448 (C.L.); +81-04-2947-6898 (K.S.)
| |
Collapse
|
21
|
Moore AR, Holland-Winkler AM, Ansley JK, Boone EDH, Schulte MKO. Reliability and diagnostic performance of a new blood ketone and glucose meter in humans. J Int Soc Sports Nutr 2021; 18:6. [PMID: 33413456 PMCID: PMC7791747 DOI: 10.1186/s12970-020-00404-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate and reliable monitoring of blood ketone and glucose levels is useful for athletes adhering to a ketogenic diet who want to verify that they are in a state of ketosis and, therefore, accruing performance adaptations. However, the cost of devices and testing materials may prohibit their use. More affordable field testing systems are available, but their accuracy and reliability remain in question. The objectives of this study were to evaluate the agreement between a previously validated ketone and glucose meter (Meter 1 - Precision Xtra) and a more affordable meter that has not been validated (Meter 2 - Keto-Mojo), and also to assess the diagnostic performance of Meter 2 for identifying nutritional ketosis. METHODS Thirteen participants (7 females and 6 males; 21.6 ± 3.0 years old) visited the laboratory three times in this randomized, double-blind cross-over design study. Ketone and glucose levels were measured with Meter 1 and Meter 2 twice before and twice after ingestion of a racemic ketone, natural ketone, or maltodextrin supplement. Intraclass correlation coefficient (ICC) estimates and their 95% confidence intervals were calculated to evaluate interrater reliability for Meter 1 and Meter 2. Bland-Altman plots were constructed to visually assess the agreement between devices. Area under the ROC curve analysis was performed to evaluate the diagnostic ability of Meter 2 to detect nutritional ketosis at a threshold ketone level of 0.5 mM as identified by Meter 1. RESULTS Reliability between the meters was excellent for measuring ketones (ICC = .968; .942-.981) and good for measuring glucose (ICC = .809; .642-.893), though the Bland-Altman plot revealed substantial differences in agreement for measuring glucose. Area under the ROC curve (Area = 0.913; 0.828-0.998) was excellent for diagnosing nutritional ketosis. CONCLUSIONS Both Meter 1 and Meter 2 displayed excellent agreement between each other for ketone measurement. Meter 2 also displayed an excellent level of accuracy for diagnosing nutritional ketosis at a threshold value of 0.5 mM, making it an effective and affordable alternative to more expensive testing devices.
Collapse
Affiliation(s)
- Andrew Ray Moore
- Department of Kinesiology, Augusta University, 3109 Wrightsboro Road, Augusta, GA 30909 USA
| | | | - Jenna Kate Ansley
- Department of Kinesiology, Augusta University, 3109 Wrightsboro Road, Augusta, GA 30909 USA
| | | | | |
Collapse
|
22
|
Calibasi-Kocal G, Mashinchian O, Basbinar Y, Ellidokuz E, Cheng CW, Yilmaz ÖH. Nutritional Control of Intestinal Stem Cells in Homeostasis and Tumorigenesis. Trends Endocrinol Metab 2021; 32:20-35. [PMID: 33277157 DOI: 10.1016/j.tem.2020.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Food and nutrition have a profound impact on organismal health and diseases, and tissue-specific adult stem cells play a crucial role in coordinating tissue maintenance by responding to dietary cues. Emerging evidence indicates that adult intestinal stem cells (ISCs) actively adjust their fate decisions in response to diets and nutritional states to drive intestinal adaptation. Here, we review the signaling mechanisms mediating the dietary responses imposed by caloric intake and nutritional composition (i.e., macronutrients and micronutrients), fasting-feeding patterns, diet-induced growth factors, and microbiota on ISCs and their relevance to the beginnings of intestinal tumors.
Collapse
Affiliation(s)
- Gizem Calibasi-Kocal
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Omid Mashinchian
- Nestlé Research, Ecole Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, Lausanne, Switzerland; School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Ender Ellidokuz
- Department of Gastroenterology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Chia-Wei Cheng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| | - Ömer H Yilmaz
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biology, MIT, Cambridge, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Departments of Pathology, Gastroenterology, and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
23
|
Martin-Arrowsmith PW, Lov J, Dai J, Morais JA, Churchward-Venne TA. Ketone Monoester Supplementation Does Not Expedite the Recovery of Indices of Muscle Damage After Eccentric Exercise. Front Nutr 2020; 7:607299. [PMID: 33364251 PMCID: PMC7752861 DOI: 10.3389/fnut.2020.607299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023] Open
Abstract
Purpose: The purpose of this study was to evaluate the effects of a ketone monoester supplement on indices of muscle damage during recovery after eccentric exercise. Methods: In a randomized, double-blind, independent group design, 20 moderately active healthy young adults consumed 360 mg per kg−1 bodyweight of a ketone monoester (KET) or energy-matched carbohydrate (CON) supplement twice daily following eccentric exercise (drop jumps). Maximal isometric voluntary contraction (MIVC) torque, counter-movement jump (CMJ) height, and muscle soreness were measured before (PRE), and immediately (POST), 24 h and 48 h post-exercise. Blood samples were collected for analysis of β-hydroxybutyrate (β-OHB), creatine kinase (CK), and select pro- and anti-inflammatory cytokines. Results: Peak blood β-OHB concentration after supplement intake was greater (P < 0.001) in KET (4.4 ± 0.8 mM) vs. CON (0.4 ± 0.3 mM). Exercise increased CK concentration at 24 h and 48 h vs. PRE (time: P < 0.001) with no difference between KET and CON. Exercise reduced MIVC (KET: −19.9 ± 14.6; CON: −22.6 ± 11.1%) and CMJ (KET: −11.0 ± 7.5; CON: −13.0 ± 8.7%) at POST relative PRE; however, there was no difference between KET and CON on the recovery of MIVC at 24 h (KET: −15.4 ± 20.4; CON: −18.7 ± 20.1%) or 48 h (KET: −7.2 ± 21.2; CON: −11.8 ± 20.2%), or CMJ at 24 h (KET: −9.2 ± 11.5; CON: −13.4 ± 10.8) or 48 h (KET: −12.5 ± 12.4; CON: −9.1 ± 11.7). Muscle soreness was increased during post-exercise recovery (time: P < 0.001) with no differences between KET and CON. Monocyte chemoattractant protein-1 was greater (group: P = 0.007) in CON (236 ± 11 pg/mL) vs. KET (187 ± 11 pg/mL). Conclusion: In conclusion, twice daily ingestion of a ketone monoester supplement that acutely elevates blood β-OHB concentration does not enhance the recovery of muscle performance or reduce muscle soreness following eccentric exercise in moderately active, healthy young adults.
Collapse
Affiliation(s)
| | - Jamie Lov
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Jiaying Dai
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - José A Morais
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.,Division of Geriatric Medicine, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.,Division of Geriatric Medicine, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
24
|
Bailey CP, Hennessy E. A review of the ketogenic diet for endurance athletes: performance enhancer or placebo effect? J Int Soc Sports Nutr 2020; 17:33. [PMID: 32571422 PMCID: PMC7310409 DOI: 10.1186/s12970-020-00362-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ketogenic diet has become popular among endurance athletes as a performance enhancer. This paper systematically reviews the evidence regarding the effect of the endurance athlete's ketogenic diet (EAKD) on maximal oxygen consumption (VO2 max) and secondary performance outcomes. METHODS PubMed and Web of Science searches were conducted through November 2019. Inclusion criteria were documentation of EAKD (< 50 g daily carbohydrate consumed by endurance athletes), ketosis achieved (measured via serum biomarker), VO2 max and/or secondary outcomes, English language, and peer reviewed-publication status. Articles were excluded if they were not a primary source or hypotheses were not tested with endurance athletes (i.e., individuals that compete at submaximal intensity for extended time periods). Study design, diet composition, adherence assessment, serum biomarkers, training protocols, and VO2 max/secondary outcomes were extracted and summarized. RESULTS Searches identified seven articles reporting on VO2 max and/or secondary outcomes; these comprised six intervention trials and one case study. VO2 max outcomes (n = 5 trials, n = 1 case study) were mixed. Two of five trials reported significant increases in VO2 max across all diets; while three trials and one case study reported no significant VO2 max findings. Secondary outcomes (n = 5 trials, n = 1 case study) were Time to Exhaustion (TTE; n = 3 articles), Race Time (n = 3 articles), Rating of Perceived Exertion (RPE; n = 3 articles), and Peak Power (n = 2 articles). Of these, significant findings for EAKD athletes included decreased TTE (n = 1 article), higher RPE (n = 1 article), and increased Peak Power (n = 1 article). CONCLUSION Limited and heterogeneous findings prohibit definitive conclusions regarding efficacy of the EAKD for performance benefit. When compared to a high carbohydrate diet, there are mixed findings for the effect of EAKD consumption on VO2 max and other performance outcomes. More randomized trials are needed to better understand the potentially nuanced effects of EAKD consumption on endurance performance. Researchers may also consider exploring the impact of genetics, recovery, sport type, and sex in moderating the influence of EAKD consumption on performance outcomes.
Collapse
Affiliation(s)
- Caitlin P Bailey
- The Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy at Tufts University, 150 Harrison Avenue, Boston, MA, 02111, USA.
| | - Erin Hennessy
- The Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy at Tufts University, 150 Harrison Avenue, Boston, MA, 02111, USA
| |
Collapse
|
25
|
Suzuki K, Tominaga T, Ruhee RT, Ma S. Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9050401. [PMID: 32397304 PMCID: PMC7278761 DOI: 10.3390/antiox9050401] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Exhaustive exercise induces systemic inflammatory responses, which are associated with exercise-induced tissue/organ damage, but the sources and triggers are not fully understood. Herein, the basics of inflammatory mediator cytokines and research findings on the effects of exercise on systemic inflammation are introduced. Subsequently, the association between inflammatory responses and tissue damage is examined in exercised and overloaded skeletal muscle and other internal organs. Furthermore, an overview of the interactions between oxidative stress and inflammatory mediator cytokines is provided. Particularly, the transcriptional regulation of redox signaling and pro-inflammatory cytokines is described, as the activation of the master regulatory factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is involved directly or indirectly in controlling pro-inflammatory genes and antioxidant enzymes expression, whilst nuclear factor-kappa B (NF-κB) regulates the pro-inflammatory gene expression. Additionally, preventive countermeasures against the pathogenesis along with the possibility of interventions such as direct and indirect antioxidants and anti-inflammatory agents are described. The aim of this review is to give an overview of studies on the systematic inflammatory responses to exercise, including our own group as well as others. Moreover, the challenges and future directions in understanding the role of exercise and functional foods in relation to inflammation and oxidative stress are discussed.
Collapse
Affiliation(s)
- Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (K.S.); (S.M.); Tel.: +81-4-2947-6898 (K.S.); +81-4-2947-6753 (S.M.)
| | - Takaki Tominaga
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.T.); (R.T.R.)
| | - Ruheea Taskin Ruhee
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.T.); (R.T.R.)
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (K.S.); (S.M.); Tel.: +81-4-2947-6898 (K.S.); +81-4-2947-6753 (S.M.)
| |
Collapse
|
26
|
Bostock ECS, Kirkby KC, Taylor BV, Hawrelak JA. Consumer Reports of "Keto Flu" Associated With the Ketogenic Diet. Front Nutr 2020; 7:20. [PMID: 32232045 PMCID: PMC7082414 DOI: 10.3389/fnut.2020.00020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background: The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that limits glucose and results in the production of ketones by the liver and their uptake as an alternative energy source by the brain. KD is an evidence-based treatment for intractable epilepsy. KD is also self-administered, with limited evidence of efficacy, for conditions including weight loss, cognitive and memory enhancement, type II diabetes, cancer, neurological and psychiatric disorders. A commonly discussed side effect of KD in media and online forums is “keto flu,” a cluster of transient symptoms generally reported as occurring within the first few weeks of KD. This study aimed to characterize the pattern of symptoms, severity and time course of keto flu as related by users of online forums. Method: Online forums referring to “keto flu,” “keto-induction,” or “keto-adaptation” in the URL were identified in Google. Passages describing personal experiences of keto flu were categorized manually with reference to pattern of symptoms, severity, time course, and remedies proposed. Results: The search criteria identified 75 online forums, 43 met inclusion criteria and contained 448 posts from 300 unique users. Seventy-three made more than one post (mean 3.12, range 2–11). Descriptors of personal experience of keto flu, reported by 101 of 300 users, included 256 symptom descriptions involving 54 discrete symptoms. Commonest symptoms were “flu,” headache, fatigue, nausea, dizziness, “brain fog,” gastrointestinal discomfort, decreased energy, feeling faint and heartbeat alterations. Symptom reports peaked in the first and dwindled after 4 weeks. Resolution of keto flu symptoms was reported by eight users between days 3 and 30 (median 4.5, IQR 3–15). Severity of symptoms, reported by 60 users in 40 forums, was categorized as mild (N = 15), moderate (N = 23), or severe (N = 22). Eighteen remedies were proposed by 121 individual users in 225 posts. Conclusions: Typically, individual posts provided fragmentary descriptions related to the flow of forum conversations. A composite picture emerged across 101 posts describing personally experienced symptoms. User conversations were generally supportive, sharing remedies for keto flu reflecting assumptions of physiological effects of KD.
Collapse
Affiliation(s)
| | | | - Bruce V Taylor
- Neurology, Menzies Institute for Medical Research, Hobart, TAS, Australia
| | - Jason A Hawrelak
- College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.,Australian Research Centre for Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
27
|
Effects of an 8-Week Protein Supplementation Regimen with Hyperimmunized Cow Milk on Exercise-Induced Organ Damage and Inflammation in Male Runners: A Randomized, Placebo Controlled, Cross-Over Study. Biomedicines 2020; 8:biomedicines8030051. [PMID: 32143279 PMCID: PMC7148542 DOI: 10.3390/biomedicines8030051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022] Open
Abstract
Prolonged strenuous exercise may induce inflammation, cause changes in gastrointestinal permeability, and lead to other unfavorable biological changes and diseases. Nutritional approaches have been used to prevent exercise-induced inflammatory responses and gastrointestinal disorders. Hyperimmunized milk, obtained by immunizing cows against specific antigens, promotes the development of immunity against pathogens, promotes anti-inflammatory effects, and protects intestinal function. Immune protein (IMP) is a concentrated product of hyperimmunized milk and is a more promising means of supplementation to protect against acute infections and inflammation. To determine whether IMP has protective properties against exercise-induced gastrointestinal dysfunction and inflammation, we examined biochemical markers, intestinal damage markers, and pro-/anti-inflammatory profiles of young male runners using a randomized, placebo controlled, cross-over design. Urine samples were collected and used for measurements of creatinine, N-acetyl-β-d-glucosaminidase, osmotic pressure, and specific gravity. Titin was measured as a muscle damage marker. Further, urine concentrations of complement 5a, calprotectin, fractalkine, myeloperoxidase, macrophage colony-stimulating factor, monocyte chemotactic protein-1, intestinal fatty acid binding protein (I-FABP), interferon (IFN)-γ, interleukin (IL)-1β, IL-1 receptor antagonist, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, and tumor necrosis factor (TNF)-α were measured by enzyme-linked immunosorbent assays. We demonstrated that urine osmotic pressure, urine specific gravity, I-FABP, IFN-γ, IL-1β, and TNF-α were reduced by 8 weeks of IMP supplementation, indicating that IMP may have potential in preventing strenuous exercise-induced renal dysfunction, increased intestinal permeability, and inflammation. Thus, IMP supplementation may be a feasible nutritional approach for the prevention of unfavorable exercise-induced symptoms.
Collapse
|
28
|
Ruhee RT, Ma S, Suzuki K. Protective Effects of Sulforaphane on Exercise-Induced Organ Damage via Inducing Antioxidant Defense Responses. Antioxidants (Basel) 2020; 9:antiox9020136. [PMID: 32033211 PMCID: PMC7070986 DOI: 10.3390/antiox9020136] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 12/31/2022] Open
Abstract
Regular exercise is beneficial to maintain a healthy lifestyle, but the beneficial effects are lost in the case of acute exhaustive exercise; this causes significant inflammation, oxidative stress along with organ damage. Recently, sulforaphane (SFN), an indirect antioxidant, has drawn special attention for its potential protective effect against inflammation and oxidative stress. However, no studies have been performed regarding acute exhaustive exercise-induced organ damage in association with SFN administration. Therefore, the aim of this study was to investigate the effects of SFN on acute exhaustive exercise-induced organ damage and the mechanisms involved. To perform the study, we divided mice into four groups: Control, SFN, exercise, and SFN plus exercise. The SFN group was administered orally (50 mg/kg body wt) 2 h before the running test. We measured plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), and acute exhaustive exercise significantly increased these biomarkers. In addition, the mRNA expression of pro-inflammatory cytokines, IL-6, IL-1β, and TNF-α, were significantly increased in the liver of exercise group. However, the SFN plus exercise group showed a significant reduction in the expression of cytokines and blood biomarkers of tissue damage or cell death. Furthermore, we measured mRNA expression of Nrf2, heme oxygenase (HO)-1, and antioxidant defense enzymes expression, i.e., superoxide dismutase (SOD1), catalase (CAT), and glutathione peroxidase (GPx1) in the liver. The expression of all these biomarkers was significantly upregulated in the SFN plus exercise group. Collectively, SFN may protect the liver from exhaustive exercise-induced inflammation via inducing antioxidant defense response through the activation of Nrf2/HO-1 signal transduction pathway.
Collapse
Affiliation(s)
- Ruheea Taskin Ruhee
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: (S.M.); (K.S.); Tel.: +81-4-2947-6753 (S.M.); +81-4-2947-6898 (K.S.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: (S.M.); (K.S.); Tel.: +81-4-2947-6753 (S.M.); +81-4-2947-6898 (K.S.)
| |
Collapse
|
29
|
Cannataro R, Caroleo MC, Fazio A, La Torre C, Plastina P, Gallelli L, Lauria G, Cione E. Ketogenic Diet and microRNAs Linked to Antioxidant Biochemical Homeostasis. Antioxidants (Basel) 2019; 8:269. [PMID: 31382449 PMCID: PMC6719224 DOI: 10.3390/antiox8080269] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/05/2023] Open
Abstract
Recently, we demonstrated the capability of the ketogenic diet (KD) to influence the microRNA (miR) expression profile. Here, we report that KD is able to normalize miR expression in obese subjects when compared with lean subjects. By applying two different bioinformatics tools, we found that, amongst the miRs returning to comparable levels in lean subjects, four of them are linked to antioxidant biochemical pathways specifically, and the others are linked to both antioxidant and anti-inflammatory biochemical pathways. Of particular interest is the upregulation of hsa-miR-30a-5p, which correlates with the decrease of catalase expression protein in red blood cells.
Collapse
Affiliation(s)
- Roberto Cannataro
- GalaScreen Laboratories, Mater Domini Hospital 88100 Catanzaro and Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy
| | - Chiara La Torre
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Operative Unit, Department of Health Science, University of Magna Graecia, Mater Domini Hospital Catanzaro, 88100 Catanzaro, Italy
| | - Graziantonio Lauria
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Via Pietro Bucci, 87036 Rende (CS), Italy.
| |
Collapse
|
30
|
Chronic Inflammation as an Immunological Abnormality and Effectiveness of Exercise. Biomolecules 2019; 9:biom9060223. [PMID: 31181700 PMCID: PMC6628010 DOI: 10.3390/biom9060223] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Reduced levels of physical activity in people’s daily lives cause the development of metabolic syndromes or age-related disorders. Chronic inflammation is now understood to be an underlying pathological condition in which inflammatory cells such as neutrophils and monocyte/macrophages infiltrate into fat and other tissues and accumulate when people become obese due to overeating and/or physical inactivity. Pro-inflammatory mediators such as cytokines that are secreted in excess from inflammatory cells will not only lead to the development of arteriosclerosis when they chronically affect blood vessels but also bring tissue degeneration and/or dysfunction to various organs. Chronic inflammation is also involved in sarcopenia that brings hypofunction in the elderly, dementia, osteoporosis, or cancer and negatively affects many chronic diseases and people’s healthy life expectancy. In this paper, outlines of such studies are introduced in terms of homeostatic inflammation, which occurs chronically due to the innate immune system and its abnormalities, while focusing on the efficacy of exercise from aspects of immunology and oxidative stress. The preventative effects of functional food ingredients in combination with exercise are also introduced and described. The challenges and future directions in understanding the role of exercise in the control of chronic inflammation are discussed.
Collapse
|