1
|
Busso T, Chalencon S. Differentiating acute fatigue and overreaching during intensified training using a recursive least squares algorithm combined with the variable dose-response model. Eur J Appl Physiol 2025; 125:1437-1448. [PMID: 39709585 DOI: 10.1007/s00421-024-05692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE This study aimed to investigate whether the variable dose-response model, with estimates free to vary over time, can account for overreaching during intensified training in swimmers. METHODS A time-varying model using a recursive least squares algorithm was applied to data from eight swimmers collected over 61 weeks, comprising five training cycles. Each data set included daily training load calculated from pool kilometers and dry land training equivalents, and performance measured twice weekly from 50 m trials. Weekly changes in model parameters were used to calculate the model impulse response that is defined as the time course of performance after a single training session. RESULTS Functional overreaching was evidenced by a significant decline in performance within four cycles of increased training, followed by a peak in performance after two or three weeks of reduced training. Model estimates from the time-varying model provided markers to distinguish overreaching from acute fatigue during intensified training. When an increase in training led to a decrease in performance, the characteristics of the modelled impulse responses showed a significant increase in the acute negative effect and a decrease in the delayed positive effect of a single workout. CONCLUSIONS Weekly variations in estimates from a time-varying model could be useful in diagnosing overreaching from changes in the acute negative effect and delayed positive effect of training. This information provided by the model at a particular point in the training process could help practitioners to re-adjust subsequent training.
Collapse
Affiliation(s)
- Thierry Busso
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, EA 7424, F-42023, Saint-Etienne, France.
| | | |
Collapse
|
2
|
Giustino V, Vicari DSS, Patti A, Figlioli F, Thomas E, Schifaudo N, Tedesco M, Drid P, Paoli A, Palma A, Messina G, Bianco A. Postural control during the back squat at different load intensities in powerlifters and weightlifters. Ann Med 2024; 56:2383965. [PMID: 39078324 PMCID: PMC11290288 DOI: 10.1080/07853890.2024.2383965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 03/02/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The movement of the barbell has been detected as success factor for the snatch and the clean and jerk events. As the barbell's movement has been shown to be related to the athlete's body movement, we hypothesized that the latter could be a success factor also for the back squat (BS) event. Hence, this study aimed to investigate postural control during the execution of the BS at different load intensities in powerlifters and weightlifters. METHODS Seventeen powerlifters and weightlifters were enrolled and the one-repetition maximum (1-RM) of the BS of each participant was measured. Afterwards, the assessment of postural control during the execution of the BS at different load intensities (i.e. 60%, 70%, 80%, 90%, 100%) of the 1-RM of each participant was carried out through a posturographic platform to measure the displacement of the centre of pressure (CoP). The following parameters were considered: sway path length (SPL), sway ellipse surface (SES), length/surface (LFS ratio), sway mean speed (SMS), CoP coordinates along X and Y planes. RESULTS We found a significant increase in SPL and LFS ratio, and a significant decrease in SMS as the load intensity increased. In detail, we detected a significant difference in: (a) SPL between the BS at 60% and 80%, 60% and 90%, 60% and 100%; between the BS at 70% and 90%, 70% and 100%; between the BS at 80% and 100%; and between the BS at 90% and 100%; (b) SMS between the BS at 60% and 80%, 60% and 90%; (c) LFS ratio between the BS at 60% and 90%, 60% and 100%. CONCLUSIONS These results suggest that powerlifters and weightlifters adopt different postural control strategies depending on the load intensity when performing the BS. Our findings showed that higher effort could affect postural control during the BS. Thus, postural control could be considered a success factor for the BS.
Collapse
Affiliation(s)
- Valerio Giustino
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Domenico Savio Salvatore Vicari
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Flavia Figlioli
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
- PhD Program in Health Promotion and Cognitive Sciences, University of Palermo, Palermo, Italy
| | - Ewan Thomas
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Naima Schifaudo
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | | | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
- Regional Sports School, Italian National Olympic Committee (CONI) Sicilia, Palermo, Italy
| | - Giuseppe Messina
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Rome, Italy
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Azzollini V, Fragapane N, Baster Z, Carozzo S, Dalise S, Chisari C. Focal muscle vibration and action observation: a combined approach for muscle strengthening. Eur J Transl Myol 2024; 34:12366. [PMID: 39228230 PMCID: PMC11487624 DOI: 10.4081/ejtm.2024.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 09/05/2024] Open
Abstract
Muscle strength is essential for autonomy in daily activities and performance in sports activities. Yet, conventional strength training is challenging during recovery from pathological conditions. This study investigates a novel combined intervention employing Focal Muscle Vibration (FMV) and Action Observation (AO) to enhance muscle strength. Twenty-seven healthy volunteers (18 females and 9 males, aged 22 to 42 years) were enrolled for an intervention-control study comparing 2 groups: the intervention group received AO treatment with FMV on the right leg, and the control group underwent only FMV on the right leg. This design allowed the comparison of four conditions: FMV+AO (intervention group, right leg), AO alone (intervention group, left leg), FMV alone (control group, right leg), and no-treatment NT (control group, left leg). The treatment, conducted five times a week (Mon-Fri) for two weeks, involved a 20-minute session of FMV on the right quadriceps, coupled, for the intervention group, with the observation of a gym training video. The assessments of Maximum Voluntary Contraction (MVC), and fatigue coefficient (FC) expressed at knee extension bilaterally were measured at the beginning (T0), after the first week (T1), at the end of treatment (T2), and one-week post-intervention for the follow-up (T3). The FMV+AO group demonstrated a significant improvement in MVC over time, reaching statistical significance at T2 and maintaining the gain at T3. In contrast, all the other conditions demonstrated milder MVC increases without statistical significance. FC did not differ significantly in any condition. The combination of FMV and AO optimized muscle strengthening, offering insights for targeted treatments in various settings.
Collapse
Affiliation(s)
- Valentina Azzollini
- Department of Translational Research and New Technologies in Medicine and Surgery, Unit of Neurorehabilitation, University of Pisa, Pisa.
| | - Noemi Fragapane
- Department of Translational Research and New Technologies in Medicine and Surgery, Unit of Neurorehabilitation, University of Pisa, Pisa.
| | | | - Simone Carozzo
- Research in Advanced Neurorehabilitation (RAN), Sant'Anna Crotone Institute, Crotone.
| | - Stefania Dalise
- Unit of Neurorehabilitation, Department of Neuroscience, University Hospital of Pisa, Pisa.
| | - Carmelo Chisari
- Department of Translational Research and New Technologies in Medicine and Surgery, Unit of Neurorehabilitation, University of Pisa, Pisa, Italy; Unit of Neurorehabilitation, Department of Neuroscience, University Hospital of Pisa, Pisa.
| |
Collapse
|
4
|
Robinson ZP, Pelland JC, Remmert JF, Refalo MC, Jukic I, Steele J, Zourdos MC. Exploring the Dose-Response Relationship Between Estimated Resistance Training Proximity to Failure, Strength Gain, and Muscle Hypertrophy: A Series of Meta-Regressions. Sports Med 2024; 54:2209-2231. [PMID: 38970765 DOI: 10.1007/s40279-024-02069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The proximity to failure in which sets are terminated has gained attention in the scientific literature as a potentially key resistance training variable. Multiple meta-analyses have directly (i.e., failure versus not to failure) or indirectly (e.g., velocity loss, alternative set structures) evaluated the effect of proximity to failure on strength and muscle hypertrophy outcomes categorically; however, the dose-response effects of proximity to failure have not been analyzed collectively in a continuous manner. OBJECTIVE To meta-analyze the aforementioned areas of relevant research, proximity to failure was quantified as the number of repetitions in reserve (RIR). Importantly, the RIR associated with each effect in the analysis was estimated on the basis of the available descriptions of the training interventions in each study. Data were extracted and a series of exploratory multilevel meta-regressions were performed for outcomes related to both strength and muscle hypertrophy. A range of sensitivity analyses were also performed. All models were adjusted for the effects of load, method of volume equating, duration of intervention, and training status. RESULTS The best fit models for both strength and muscle hypertrophy outcomes demonstrated modest quality of overall fit. In all of the best-fit models for strength, the confidence intervals of the marginal slopes for estimated RIR contained a null point estimate, indicating a negligible relationship with strength gains. However, in all of the best-fit models for muscle hypertrophy, the marginal slopes for estimated RIR were negative and their confidence intervals did not contain a null point estimate, indicating that changes in muscle size increased as sets were terminated closer to failure. CONCLUSIONS The dose-response relationship between proximity to failure and strength gain appears to differ from the relationship with muscle hypertrophy, with only the latter being meaningfully influenced by RIR. Strength gains were similar across a wide range of RIR, while muscle hypertrophy improves as sets are terminated closer to failure. Considering the RIR estimation procedures used, however, the exact relationship between RIR and muscle hypertrophy and strength remains unclear. Researchers and practitioners should be aware that optimal proximity to failure may differ between strength and muscle hypertrophy outcomes, but caution is warranted when interpreting the present analysis due to its exploratory nature. Future studies deliberately designed to explore the continuous nature of the dose-response effects of proximity to failure in large samples should be considered.
Collapse
Affiliation(s)
- Zac P Robinson
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| | - Joshua C Pelland
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| | - Jacob F Remmert
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA
| | - Martin C Refalo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - James Steele
- Faculty of Sport, Health, and Social Sciences, Solent University, South Hampton, England
| | - Michael C Zourdos
- Department of Exercise Science and Health Promotion, Muscle Physiology Laboratory, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
5
|
Beausejour JP, Guinto G, Artrip C, Corvalan A, Furtado Mesa M, Lebron MA, Stock MS. Successful Powerlifting in a Unilateral, Transtibial Amputee: A Descriptive Case Series. J Strength Cond Res 2024; 38:e243-e252. [PMID: 38373088 DOI: 10.1519/jsc.0000000000004733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
ABSTRACT Beausejour, JP, Guinto, G, Artrip, C, Corvalan, A, Mesa, MF, Lebron, MA, and Stock, MS. Successful powerlifting in a unilateral, transtibial amputee: A descriptive case series. J Strength Cond Res 38(5): e243-e252, 2024-There are no reports in the literature of powerlifting success after amputation. We had the unique opportunity to characterize functional outcomes, strength, muscle contractility and size, and corticospinal excitability in an accomplished, competitive powerlifter (best competition squat = 205.0 kg, deadlift = 262.7 kg) with a unilateral, transtibial amputation relative to amputee controls. Four men (age range = 23-49 years) with unilateral, lower-limb amputation (3 transtibial, 1 transfemoral) participated in 1 laboratory visit. We assessed 10-m gait speed, the timed up and go (TUG) test, 5-time sit-to-stand performance (5TSTS), contractile properties of the vastus lateralis (VL) and medial gastrocnemius by tensiomyography, and VL cross-sectional area (CSA) by ultrasonography. Unilateral assessments for the intact limb included isokinetic knee extension and flexion torque and power and transcranial magnetic stimulation derived corticospinal excitability. An interview with the powerlifter provided contextual perspective. Compared with the control subjects, the powerlifter performed the 5TSTS faster (6.8%), exhibited faster VL contraction times (intact limb = 12.2%; residual limb = 23.9%), and showed larger VL CSA for the intact limb (46.7%). The powerlifter exhibited greater knee extension and flexion peak torque and mean power, particularly at 180°·s -1 , as well as greater corticospinal excitability for the intact VL (65.6%) and tibialis anterior (79.6%). By contrast, the control subjects were faster in the TUG (18.3%) and comfortable (13.0%) and fast (21.4%) in the 10-m walk test. The major themes of our interview included needing to modify lifting mechanics, persistence, and remarkable pain tolerance. Our findings highlight the impressive neuromuscular adaptations that are attainable after lower-limb amputation.
Collapse
Affiliation(s)
- Jonathan P Beausejour
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Goldshawn Guinto
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Chloe Artrip
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Alejandra Corvalan
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Maxine Furtado Mesa
- Physiology of Work & Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Modesto A Lebron
- Physiology of Work & Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Matt S Stock
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| |
Collapse
|
6
|
Rogerson D, Nolan D, Androulakis Korakakis P, Immonen V, Wolf M, Bell L. Deloading Practices in Strength and Physique Sports: A Cross-sectional Survey. SPORTS MEDICINE - OPEN 2024; 10:26. [PMID: 38499934 PMCID: PMC10948666 DOI: 10.1186/s40798-024-00691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND This study explored the deloading practices of competitive strength and physique athletes. A 55-item anonymised web-based survey was distributed to a convenience-based, cross-sectional sample of competitive strength and physique athletes (n = 246; males = 181 [73.6%], females = 65 [26.4%]; age = 29.5 ± 8.6 years) who had 8.2 ± 6.2 years of resistance training and 3.8 ± 3.1 years of competition experience. RESULTS All athletes deloaded within training with energy and fatigue management being the main reasons to do so. The typical duration of a deload was 6.4 ± 1.7 days, integrated into the training programme every 5.6 ± 2.3 weeks. Deloading was undertaken using a proactive, pre-planned strategy (or in combination with an autoregulated approach) and undertaken when performance stalled or during periods of increased muscle soreness or joint aches. Athletes reported that training volume would decrease (through a reduction in both repetitions per set and sets per week), but training frequency would remain unchanged during deloads. Additionally, athletes reported that training intensity (load lifted) would decrease, and effort would be reduced (facilitated through an increase in repetitions in reserve). Athletes would generally maintain the same exercise selection during deloading. For athletes that supplemented deloading with additional recovery modalities (n = 118; 48%), the most reported strategies were massage, static stretching and foam rolling. CONCLUSION Results from this research might assist strength and physique athletes and coaches to plan their deloading. Future research should empirically investigate the findings from this study to further evaluate the potential utility of deloading in strength and physique sports.
Collapse
Affiliation(s)
- David Rogerson
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, S10 2BP, UK.
| | - David Nolan
- School of Health & Human Performance, Dublin City University, Dublin, Ireland
| | | | - Velu Immonen
- Department of Sports and Exercise, Haaga-Helia University of Applied Sciences, Vierumäki, 19120, Finland
| | - Milo Wolf
- Centre for Health, Exercise and Sport Science, Solent University, E Park Terrace, Southampton, SO14 0YN, UK
| | - Lee Bell
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, S10 2BP, UK
| |
Collapse
|
7
|
Winwood PW, Keogh JWL, Travis SK, Grieve I, Pritchard HJ. The Training and Tapering Practices of Highland Games Heavy Event Athletes. J Strength Cond Res 2024; 38:e116-e124. [PMID: 38416451 DOI: 10.1519/jsc.0000000000004638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
ABSTRACT Winwood, PW, Keogh, JW, Travis, SK, Grieve, I, and Pritchard, HJ. The training and tapering practices of Highland Games heavy event athletes. J Strength Cond Res 38(3): e116-e124, 2024-This study provides the first empirical evidence of how Highland Games heavy event athletes train and taper for Highland Games competitions. Athletes (n = 169) (mean ± SD: age 40.8 ± 10.7 years, height 181.2 ± 9.5 cm, weight 107.2 ± 23.0 kg, 18.8 ± 10.3 years of general resistance training, and 8.1 ± 6.9 years of competitive Highland Games experience) completed a self-reported 4-page online survey on training and tapering practices. Analysis by sex (male and female) and competitive standard (local or regional, national, and international) was conducted. Seventy-eight percent (n = 132) of athletes reported that they used a taper. Athletes stated that their taper length was 5.2 ± 3.5 days, with the step (36%) and linear tapers (33%) being the most performed. Athletes reported that their highest training volume and intensity were 5.5 and 3.8 weeks out (respectively) from competition, and all training ceased 2.4 ± 1.4 days before competition. Training volume decreased during the taper by 34%. Athletes typically stated that, tapering was performed to achieve recovery, peak performance, and injury prevention; training intensity, frequency, and duration stayed the same or decreased; game-specific training increased with reductions in traditional exercises; the caber toss, weight for height, and heavy weight throw were performed further out from competition than other events; muscular power and strength were the most common types of training performed; static stretching, foam rolling, and massage were strategies used in the taper; and poor tapering occurred because of life/work circumstances, lack of sleep/rest, or training too heavy/hard. These results may aid Highland Games athletes to optimize training and tapering variables leading to improved performances.
Collapse
Affiliation(s)
- Paul W Winwood
- Department of Sport and Fitness, Toi Ohomai Institute of Technology, Te Pūkenga, Tauranga, New Zealand
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Justin W L Keogh
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia
- Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
- Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - S Kyle Travis
- Department of Allied Health Professions, Liberty University, Lynchburg, Virginia
- K9 Muscle Physiology & Performance Lab, Beaux & Co. Research Foundation, Nashville, Tennessee
| | - Ian Grieve
- Secretary, Royal Scottish Highland Games Association, Fife, Scotland; and
| | - Hayden J Pritchard
- Adjunct Academic Staff Member, Faculty of Health and Sciences, UCOL, Palmerston North, New Zealand
| |
Collapse
|
8
|
Burke BI, Carroll KM, Travis SK, Stone ME, Stone MH. Two Days Versus Four Days of Training Cessation Following a Step-Taper in Powerlifters. J Strength Cond Res 2023; 37:625-632. [PMID: 37639652 DOI: 10.1519/jsc.0000000000004564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ABSTRACT Burke, BI, Carroll, KM, Travis, SK, Stone, ME, and Stone, MH. Two days versus four days of training cessation following a step-taper in powerlifters. J Strength Cond Res 37(12): e625-e632, 2023-Tapering and training cessation are methods of training load management aimed at optimizing athlete preparedness leading into competition. Such practices are often used by strength sport athletes such as powerlifters (i.e., athletes who compete in the back squat [BS], bench press [BP], and deadlift [DL]). The purpose of this study was to compare the differences in maximal strength, subjective recovery and stress state, and body composition alterations in strength athletes undergoing a 1-week step-taper followed by either a 2-day (2D) or 4-day (4D) period of training cessation. Twelve powerlifters (22.3 ± 2.1 yrs; 92.1 ± 20.4 kg; 174.8 ± 7.5 cm) completed a 6-week training protocol aimed at peaking 1 repetition maximum (1RM) strength on BS, BP, and DL. Body composition, subjective recovery and stress state, and 1RM on BS, BP, and DL were assessed before an overreach week (T1) and after the periods of training cessation (T2) for each group. Alpha criterion was set at p ≤ 0.05. There were significant increases in BP ( p = 0.032, g = 0.10), powerlifting total ( p = 0.014, g = 0.11), and DOTS score ( p = 0.006, g = 0.12) after 2D of cessation. However, after 4D of cessation, significant increases were only observed in DL ( p = 0.019, g = 0.11) along with significant decreases in BP ( p = 0.003, g = -0.13). There were no statistically significant changes in any other variable for either group indicating that BS, psychometric, and body composition data were maintained between T1 and T2. The results of this study support the use of 1-week step-tapers, followed by a short period of training cessation (2-4D) to maintain or improve maximal strength performance.
Collapse
Affiliation(s)
- Benjamin I Burke
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Kevin M Carroll
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - S Kyle Travis
- Department of Allied Health Professions, Liberty University, Lynchburg, Virginia; and
- K9 Muscle Physiology and Performance Lab, Beaux & Co. Research Foundation, Tennessee
| | - Margaret E Stone
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Michael H Stone
- Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
9
|
Bell L, Strafford BW, Coleman M, Androulakis Korakakis P, Nolan D. Integrating Deloading into Strength and Physique Sports Training Programmes: An International Delphi Consensus Approach. SPORTS MEDICINE - OPEN 2023; 9:87. [PMID: 37730925 PMCID: PMC10511399 DOI: 10.1186/s40798-023-00633-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Deloading is a ubiquitous yet under-researched strategy within strength and physique training. How deloading should be integrated into the training programme to elicit optimal training outcomes is unknown. To aid its potential integration, this study established consensus around design principles for integrating deloading in strength and physique training programmes using expert opinion and practical experience. METHODS Expert strength and physique coaches were invited to an online Delphi consisting of 3 rounds. Thirty-four coaches completed the first round, 29 completed the second round, and 21 completed the third round of a Delphi questionnaire. In the first round, coaches answered 15 open-ended questions from four categories: 1: General Perceptions of Deloading; 2: Potential Applications of Deloading; 3: Designing and Implementing Deloading; and 4: Creating an Inclusive Deloading Training Environment. First-round responses were analyzed using reflexive thematic analysis, resulting in 138 statements organized into four domains. In the second and third rounds, coaches rated each statement using a four-point Likert scale, and collective agreement or disagreement was calculated. RESULTS Stability of consensus was achieved across specific aspects of the four categories. Findings from the final round were used to develop the design principles, which reflect the consensus achieved. CONCLUSIONS This study develops consensus on design principles for integrating deloading into strength and physique sports training programmes. A consensus definition is proposed: "Deloading is a period of reduced training stress designed to mitigate physiological and psychological fatigue, promote recovery, and enhance preparedness for subsequent training." These findings contribute novel knowledge that might advance the current understanding of deloading in strength and physique sports.
Collapse
Affiliation(s)
- Lee Bell
- Department of Sport and Physical Activity, Sheffield Hallam University, Sheffield, S10 2BP, UK.
| | - Ben William Strafford
- Department of Sport and Physical Activity, Sheffield Hallam University, Sheffield, S10 2BP, UK
| | - Max Coleman
- Department of Exercise Science and Recreation, Applied Muscle Development Laboratory, CUNY Lehman College, Bronx, NY, USA
| | | | - David Nolan
- School of Health & Human Performance, Dublin City University, Dublin, Ireland
| |
Collapse
|
10
|
Albergoni A, Biggio M, Faelli E, Pesce A, Ruggeri P, Avanzino L, Bove M, Bisio A. Sensorimotor expertise influences perceptual weight judgments during observation of a sport-specific gesture. Front Sports Act Living 2023; 5:1148812. [PMID: 37426895 PMCID: PMC10323826 DOI: 10.3389/fspor.2023.1148812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
This study aimed to investigate the role of sensorimotor expertise in evaluating relative weight of a lifted object during the observation of a sport-specific gesture, namely the deadlift. Fifty-six participants, assigned to three groups according to their experience in weight lifting, powerlifters, CrossFit® practitioners and naïve participants (controls), performed a perceptual weight judgments task. Participants observed videos showing a powerlifter executing a deadlift at the 80%, 90% and 100% of 1 repetition maximum (1RM) and answered a question about the weight of the lifted object. Participants' response accuracy and variability were evaluated. Findings showed that powerlifters were more accurate than controls. No differences appeared between powerlifter and CrossFit® practitioners, and between CrossFit® practitioners and controls. Response variability was similar in the three groups. These findings suggest that a fine sensorimotor expertise specific for the observed gesture is crucial to detect the weight of the object displayed in the observed movement, since it might allow detecting small changes in the observed movement kinematics, which we speculate are at the basis of the object weight recognition.
Collapse
Affiliation(s)
- Andrea Albergoni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, Università degli Studi di Genova, Genoa, Italy
- Centro Polifunzionale di Scienze Motorie, Università degli Studi di Genova, Genoa, Italy
| | - Monica Biggio
- Section of Human Physiology, Department of Experimental Medicine, Università degli Studi di Genova, Genoa, Italy
| | - Emanuela Faelli
- Centro Polifunzionale di Scienze Motorie, Università degli Studi di Genova, Genoa, Italy
- Section of Human Physiology, Department of Experimental Medicine, Università degli Studi di Genova, Genoa, Italy
| | - Andrea Pesce
- Section of Human Physiology, Department of Experimental Medicine, Università degli Studi di Genova, Genoa, Italy
| | - Piero Ruggeri
- Centro Polifunzionale di Scienze Motorie, Università degli Studi di Genova, Genoa, Italy
- Section of Human Physiology, Department of Experimental Medicine, Università degli Studi di Genova, Genoa, Italy
| | - Laura Avanzino
- Section of Human Physiology, Department of Experimental Medicine, Università degli Studi di Genova, Genoa, Italy
- IRCCS Policlinico San Martino, Genoa, Italy
| | - Marco Bove
- Section of Human Physiology, Department of Experimental Medicine, Università degli Studi di Genova, Genoa, Italy
- IRCCS Policlinico San Martino, Genoa, Italy
| | - Ambra Bisio
- Centro Polifunzionale di Scienze Motorie, Università degli Studi di Genova, Genoa, Italy
- Section of Human Physiology, Department of Experimental Medicine, Università degli Studi di Genova, Genoa, Italy
| |
Collapse
|
11
|
Ishida A, Bazyler CD, Suarez DG, Slaton JA, White JB, Stone MH. The difference between several neuromuscular tests for monitoring resistance-training induced fatigue. J Sports Sci 2023; 41:209-216. [PMID: 37125864 DOI: 10.1080/02640414.2023.2207852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The purposes of this study were to investigate the acute effects of resistance training protocol on kinetic changes in squat jump (SJ), shortened isometric mid-thigh pull (IMTP), and isometric squat (ISQ) and to examine the relationship of dynamic maximum strength with performance changes over 48 hours in resistance-trained individuals. Participants completed performance tests at pre-, post-24 hours, and post-48 hours resistance training protocol (Baseline, Post24, and Post48). The training protocol consisted of 5 sets of 10 repetitions of back squat (BSQ) at 60% of 1 repetition maximum (1RM). SJ variables included jump height (JH), peak power (PP), and relative PP. For the IMTP and ISQ, isometric peak force (IPF), relative IPF, rate of force development at 250 milliseconds (RFD250), and impulse at 250 milliseconds (IMP250) were calculated. Significant decreases were observed from Baseline to Post24 (p = 0.023, Cohen's dz effect size [dz] = 1.00) and Post48 (p = 0.032, dz = 0.94) in SJ JH. IMTP IMP250 significantly decreased from Baseline to Post48 (p = 0.046, dz = 0.88). Significant negative correlation was found between relative 1RM BSQ and the changes from Baseline to Post48 in ISQ RFD250 (p = 0.046,r = -0.61). Acute performance decreases might remain until 48 hours after resistance training in explosive strength and impulse regardless of isometric testing type.
Collapse
Affiliation(s)
- Ai Ishida
- Houston Dynamo, Houston, TX, USA
- Exercise and Sport Sciences Laboratory, East Tennessee State University, Johnson City, TN, USA
| | - Caleb D Bazyler
- Exercise and Sport Sciences Laboratory, East Tennessee State University, Johnson City, TN, USA
| | - Dylan G Suarez
- Exercise and Sport Sciences Laboratory, East Tennessee State University, Johnson City, TN, USA
| | - Jake A Slaton
- Exercise and Sport Sciences Laboratory, East Tennessee State University, Johnson City, TN, USA
| | - Jason B White
- Exercise Science, Northern Kentucky University, Highland Heights, KY, USA
| | - Michael H Stone
- Exercise and Sport Sciences Laboratory, East Tennessee State University, Johnson City, TN, USA
- Center of Excellence for Sport Science and Coach Education, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
12
|
Winwood PW, Keogh JWL, Travis SK, Pritchard HJ. The Tapering Practices of Competitive Weightlifters. J Strength Cond Res 2023; 37:829-839. [PMID: 35976755 DOI: 10.1519/jsc.0000000000004324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Winwood, PW, Keogh, JW, Travis, SK, and Pritchard, HJ. The tapering practices of competitive weightlifters. J Strength Cond Res 37(4): 829-839, 2023-This study explored the tapering strategies of weightlifting athletes. Weightlifting athletes ( n = 146) (mean ± SD ; age: 29.2 ± 8.7 years, height: 172.5 ± 10.1 cm, body mass: 84.0 ± 17.2 kg, 4.7 ± 3.4 years of weightlifting training experience, and 3.9 ± 3.3 years of competitive weightlifting experience) completed a self-reported 4-page, 39-item internet survey on tapering practices. Subgroup analysis by sex (male and female) and competitive standard (local or regional, national and international level) was conducted. Ninety-nine percent ( n = 144) of weightlifting athletes reported they used a taper. Athletes stated that their typical taper length was 8.0 ± 4.4 days, with the linear (36%) and step tapers (33%) being the most performed. Training volume decreased during the taper by 43.1 ± 14.6%, and athletes ceased all training 1.5 ± 0.6 days out from competition. Muscular strength, light technique work, and aerobic conditioning were the most common types of training performed in the taper. Athletes typically stated that tapering was performed to achieve rest and recovery, physical preparation for peak performance and mental preparation; training intensity and training duration decreased whereas training frequency remained the same or decreased; traditional exercises were performed further out from competition than weightlifting exercises; assistance exercises and some strength work were reduced; nutritional changes, foam rolling, static stretching, and massage were strategies used in the taper; and poor tapering occurred because of training too heavy, too hard, or too light and life-work circumstances. These results may aid athletes and coaches in strength sports to optimize tapering variables leading to improved performances.
Collapse
Affiliation(s)
- Paul W Winwood
- Department of Sport and Recreation, Toi Ohomai Institute of Technology, Tauranga, New Zealand
- Department of Sport and Recreation, Sports Performance Research Institute New Zealand, Auckland University of Technology, New Zealand
| | - Justin W L Keogh
- Department of Sport and Recreation, Sports Performance Research Institute New Zealand, Auckland University of Technology, New Zealand
- Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia
- Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
- Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S Kyle Travis
- Department of Physical Therapy, Muscle Biology Laboratory, College of Public Health & Health Professions, University of Florida, Gainesville, Florida; and
| | - Hayden J Pritchard
- Department of Exercise and Wellness, Adjunct Academic Staff Member, Faculty of Health and Sciences, UCOL, Palmerston North, New Zealand
| |
Collapse
|
13
|
Is There an Optimal Interval for Medal Winning Performance in World Para Powerlifting Competition? Am J Phys Med Rehabil 2023; 102:172-174. [PMID: 34864767 DOI: 10.1097/phm.0000000000001935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ABSTRACT The aim of the study was to determine the optimal interval between competitions for success in World Para Powerlifting events. A total of 1034 female (age = 34.4 ± 9.1 yrs) and 1,697 male (age = 33.7 ± 8.3 yrs) competition results from international Paralympic powerlifting events conducted between 2014 and 2020 were analyzed. Odds ratios for preparations intervals between competitive events were evaluated considering the dependent variable, earning a medal, and the independent variable, level of competition. There was an increased probability of winning a medal when the preparation interval was in the range of 22-30 wks ( P = 0.004), as compared with less than 11 wks, while competing at World Cup events, whereas for World Championships and Paralympic Games, there was an increased probability of winning a medal when the interval range was 23-31 wks ( P = 0.002) and 40 wks or more ( P = 0.011) compared with less than 23 wks. However, there were no significant differences between preparation intervals for Regional Games/Championships. The Para Powerlifting athletes participating in the World Cup events, World Championships, and Paralympic Games share an optimal interval for success of approximately 21-31 wks and results from the World Championships and Paralympic Games, which can also be optimized with an interval of 40 wks or more.
Collapse
|
14
|
Mackala K, Michalik K, Makaruk H. Sports Diagnostics-Maximizing the Results or Preventing Injuries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2470. [PMID: 36767837 PMCID: PMC9916279 DOI: 10.3390/ijerph20032470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Sports diagnostics is a comprehensive scientific concept and comprises an aspect of training monitoring and/or sports medicine [...].
Collapse
Affiliation(s)
- Krzysztof Mackala
- Department of Track and Field, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland
| | - Kamil Michalik
- Department of Human Motor Skills, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland
| | - Hubert Makaruk
- Faculty of Physical Education and Health, The Jozef Pilsudski University of Physical Education in Warsaw, 00-809 Biala Podlaska, Poland
| |
Collapse
|
15
|
Bell L, Nolan D, Immonen V, Helms E, Dallamore J, Wolf M, Androulakis Korakakis P. "You can't shoot another bullet until you've reloaded the gun": Coaches' perceptions, practices and experiences of deloading in strength and physique sports. Front Sports Act Living 2022; 4:1073223. [PMID: 36619355 PMCID: PMC9811819 DOI: 10.3389/fspor.2022.1073223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Deloading refers to a purposeful reduction in training demand with the intention of enhancing preparedness for successive training cycles. Whilst deloading is a common training practice in strength and physique sports, little is known about how the necessary reduction in training demand should be accomplished. Therefore, the purpose of this research was to determine current deloading practices in competitive strength and physique sports. Eighteen strength and physique coaches from a range of sports (weightlifting, powerlifting, and bodybuilding) participated in semi-structured interviews to discuss their experiences of deloading. The mean duration of coaching experience at ≥ national standard was 10.9 (SD = 3.9) years. Qualitative content analysis identified Three categories: definitions, rationale, and application. Participants conceptualised deloading as a periodic, intentional cycle of reduced training demand designed to facilitate fatigue management, improve recovery, and assist in overall training progression and readiness. There was no single method of deloading; instead, a reduction in training volume (achieved through a reduction in repetitions per set and number of sets per training session) and intensity of effort (increased proximity to failure and/or reduction in relative load) were the most adapted training variables, along with alterations in exercise selection and configuration. Deloading was typically prescribed for a duration of 5 to 7 days and programmed every 4 to 6 weeks, although periodicity was highly variable. Additional findings highlight the underrepresentation of deloading in the published literature, including a lack of a clear operational definition.
Collapse
Affiliation(s)
- Lee Bell
- Department of Sport and Physical Activity, Sheffield Hallam University, Sheffield, United Kingdom,Correspondence: Lee Bell
| | - David Nolan
- School of Health & Human Performance, Dublin City University, Dublin, Ireland,Department of Sport and Health Sciences, Technological University of the Shannon, Athlone, Westmeath, Ireland
| | - Velu Immonen
- Department of Sports and Exercise, Haaga-Helia University of Applied Sciences, Vierumäki, Finland, United Kingdom
| | - Eric Helms
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Jake Dallamore
- Department of Sport and Physical Activity, Sheffield Hallam University, Sheffield, United Kingdom
| | - Milo Wolf
- Centre for Health, Exercise and Sport Science, Solent University, Southampton, United Kingdom
| | | |
Collapse
|
16
|
Puce L, Trabelsi K, Trompetto C, Mori L, Marinelli L, Currà A, Faelli E, Ferrando V, Okwen P, Kong JD, Ammar A, Bragazzi NL. A Bibliometrics-Enhanced, PAGER-Compliant Scoping Review of the Literature on Paralympic Powerlifting: Insights for Practices and Future Research. Healthcare (Basel) 2022; 10:2319. [PMID: 36421643 PMCID: PMC9690829 DOI: 10.3390/healthcare10112319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 08/13/2023] Open
Abstract
Paralympic powerlifting (PP), formerly known as "International Paralympic Committee" (IPC) powerlifting, is the format of powerlifting adapted for athletes with disabilities, and it differs from the version for able-bodied athletes in that it consists of bench press only. According to the mandate of the IPC, PP athletes should be enabled to achieve sporting excellence. As such, rigorous evidence is needed. However, to the best of our knowledge, there exists no systematic assessment of the body of scholarly evidence in the field of PP. Therefore, the present study was conducted to fill in this gap of knowledge, by conducting a scoping review of the literature enhanced by a bibliometrics analysis and by mining two major scholarly databases (MEDLINE via PubMed and Scopus). The aim was to provide a review/summary of the findings to date to help practitioners and athletes. Thirty-seven studies were retained in the present study. These covered the following thematic areas: (i) warm-up strategies (n = 2); (ii) aspects of training (n = 2); (iii) physiological aspects and responses (n = 2); (iv) psychological aspects and responses (n = 2); (v) biomechanics of bench press (n = 8); (vi) recovery strategy (n = 5); (vii) impact of the disability and type of disability (n = 4); (viii) epidemiology of PP (n = 6); and (ix) new analytical/statistical approaches for kinematics assessments, internal load monitoring, and predictions of mechanical outputs in strength exercises and in PP (n = 6). Bibliometrics analysis of the PP-related scientific output revealed that, despite having already become a paralympic sports discipline in 1984, only in the last few years, PP has been attracting a lot of interest from the community of researchers, with the first scholarly contribution dating back to 2012, and with more than one-third of the scientific output being published this year (2022). As such, this scholarly discipline is quite recent and young. Moreover, the community dealing with this topic is poorly interconnected, with most authors contributing to just one article, and with one single author being a hub node of the author network. Distributions of the number of articles and the authors/co-authors were found to be highly asymmetrical, indicating that this research is still in its infancy and has great room as well as great potential to grow. Reflecting this, many research topics are also overlooked and underdeveloped, with the currently available evidence being based on a few studies.
Collapse
Affiliation(s)
- Luca Puce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Khaled Trabelsi
- Research Laboratory: Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax 3000, Tunisia
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Laura Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Antonio Currà
- Academic Neurology Unit, A. Fiorini Hospital, 04019 Terracina, Italy
| | - Emanuela Faelli
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, 16132 Genoa, Italy
- Centro Polifunzionale di Scienze Motorie, University of Genoa, 16132 Genoa, Italy
| | - Vittoria Ferrando
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, 16132 Genoa, Italy
- Centro Polifunzionale di Scienze Motorie, University of Genoa, 16132 Genoa, Italy
| | - Patrick Okwen
- Effective Basic Services (eBASE), Bamenda 5175, Cameroon
| | - Jude Dzevela Kong
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
| | - Achraf Ammar
- Academic Institute of Sport Sciences, Otto-von-Guericke University, 39104 Magdeburg, Germany
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
17
|
Bell L, Ruddock A, Maden-Wilkinson T, Rogerson D. “I Want to Create So Much Stimulus That Adaptation Goes Through the Roof”: High-Performance Strength Coaches' Perceptions of Planned Overreaching. Front Sports Act Living 2022; 4:893581. [PMID: 35585963 PMCID: PMC9108365 DOI: 10.3389/fspor.2022.893581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Functional overreaching (FOR) occurs when athletes experience improved athletic capabilities in the days and weeks following short-term periods of increased training demand. However, prolonged high training demand with insufficient recovery may also lead to non-functional overreaching (NFOR) or the overtraining syndrome (OTS). The aim of this research was to explore strength coaches' perceptions and experiences of planned overreaching (POR); short-term periods of increased training demand designed to improve athletic performance. Fourteen high-performance strength coaches (weightlifting; n = 5, powerlifting; n = 4, sprinting; n = 2, throws; n = 2, jumps; n = 1) participated in semistructured interviews. Reflexive thematic analysis identified 3 themes: creating enough challenge, training prescription, and questioning the risk to reward. POR was implemented for a 7 to 14 day training cycle and facilitated through increased daily/weekly training volume and/or training intensity. Participants implemented POR in the weeks (~5–8 weeks) preceding competition to allow sufficient time for performance restoration and improvement to occur. Short-term decreased performance capacity, both during and in the days to weeks following training, was an anticipated by-product of POR, and at times used as a benchmark to confirm that training demand was sufficiently challenging. Some participants chose not to implement POR due to a lack of knowledge, confidence, and/or perceived increased risk of athlete training maladaptation. Additionally, this research highlights the potential dichotomy between POR protocols used by strength coaches to enhance athletic performance and those used for the purpose of inducing training maladaptation for diagnostic identification.
Collapse
|
18
|
Travis SK, Mujika I, Zwetsloot KA, Gentles JA, Stone MH, Bazyler CD. The Effects of 3 vs. 5 Days of Training Cessation on Maximal Strength. J Strength Cond Res 2021; 36:633-640. [DOI: 10.1519/jsc.0000000000004183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Travis SK, Pritchard HJ, Mujika I, Gentles JA, Stone MH, Bazyler CD. Characterizing the Tapering Practices of United States and Canadian Raw Powerlifters. J Strength Cond Res 2021; 35:S26-S35. [PMID: 34846328 DOI: 10.1519/jsc.0000000000004177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Travis, SK, Pritchard, HJ, Mujika, I, Gentles, JA, Stone, MH, and Bazyler, CD. Characterizing the tapering practices of United States and Canadian raw powerlifters. J Strength Cond Res 35(12S): S26-S35, 2021-The purpose of this study was to characterize the tapering practices used by North American powerlifters. A total of 364 powerlifters completed a 41-item survey encompassing demographics, general training, general tapering, and specific tapering practices. Nonparametric statistics were used to assess sex (male and female), competition level (regional/provincial, national, and international), and competition lift (squat, bench press, and deadlift). The highest training volume most frequently took place 5-8 weeks before competition, whereas the highest training intensity was completed 2 weeks before competition. A step taper was primarily used over 7-10 days while decreasing the training volume by 41-50% with varied intensity. The final heavy (>85% 1 repetition maximum [1RM]) back squat and deadlift sessions were completed 7-10 days before competition, whereas the final heavy bench press session was completed <7 days before competition. Final heavy lifts were completed at 90.0-92.5% 1RM but reduced to 75-80% 1RM for back squat and bench press and 70-75% for deadlift during the final training session of each lift. Set and repetition schemes during the taper varied between lifts with most frequent reports of 3 × 2, 3 × 3, and 3 × 1 for back squat, bench press, and deadlift, respectively. Training cessation durations before competition varied between deadlift (5.8 ± 2.5 days), back squat (4.1 ± 1.9 days), and bench press (3.9 ± 1.8 days). Complete training cessation was implemented 2.8 ± 1.1 days before competition and varied between sex and competition level. These findings provide novel insights into the tapering practices of North American powerlifters and can be used to inform powerlifting coaches and athlete's tapering decisions.
Collapse
Affiliation(s)
- S Kyle Travis
- Department of Physical Therapy, College of Public Health & Health Professions, University of Florida, Gainesville, Florida
- Exercise and Sport Sciences Laboratory, Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | | | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country; and
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Jeremy A Gentles
- Exercise and Sport Sciences Laboratory, Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Michael H Stone
- Exercise and Sport Sciences Laboratory, Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| | - Caleb D Bazyler
- Exercise and Sport Sciences Laboratory, Center of Excellence for Sport Science and Coach Education, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
20
|
Travis SK, Zwetsloot KA, Mujika I, Stone MH, Bazyler CD. Skeletal Muscle Adaptations and Performance Outcomes Following a Step and Exponential Taper in Strength Athletes. Front Physiol 2021; 12:735932. [PMID: 34777004 PMCID: PMC8582352 DOI: 10.3389/fphys.2021.735932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Before major athletic events, a taper is often prescribed to facilitate recovery and enhance performance. However, it is unknown which taper model is most effective for peaking maximal strength and positively augmenting skeletal muscle. Thus, the purpose of this study was to compare performance outcomes and skeletal muscle adaptations following a step vs. an exponential taper in strength athletes. Sixteen powerlifters (24.0 ± 4.0 years, 174.4 ± 8.2 cm, 89.8 ± 21.4 kg) participated in a 6-week training program aimed at peaking maximal strength on back squat [initial 1-repetition-maximum (1RM): 174.7 ± 33.4 kg], bench press (118.5 ± 29.9 kg), and deadlift (189.9 ± 41.2 kg). Powerlifters were matched based on relative maximal strength, and randomly assigned to either (a) 1-week overreach and 1-week step taper or (b) 1-week overreach and 3-week exponential taper. Athletes were tested pre- and post-training on measures of body composition, jumping performance, isometric squat, and 1RM. Whole muscle size was assessed at the proximal, middle, and distal vastus lateralis using ultrasonography and microbiopsies at the middle vastus lateralis site. Muscle samples (n = 15) were analyzed for fiber size, fiber type [myosin-heavy chain (MHC)-I, -IIA, -IIX, hybrid-I/IIA] using whole muscle immunohistochemistry and single fiber dot blots, gene expression, and microRNA abundance. There were significant main time effects for 1RM squat (p < 0.001), bench press (p < 0.001), and deadlift, (p = 0.024), powerlifting total (p < 0.001), Wilks Score (p < 0.001), squat jump peak-power scaled to body mass (p = 0.001), body mass (p = 0.005), fat mass (p = 0.002), and fat mass index (p = 0.002). There were significant main time effects for medial whole muscle cross-sectional area (mCSA) (p = 0.006) and averaged sites (p < 0.001). There was also a significant interaction for MHC-IIA fiber cross-sectional area (fCSA) (p = 0.014) with post hoc comparisons revealing increases following the step-taper only (p = 0.002). There were significant main time effects for single-fiber MHC-I% (p = 0.015) and MHC-IIA% (p = 0.033), as well as for MyoD (p = 0.002), MyoG (p = 0.037), and miR-499a (p = 0.033). Overall, increases in whole mCSA, fCSA, MHC-IIA fCSA, and MHC transitions appeared to favor the step taper group. An overreach followed by a step taper appears to produce a myocellular environment that enhances skeletal muscle adaptations, whereas an exponential taper may favor neuromuscular performance.
Collapse
Affiliation(s)
- S. Kyle Travis
- Exercise and Sport Sciences Laboratory, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN, United States
- Department of Rehabilitative Sciences, East Tennessee State University, Johnson City, TN, United States
- Integrative Muscle Physiology Laboratory, Department of Health and Exercise Science, Appalachian State University, Boone, NC, United States
| | - Kevin A. Zwetsloot
- Integrative Muscle Physiology Laboratory, Department of Health and Exercise Science, Appalachian State University, Boone, NC, United States
- Department of Biology, Appalachian State University, Boone, NC, United States
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Michael H. Stone
- Exercise and Sport Sciences Laboratory, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN, United States
| | - Caleb D. Bazyler
- Exercise and Sport Sciences Laboratory, Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
21
|
Androulakis-Korakakis P, Michalopoulos N, Fisher JP, Keogh J, Loenneke JP, Helms E, Wolf M, Nuckols G, Steele J. The Minimum Effective Training Dose Required for 1RM Strength in Powerlifters. Front Sports Act Living 2021; 3:713655. [PMID: 34527944 PMCID: PMC8435792 DOI: 10.3389/fspor.2021.713655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of this multi-experiment paper was to explore the concept of the minimum effective training dose (METD) required to increase 1-repetition-maximum (1RM) strength in powerlifting (PL) athletes. The METD refers to the least amount of training required to elicit meaningful increases in 1RM strength. A series of five studies utilising mixed methods, were conducted using PL athletes & coaches of all levels in an attempt to better understand the METD for 1RM strength. The studies of this multi-experiment paper are: an interview study with elite PL athletes and highly experienced PL coaches (n = 28), an interview and survey study with PL coaches and PL athletes of all levels (n = 137), two training intervention studies with intermediate-advanced PL athletes (n = 25) and a survey study with competitive PL athletes of different levels (n = 57). PL athletes looking to train with a METD approach can do so by performing ~3-6 working sets of 1-5 repetitions each week, with these sets spread across 1-3 sessions per week per powerlift, using loads above 80% 1RM at a Rate of Perceived Exertion (RPE) of 7.5-9.5 for 6-12 weeks and expect to gain strength. PL athletes who wish to further minimize their time spent training can perform autoregulated single repetition sets at an RPE of 9-9.5 though they should expect that strength gains will be less likely to be meaningful. However, the addition of 2-3 back-off sets at ~80% of the single repetitions load, may produce greater gains over 6 weeks while following a 2-3-1 squat-bench press-deadlift weekly training frequency. When utilizing accessory exercises in the context of METD, PL athletes typically utilize 1-3 accessory exercises per powerlift, at an RPE in the range of 7-9 and utilize a repetition range of ~6-10 repetitions.
Collapse
Affiliation(s)
| | - Nick Michalopoulos
- Faculty of Sport, Health, and Social Sciences, Solent University, Southampton, United Kingdom
- Department of Physics, University of Patras, Patras, Greece
| | - James P. Fisher
- Faculty of Sport, Health, and Social Sciences, Solent University, Southampton, United Kingdom
| | - Justin Keogh
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
- Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Kasturba Medical College, Mangalore, India
- Manipal Academy of Higher Education, Manipal, India
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Jeremy P. Loenneke
- Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, MS, United States
| | - Eric Helms
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Milo Wolf
- Faculty of Sport, Health, and Social Sciences, Solent University, Southampton, United Kingdom
| | - Greg Nuckols
- Stronger by Science LLC, Chapel Hill, NC, United States
| | - James Steele
- Faculty of Sport, Health, and Social Sciences, Solent University, Southampton, United Kingdom
| |
Collapse
|
22
|
Spiering BA, Mujika I, Sharp MA, Foulis SA. Maintaining Physical Performance: The Minimal Dose of Exercise Needed to Preserve Endurance and Strength Over Time. J Strength Cond Res 2021; 35:1449-1458. [PMID: 33629972 DOI: 10.1519/jsc.0000000000003964] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Maintaining physical performance: the minimal dose of exercise needed to preserve endurance and strength over time, Spiering, BA, Mujika, I, Sharp, MA, and Foulis, SA. J Strength Cond Res 35(5): 1449-1458, 2021-Nearly every physically active person encounters periods in which the time available for exercise is limited (e.g., personal, family, or business conflicts). During such periods, the goal of physical training may be to simply maintain (rather than improve) physical performance. Similarly, certain special populations may desire to maintain performance for prolonged periods, namely athletes (during the competitive season and off-season) and military personnel (during deployment). The primary purpose of this brief, narrative review is to identify the minimal dose of exercise (i.e., frequency, volume, and intensity) needed to maintain physical performance over time. In general populations, endurance performance can be maintained for up to 15 weeks when training frequency is reduced to as little as 2 sessions per week or when exercise volume is reduced by 33-66% (as low as 13-26 minutes per session), as long as exercise intensity (exercising heart rate) is maintained. Strength and muscle size (at least in younger populations) can be maintained for up to 32 weeks with as little as 1 session of strength training per week and 1 set per exercise, as long as exercise intensity (relative load) is maintained; whereas, in older populations, maintaining muscle size may require up to 2 sessions per week and 2-3 sets per exercise, while maintaining exercise intensity. Insufficient data exists to make specific recommendations for athletes or military personnel. Our primary conclusion is that exercise intensity seems to be the key variable for maintaining physical performance over time, despite relatively large reductions in exercise frequency and volume.
Collapse
Affiliation(s)
- Barry A Spiering
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Iñigo Mujika
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country; and.,Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Marilyn A Sharp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stephen A Foulis
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
23
|
Balsalobre-Fernández C, Torres-Ronda L. The Implementation of Velocity-Based Training Paradigm for Team Sports: Framework, Technologies, Practical Recommendations and Challenges. Sports (Basel) 2021; 9:sports9040047. [PMID: 33808302 PMCID: PMC8066834 DOI: 10.3390/sports9040047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
While velocity-based training is currently a very popular paradigm to designing and monitoring resistance training programs, its implementation remains a challenge in team sports, where there are still some confusion and misinterpretations of its applications. In addition, in contexts with large squads, it is paramount to understand how to best use movement velocity in different exercises in a useful and time-efficient way. This manuscript aims to provide clarifications on the velocity-based training paradigm, movement velocity tracking technologies, assessment procedures and practical recommendations for its application during resistance training sessions, with the purpose of increasing performance, managing fatigue and preventing injuries. Guidelines to combine velocity metrics with subjective scales to prescribe training loads are presented, as well as methods to estimate 1-Repetition Maximum (1RM) on a daily basis using individual load–velocity profiles. Additionally, monitoring strategies to detect and evaluate changes in performance over time are discussed. Finally, limitations regarding the use of velocity of execution tracking devices and metrics such as “muscle power” are commented upon.
Collapse
Affiliation(s)
- Carlos Balsalobre-Fernández
- Applied Biomechanics and Sports Technology Research Group, Autonomous University of Madrid, 28049 Madrid, Spain
- Correspondence: or
| | - Lorena Torres-Ronda
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3011, Australia;
- Spanish National Basketball Federation, 28036 Madrid, Spain
| |
Collapse
|
24
|
Batra A, Wetmore AB, Hornsby WG, Lipinska P, Staniak Z, Surala O, Stone MH. Strength, Endocrine, and Body Composition Alterations across Four Blocks of Training in an Elite 400 m Sprinter. J Funct Morphol Kinesiol 2021; 6:jfmk6010025. [PMID: 33803237 PMCID: PMC8006296 DOI: 10.3390/jfmk6010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
The ability to produce force rapidly has the potential to directly influence sprinting performance through changes in stride length and stride frequency. This ability is commonly referred to as the rate of force development (RFD). For this reason, many elite sprinters follow a combined program consisting of resistance training and sprint training. The purpose of this study was to investigate the strength, endocrine and body composition adaptations that occur during distinct phases of a block periodized training cycle in a 400 m Olympic level sprinter. The athlete is an elite level 400 m male sprinter (age 31 years, body mass: 74 kg, years of training: 15 and Personal Best (PB): 45.65 s). This athlete completed four distinct training phases of a block periodized training program (16 weeks) with five testing sessions consisting of testosterone:cortisol (T/C) profiles, body composition, vertical jump, and maximum strength testing. Large fluctuations in T/C were found following high volume training and the taper. Minor changes in body mass were observed with an abrupt decrease following the taper which coincided with a small increase in fat mass percentage. Jump height (5.7%), concentric impulse (9.4%), eccentric impulse (3.4%) and power ratio (18.7%) all increased substantially from T1 to T5. Relative strength increased 6.04% from T1 to T5. Lastly, our results demonstrate the effectiveness of a competitive taper in increasing physiological markers for performance as well as dynamic performance variables. Block periodization training was effective in raising the physical capabilities of an Olympic level 400 m runner which have been shown to directly transfer to sprinting performance.
Collapse
Affiliation(s)
- Amit Batra
- Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee University, Johnson City, TN 36714, USA;
- Correspondence:
| | - Alex B. Wetmore
- Department of Athletics, Westminster College, Salt Lake City, UT 16172, USA;
| | - W. Guy. Hornsby
- College of Physical Activity and Sport Sciences, West Virginia University, Morgantown, WV 26505, USA;
| | - Patrycja Lipinska
- Institute of Physical Education, University of Bydgoszcz, 85-064 Bydgoszcz, Poland;
| | - Zbigniew Staniak
- Department of Biomechanics, Institute of Sport, National Research Institute, 01-982 Warsaw, Poland;
| | - Olga Surala
- Department of Nutrition Physiology and Dietetics, Institute of Sport-National Research Institute, 02-776 Warsaw, Poland;
| | - Michael H. Stone
- Department of Sport, Exercise, Recreation, and Kinesiology, East Tennessee University, Johnson City, TN 36714, USA;
| |
Collapse
|
25
|
Fisher JP, Csapo R. Periodization and Programming in Sports. Sports (Basel) 2021; 9:sports9020013. [PMID: 33498350 PMCID: PMC7909405 DOI: 10.3390/sports9020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/17/2021] [Indexed: 01/12/2023] Open
Abstract
Periodization is a generally accepted approach to manage athletic performance by the sub-division of training programs into sequential, specifically focused training periods [...].
Collapse
Affiliation(s)
- James P. Fisher
- Faculty of Sport, Health and Social Sciences, Solent University, E Park Terrace, Southampton SO14 0YN, UK;
- Strength and Conditioning Society, Via del Fontanile Anagnino 159, 00118 Rome, Italy
| | - Robert Csapo
- Strength and Conditioning Society, Via del Fontanile Anagnino 159, 00118 Rome, Italy
- Research Unit for Orthopaedic Sports Medicine and Injury Prevention, ISAG, UMIT Tirol, Eduard-Wallnöfer-Zentrum 1, 6060 Hall, Austria
- Correspondence: ; Tel.: +43-50-8648-3887
| |
Collapse
|