1
|
Tian Y, Zhang J, Huang C, Ma Y, Sun Y, Zhang C, Yang Z, Wang W, Li W, Wang J, Li R, Wu J, Huang Y, Hu Y, Yang J. Ambient polycyclic aromatic hydrocarbons and cardiovascular disease in China. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137948. [PMID: 40117776 DOI: 10.1016/j.jhazmat.2025.137948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/23/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a prominent category of ambient air pollutants worldwide, but our understanding of their potential health effects at ambient concentrations is severely limited. Our goal was to investigate the relation between ambient PAHs and daily hospitalizations for cardiovascular disease and explore its potential mechanism. This research included both observational and experimental studies. For population-based study, we collected data on daily hospitalizations for cardiovascular events in 184 major Chinese cities, which cover a population of 280 million individuals, for period of 2014-2017. We utilized a time-series quasi-Poisson regression model to assess the city-specific relations between PAHs and hospitalizations, and then employed a random-effects meta-analysis to aggregate the effect estimates across the cities. We also employed meta-regression models and stratified analyses to explore possible effect modifiers. For animal study, mice were exposed to varying doses of PAHs via tracheal instillation to evaluate the cardiac damage induced by PAHs. Potential mechanisms were elucidated through transcriptomic and proteomic sequencing. On the national scale, each interquartile range (IQR) increase in PAHs concentrations at 0-7 days was related to a 5.18 % (3.27 %-7.12 %) increase in hospital admissions for cardiovascular disease, 5.72 % (3.83 %-7.65 %) for ischemic heart disease, and 6.08 % (3.37 %-8.87 %) for ischemic stroke. The cardiovascular impacts of PAHs remained even after controlling for PM2.5. The associations were more pronounced in cities with lower socioeconomic level, or higher temperatures and relative humidity, as well as in subpopulations with elder age (P < 0.05). We also found consistent associations between each of the seven individual PAHs and cardiovascular outcomes. In animal models, PAHs exposure induces cardiac injury via inflammation and oxidative stress, potentially linked to the PI3K/AKT and MAPK signaling pathways. This nationwide study indicated that ambient PAHs could represent a distinct risk factor for cardiovascular disease. They may contribute to cardiac damage through the regulation of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
| | - Jing Zhang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Cuiyuan Huang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunping Sun
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Chengzhi Zhang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Zishu Yang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Wei Wang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Wenqiang Li
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jiaojiao Wang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Ruonan Li
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jingyi Wu
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yifan Huang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Beijing, China.
| | - Jian Yang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China; Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| |
Collapse
|
2
|
Ren L, Wang Y, Ren Y, Li G, Sang N. Phenanthrene perturbs hematopoietic development and causes hematopoietic defects in zebrafish. J Environ Sci (China) 2025; 151:573-581. [PMID: 39481963 DOI: 10.1016/j.jes.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 11/03/2024]
Abstract
Phenanthrene (Phe) is one of the common polycyclic aromatic hydrocarbons in the environment, and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity. However, it is still unknown whether it can affect the hematopoietic development in aquatic organisms. To address this question, zebrafish (Danio rerio) were chronically exposed to Phe at different concentrations. We found that Phe caused structural damage to the renal tubules in the kidney, induced malformed erythrocytes in peripheral blood, and decreased the proportion of myeloid cells in adult zebrafish, suggesting possible negative impacts that Phe posed to hematopoietic development. Then, using in situ hybridization technology, we found that Phe decreased the expression of primitive hematopoietic marker genes, specifically gata1 and pu.1, accompanied by an obstruction of primitive erythrocyte circulation. Furthermore, Phe impaired definitive hematopoiesis, increased aberrations of the transient hematopoietic site (PBI), and reduced the generation of hematopoietic stem cells, ultimately influencing the number of erythrocytes and myeloid cells. The findings suggested that Phe could induce hematopoietic toxicity in zebrafish embryos and pose unknown ecological risks.
Collapse
Affiliation(s)
- Lingyu Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yue Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Ying Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
González-Rojas S, Yáñez-Sepúlveda R, Tuesta M, Sánchez-Ureña B, Trejos-Montoya J, Olivares-Arancibia J, López-Gil JF, Rojas-Valverde D. Air Pollution and Endurance Exercise: A Systematic Review of the Potential Effects on Cardiopulmonary Health. Life (Basel) 2025; 15:595. [PMID: 40283151 PMCID: PMC12028381 DOI: 10.3390/life15040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
This systematic review aimed to analyze the implications of endurance exercise in environments with certain levels of air pollution. This study was developed on the basis of the consensus of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The present review is supported by articles containing the main databases PubMed, Elsevier, and Web of Science (WoS), including scientific articles published in the last 20 years. This study highlights that exposure to air pollution during endurance activities, such as cycling and outdoor running, significantly affects cardiopulmonary health. In conclusion, while physical exercise in environments with high air pollution presents significant risks to cardiopulmonary health, implementing preventive measures and adopting public policies are crucial to minimizing these impacts and promoting safe exercise practices. Likewise, on the basis of these results, it is possible to motivate the creation of safe and natural spaces for sports practice.
Collapse
Affiliation(s)
- Sofía González-Rojas
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD-NARS), Clínica de Lesiones Deportivas (Rehab&Readapt), Escuela Ciencias del Movimiento Humano y Calidad Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica; (S.G.-R.); (B.S.-U.); (J.T.-M.); (D.R.-V.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Marcelo Tuesta
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
- Laboratory of Sport Sciences, Centro de Medicina Deportiva Sports MD, Viña del Mar 2521156, Chile
| | - Braulio Sánchez-Ureña
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD-NARS), Clínica de Lesiones Deportivas (Rehab&Readapt), Escuela Ciencias del Movimiento Humano y Calidad Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica; (S.G.-R.); (B.S.-U.); (J.T.-M.); (D.R.-V.)
| | - José Trejos-Montoya
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD-NARS), Clínica de Lesiones Deportivas (Rehab&Readapt), Escuela Ciencias del Movimiento Humano y Calidad Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica; (S.G.-R.); (B.S.-U.); (J.T.-M.); (D.R.-V.)
| | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de las Américas, Santiago 7500000, Chile;
| | | | - Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte (CIDISAD-NARS), Clínica de Lesiones Deportivas (Rehab&Readapt), Escuela Ciencias del Movimiento Humano y Calidad Vida (CIEMHCAVI), Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica; (S.G.-R.); (B.S.-U.); (J.T.-M.); (D.R.-V.)
| |
Collapse
|
4
|
Liu J, Chen Y, Pu H, Chen X, Yang W, Ouyang Z, Pang Q, Fan R. A new mechanism involved in cardiovascular senescence induced by environmentally relevant dose of 16 priority-controlled PAHs. ENVIRONMENT INTERNATIONAL 2025; 197:109326. [PMID: 39970779 DOI: 10.1016/j.envint.2025.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are closely related to the occurrence of cardiovascular diseases, nevertheless the toxicological mechanism remains ambiguous. To verify whether PAHs exposure leads to cardiovascular senescence, 8-week-old male sprague-dawley rats and primary human umbilical vein endothelial cells were exposed to different concentrations of 16 priority-controlled PAHs for 90 d and 48 h respectively. In in vitro study, PAHs exposure promoted aryl hydrocarbon receptor (AhR) activation, and then directly or indirectly inhibited SIRT6 expression leading to telomere dysfunction, which further caused DNA damage and subsequently promoted endothelial cells senescence. But the treatment of CH-223191 (an AhR inhibitor) rescued the aging phenotypes induced by PAHs, suggesting that AhR plays an important role in PAHs-induced endothelial cells senescence. In in vivo study, PAHs exposure raised AhR expression, affected SIRT6-related aging signaling pathway, and induced myocardial and vascular remodeling in rats. Molecular dynamics simulations demonstrated that, in addition to benzo[a]pyrene-7,8-diol-9,10-epoxide (the mediate metabolite of benzo[a]pyrene), typical parent PAHs (phenanthrene, benzo[a]pyrene) can directly bind to known DNA strand binding sites of SIRT6 through hydrophobic force, which was further validated by electrophoretic mobility shift assay. All above indicates for the first time that in addition to classical AhR dependent pathway, parent PAHs may affect DNA damage response and telomere maintenance function of SIRT6, which is a new mechanism of PAHs induced cardiovascular senescence.
Collapse
Affiliation(s)
- Jian Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yuxin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hao Pu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wucheng Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
5
|
Zhang X, Wang J, Wu Y, Li X, Zheng D, Sun L. Personal exposure to polycyclic aromatic hydrocarbons-bound particulate matter during pregnancy and umbilical inflammation and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117896. [PMID: 39955870 DOI: 10.1016/j.ecoenv.2025.117896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs), particularly when bound to fine particulate matter (PM2.5), is an emerging concern for adverse prenatal health outcomes. This study investigates the associations between prenatal exposure to PAHs-bound PM2.5 and markers of inflammation and oxidative stress in umbilical cord blood. We conducted a prospective study of 450 mother-infant pairs, assessing PAHs-bound PM2.5 levels during pregnancy using personal air sampling. Inflammatory and oxidative stress biomarkers, including TNF-α, IL-6, IL-8, TGF-β, and Pro-oxidant Antioxidant Balance (PAB), were measured in umbilical cord blood. Multivariable linear regression was used to examine associations between individual PAHs and these biomarkers, while mixture effects were evaluated using quantile g-computation and Bayesian Kernel Machine Regression (BKMR) to assess the combined influence of 15 PAH congeners. Our findings revealed significant associations between prenatal exposure to specific PAHs and increased levels of TNF-α, IL-6, and PAB. Mixture analysis indicated that each one-quartile increase in PAH exposure was associated with a 0.31 pg/mL (95 % CI: 0.05-0.60, p = 0.01), 1.26 pg/mL (95 % CI: 0.43-2.08, p < 0.01), and 26.02 pg/mL (95 % CI: 2.98-49.07, p = 0.02) increase in TNF-α, IL-8, and TGF-β, respectively. However, IL-6 and PAB showed no significant associations. BKMR analysis further confirmed a dose-response relationship between prenatal PAH exposure and elevated inflammatory and oxidative stress markers. These findings highlight the potential health risks associated with prenatal exposure to PAHs-bound PM2.5, emphasizing the need for further research to mitigate adverse developmental effects.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- The first department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Dongming Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Lei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Fang Q, Li K, Zhang X, Liu X, Jiao S, Sun L, Li M, Wang G, Kong Y. Proanthocyanidins mitigate the toxic effects in loach (Misgurnus anguillicaudatus) exposed to phenanthrene via Nrf2/NF-κB signaling pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107158. [PMID: 39546968 DOI: 10.1016/j.aquatox.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Phenanthrene (PHE) is a typical polycyclic aromatic hydrocarbon compound that is ubiquitous in the environment and accumulates in aquatic products, thereby posing a risk to food safety. Oligomeric proanthocyanidins (OPC) is widely distributed powerful antioxidants with potent antioxidant and anti-inflammatory properties. This study aimed to evaluate the alleviating effects of dietary OPC on oxidative stress, inflammatory suppression, and tissue damage caused by PHE exposure in loach (Misgurnus anguillicaudatus). In the study, loach was continuously exposed to 2.36 mg/L PHE for 28 days, after which they were fed a basal diet supplemented with 0, 200, 400, or 800 mg/kg OPC. The results displayed that PHE exposure resulted in significantly increased levels of liver health parameters (AST, ALT, COR, LDH, and ADA) compared to the control group (P < 0.05). The PHE-exposed fish showed the lowest levels of antioxidant enzymes (CAT, SOD, GSH, GST, GSH-Px, and GR) and the greatest levels of oxidative stress parameters (ROS and MDA). PHE exposure resulted in down-regulation of nrf2, ho-1, gsh-px, gst, and nqo-1, and up-regulation of keap-1 gene expressions in loach (P < 0.05). Moreover, PHE-induced decreased the levels of immunity indicators (CRP, MPO, C3, C4, IgM, and LYS). An up-regulation of pro-inflammatory genes (nf-κb, il-1β, il-8, il-6, il-12, and tnf-α) and a down-regulation of anti-inflammatory gene il-10 were the consequences of the PHE exposure. In addition, tissues showed histopathological alterations including vacuolization (liver), displaced nuclei (liver), atrophy (gills), glomerular congestion (kidney), and inflammatory cell infiltration (spleen) caused by PHE. Notably, dietary supplementation of OPC augmented immuno-antioxidant parameters, including their key genes, reduced oxidative stress and immunosuppression, and ameliorated tissue damage compared to fish exposed to PHE. In summary, supplementation with 400 mg/kg OPC in the diets could effectively alleviate the oxidative damage and inflammatory response induced by PHE exposure in loach through the Nrf2/NF-κB signaling pathway and enhance the defense ability against toxic substances of loach.
Collapse
Affiliation(s)
- Qiongya Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ke Li
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xinyu Zhang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaorui Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Siqi Jiao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Li Sun
- Testing Center of Quality and Safety in Aquatic Product, Changchun 130118, China
| | - Min Li
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Guiqin Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yidi Kong
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
7
|
Yang Y, Hu Y, Cui J, Li X, Zhang X, Sun Q, Zhang Q. The individual and combined effects of polycyclic aromatic hydrocarbons on asthma among US children: evidence from the NHANES study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-12. [PMID: 39565289 DOI: 10.1080/09603123.2024.2431246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) exposure has been linked to asthma, but their individual and combined effects in children remain unclear. Using data from the 2003-2012 National Health and Nutrition Examination Survey (NHANES), we investigated the associations between PAHs and asthma through logistic regression, Weighted Quantile Sum (WQS) regression, Quantile g Computation (qg computation), and Bayesian Kernel Machine Regression (BKMR). Subgroup analyses revealed a significant impact of PAHs on asthma, particularly in males. The WQS model showed a marginally significant combined effect of 9 PAHs on asthma (Odds Ratio = 1.37, 95% Confidence Interval: 1.06-1.75). BKMR also indicated a positive association between combined PAH exposure and asthma. 2-Hydroxyfluorene and 1-Hydroxypyrene were identified as the most significant contributors. These findings suggest that mixed PAH exposure is associated with asthma risk in children.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yufang Hu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Jiaqi Cui
- Cardiac Macrovascular Surgery Intensive Care Unit, The First Hospital of Harbin Medical University, Harbin, China
| | - Xiaodan Li
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Xinxin Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Sun
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Precision and smart Imaging Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Ghosh A, Rogers KL, Gallant SC, Kim YH, Rager JE, Gilmour MI, Randell SH, Jaspers I. Effects of simulated smoke condensate generated from combustion of selected military burn pit contents on human airway epithelial cells. Part Fibre Toxicol 2024; 21:41. [PMID: 39380034 PMCID: PMC11460082 DOI: 10.1186/s12989-024-00604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Exposure to military burn pit smoke during deployment is associated with different respiratory and non-respiratory diseases. However, information linking smoke exposure to human pulmonary health is lacking. This study examined the effects of simulated burn pit smoke condensates on human airway epithelial cells (HAECs) from twelve donors (smokers/non-smokers, biological female/male) cultured at an air-liquid interface and exposed to condensates from three simulated burn pit waste materials (cardboard, plywood, and plastic) incinerated at two combustion conditions: smoldering and flaming. Cellular gene expression was analyzed using bulk RNA sequencing, and basolateral media cytokine levels were assessed using multiplex immunoassay. RESULTS Flaming smoke condensates caused more significant differentially expressed genes (DEGs) with plywood flaming smoke being the most potent in altering gene expression and modulating cytokine release. Cardboard and plywood flaming condensates primarily activated detoxification pathways, whereas plastic flaming affected genes related to anti-microbial and inflammatory responses. Correlation analysis between smoke condensate chemicals and gene expression to understand the underlying mechanism revealed crucial role of oxygenated polycyclic aromatic hydrocarbons (PAHs) and aluminum, molybdenum, and silicon elements; IL6 expression was positively correlated with most PAHs. Stratification of data based on HAEC donor demographics suggests that these affect gene expression changes. Enrichment analysis indicated similarity with several deployment-related presumptive and reported diseases, including asthma, emphysema, and cancer of different organs. CONCLUSIONS This study highlights that simulated burn pit smoke exposure of HAECs causes gene expression changes indicative of deployment-related diseases with more pronounced effects seen in smokers and females. Future studies are needed to further characterize how sex and smoking status affect deployment-related diseases.
Collapse
Affiliation(s)
- Arunava Ghosh
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, School of Medicine, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
| | - Keith L Rogers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA
| | - Samuel C Gallant
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Julia E Rager
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, School of Medicine, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA
- Department of Environmental Sciences and Engineering (ESE), Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, School of Medicine, 104 Mason Farm Road, Chapel Hill, NC, 27599-7310, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599-7310, USA.
- Department of Environmental Sciences and Engineering (ESE), Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
DeSerisy M, Salas L, Akhundova E, Pena D, Cohen JW, Pagliaccio D, Herbstman J, Rauh V, Margolis AE. Polycyclic aromatic hydrocarbon exposure effects on trajectories of maternal and adolescent mental health. Child Adolesc Psychiatry Ment Health 2024; 18:114. [PMID: 39261930 PMCID: PMC11391764 DOI: 10.1186/s13034-024-00804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Parental psychological distress is a well-known risk factor for developmental psychopathology, with longer term parental distress associated with worse youth mental health. Neurotoxicant exposure during pregnancy is a risk factor for both poor maternal and youth mental health. The impact of one class of pollutant, polycyclic aromatic hydrocarbons (PAH), on long-term trajectories of maternal distress and youth self-reported mental health symptoms in adolescence has been understudied. METHODS PAH exposure was measured by DNA adducts in maternal blood sampled during the third trimester of pregnancy. Maternal distress, operationalized as maternal demoralization, was measured at 11 timepoints (prenatal to child age 16). Adolescent mental health symptoms were measured at age 13-15. Follow up analyses examined a subset of measures available at age 15-20 years. Structural equation modeling examined associations between PAH exposure during pregnancy and latent growth metrics of maternal distress, and between maternal distress (intercept and slope) and youth mental health symptoms in a prospective longitudinal birth cohort (N = 564 dyads). RESULTS Higher prenatal PAH exposure was associated with higher concurrent maternal distress. Prenatal maternal distress was associated with adolescent's self-reported anxiety, depression, and externalizing problems. On average, maternal distress declined over time; a slower decline in mother's distress across the course of the child's life was associated with greater self-reported anxiety and externalizing problems in youth. CONCLUSIONS Our findings are consistent with an intergenerational framework of environmental effects on mental health: PAH exposure during pregnancy affects maternal mental health, which in turn influences mental health outcomes for youth well into adolescence. Future research is necessary to elucidate the possible social and biological mechanisms (e.g., parenting, epigenetics) underlying the intergenerational transmission of the negative effects of pollution on mental health in caregiver-child dyads.
Collapse
Affiliation(s)
- Mariah DeSerisy
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.
| | - Leilani Salas
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Emiliya Akhundova
- Columbia College, Columbia University, 1130 Amsterdam Ave, New York, NY, 10027, USA
| | - Dahiana Pena
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Jacob W Cohen
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - David Pagliaccio
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Julie Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, 10032, USA
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, 10032, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, 10032, USA
| | - Amy E Margolis
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| |
Collapse
|
10
|
Rahman ML, Shu XO, Jones DP, Hu W, Ji BT, Blechter B, Wong JYY, Cai Q, Yang G, Gao YT, Zheng W, Rothman N, Walker D, Lan Q. A nested case-control study of untargeted plasma metabolomics and lung cancer among never-smoking women within the prospective Shanghai Women's Health Study. Int J Cancer 2024; 155:508-518. [PMID: 38651675 PMCID: PMC11284831 DOI: 10.1002/ijc.34929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 04/25/2024]
Abstract
The etiology of lung cancer in never-smokers remains elusive, despite 15% of lung cancer cases in men and 53% in women worldwide being unrelated to smoking. Here, we aimed to enhance our understanding of lung cancer pathogenesis among never-smokers using untargeted metabolomics. This nested case-control study included 395 never-smoking women who developed lung cancer and 395 matched never-smoking cancer-free women from the prospective Shanghai Women's Health Study with 15,353 metabolic features quantified in pre-diagnostic plasma using liquid chromatography high-resolution mass spectrometry. Recognizing that metabolites often correlate and seldom act independently in biological processes, we utilized a weighted correlation network analysis to agnostically construct 28 network modules of correlated metabolites. Using conditional logistic regression models, we assessed the associations for both metabolic network modules and individual metabolic features with lung cancer, accounting for multiple testing using a false discovery rate (FDR) < 0.20. We identified a network module of 121 features inversely associated with all lung cancer (p = .001, FDR = 0.028) and lung adenocarcinoma (p = .002, FDR = 0.056), where lyso-glycerophospholipids played a key role driving these associations. Another module of 440 features was inversely associated with lung adenocarcinoma (p = .014, FDR = 0.196). Individual metabolites within these network modules were enriched in biological pathways linked to oxidative stress, and energy metabolism. These pathways have been implicated in previous metabolomics studies involving populations exposed to known lung cancer risk factors such as traffic-related air pollution and polycyclic aromatic hydrocarbons. Our results suggest that untargeted plasma metabolomics could provide novel insights into the etiology and risk factors of lung cancer among never-smokers.
Collapse
Affiliation(s)
- Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Qiuyin Cai
- Division of Epidemiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gong Yang
- Division of Epidemiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt University, Nashville, Tennessee, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Douglas Walker
- Division of Environmental Health, School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Lee CY, Wu SW, Yang JJ, Chen WY, Chen CJ, Chen HH, Lee YC, Su CH, Kuan YH. Vascular endothelial dysfunction induced by 3-bromofluoranthene via MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation. Arch Toxicol 2024; 98:2247-2259. [PMID: 38635053 PMCID: PMC11169047 DOI: 10.1007/s00204-024-03751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
3-Bromofluoranthene (3-BrFlu) is the secondary metabolite of fluoranthene, which is classified as a polycyclic aromatic hydrocarbon, through bromination and exists in the fine particulate matter of air pollutants. Endothelial dysfunction plays a critical role in the pathogenesis of cardiovascular and vascular diseases. Little is known about the molecular mechanism of 3-BrFlu on endothelial dysfunction in vivo and in vitro assay. In the present study, 3-BrFlu included concentration-dependent changes in ectopic angiogenesis of the sub-intestinal vein and dilation of the dorsal aorta in zebrafish. Disruption of vascular endothelial integrity and up-regulation of vascular endothelial permeability were also induced by 3-BrFlu in a concentration-dependent manner through pro-inflammatory responses in vascular endothelial cells, namely, SVEC4-10 cells. Generation of pro-inflammatory mediator PGE2 was induced by 3-BrFlu through COX2 expression. Expression of COX2 and generation of pro-inflammatory cytokines, including TNFα and IL-6, were induced by 3-BrFlu through phosphorylation of NF-κB p65, which was mediated by phosphorylation of MAPK, including p38 MAPK, ERK and JNK. Furthermore, generation of intracellular ROS was induced by 3-BrFlu, which is associated with the down-regulated activities of the antioxidant enzyme (AOE), including SOD and catalase. We also found that 3-BrFlu up-regulated expression of the AOE and HO-1 induced by 3-BrFlu through Nrf-2 expression. However, the 3-BrFlu-induced upregulation of AOE and HO-1 expression could not be revised the responses of vascular endothelial dysfunction. In conclusion, 3-BrFlu is a hazardous substance that results in vascular endothelial dysfunction through the MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation.
Collapse
Affiliation(s)
- Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan, ROC
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sheng-Wen Wu
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiann-Jou Yang
- Department of BioMedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsin-Hung Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan
- School of Medicine, Institute of Medicine and Public Health, Chung Shan Medical University, Taichung, Taiwan
- Chung Sheng Clinic, Nantou, Taiwan
| | - Yi-Chia Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan, ROC
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Hung Su
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan, ROC.
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
12
|
Sun J, Guo F, Wang L, Han F, Yang J, Gao S. Association of environmental polycyclic aromatic hydrocarbons exposure with periodontitis in NHANES 2009-2014: A mixtures approach. J Periodontol 2024; 95:603-613. [PMID: 37987224 DOI: 10.1002/jper.23-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) can invade and cause harm to the human body through various pathways, but there is currently little research on the relationship between mixed-PAHs exposure and periodontitis. The purpose of this study was to examine the effects of mixed-urinary PAHs exposure on periodontitis in adults in the United States. METHODS The cross-sectional study included 2749 subjects selected from the National Health and Nutrition Examination Survey (NHANES) 2009-2014 cycles. A professional examination of the periodontal status was conducted to distinguish between periodontitis and non-periodontitis based on the Centers for Disease Control and Prevention/American Academy of Periodontology (CDC/AAP) case definition. Laboratory testing of urine samples was performed to obtain the levels of urinary PAHs. Pearson correlation coefficients were utilized to determine the degree of correlation between urinary PAHs, while weighted binary logistic regression and Bayesian kernel machine regression (BKMR) were employed to evaluate the relationship between urinary PAHs and periodontitis. RESULTS In a single-exposure model, 3-hydroxyfluorene (OH-3F), 2-hydroxyfluorene (OH-2F), 1-hydroxyphenanthrene (OH-1Ph), and 2-hydroxyphenanthrene and 3-hydroxyphenanthrene (OH-2,3Ph) were positively associated with periodontitis risk. In the mixed-exposure model, BKMR analysis demonstrated that mixed exposure to urinary PAHs was positively associated with periodontitis, with OH-2F being the most critical factor for the overall mixed effects (posterior inclusion probability [PIP] = 0.98). Univariate exposure-response function and univariate effects analysis revealed a positive correlation between urinary OH-2F levels and periodontitis. CONCLUSIONS The study reveals a significant positive correlation between exposure to mixed PAHs and periodontitis, with a particular emphasis on the pivotal role of OH-2F. Mitigating PAHs in the environment may serve as a preventive measure against periodontitis and alleviate its global public health burden.
Collapse
Affiliation(s)
- Jinqiu Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Feifei Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Lin Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, the Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong, China
| | - Fulei Han
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, Shandong, China
| | - Jia Yang
- Jiafan Dental Clinic, Qingdao, Shandong, China
| | - Shengli Gao
- Biomedical Centre, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Zhang Z, Bai C, Zhao L, Liu L, Guo W, Liu M, Yang H, Lai X, Zhang X, Yang L. Polycyclic aromatic hydrocarbons exposure and arterial stiffness-related plasma miRNAs: A panel study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104464. [PMID: 38729543 DOI: 10.1016/j.etap.2024.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The underlying mechanisms between polycyclic aromatic hydrocarbons (PAHs) exposure and arterial stiffness are poorly understood. We carried out a panel study involving three repeated surveys to examine the associations of individual and mixture of PAHs exposure with arterial stiffness-related miRNAs among 123 community adults. In linear mixed-effect (LME) models, we found that urinary 9-hydroxyfluorene (9-OHFlu), 2-hydroxyphenanthrene (2-OHPh), 9-hydroxyphenanthrene (9-OHPh) at lag 0 day were positively linked to miR-146a and/or miR-222. The Bayesian kernel machine regression (BKMR) analyses revealed positive overall associations of PAHs mixture at lag 0 day with miR-146a and miR-222, and urinary 9-OHFlu contributed the most. In addition, an inter-quartile range (IQR) increase in urinary 9-OHFlu at lag 0 day was associated with elevated miR-146a and miR-222 by 0.16 (95% CI: 0.02, 0.30) to 0.34 (95% CI: 0.13, 0.54). Accordingly, exposure to PAHs, especially 9-OHFlu at lag 0 day, was related to elevated arterial stiffness-related plasma miRNAs.
Collapse
Affiliation(s)
- Ziqian Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Conghua Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
14
|
England E, Morris JW, Bussy C, Hancox JC, Shiels HA. The key characteristics of cardiotoxicity for the pervasive pollutant phenanthrene. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133853. [PMID: 38503207 DOI: 10.1016/j.jhazmat.2024.133853] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
The key characteristic (KCs) framework has been used previously to assess the carcinogenicity and cardiotoxicity of various chemical and pharmacological agents. Here, the 12 KCs of cardiotoxicity are used to evaluate the previously reported cardiotoxicity of phenanthrene (Phe), a tricyclic polycyclic aromatic hydrocarbon (PAH), and major component of fossil fuel-derived air pollution. Phe is a semi-volatile pollutant existing in both the gas phase and particle phase through adsorption onto or into particulate matter (PM). Phe can translocate across the airways and gastrointestinal tract into the systemic circulation, enabling body-wide effects. Our evaluation based on a comprehensive literature review, indicates Phe exhibits 11 of the 12 KCs for cardiotoxicity. These include adverse effects on cardiac electromechanical performance, the vasculature and endothelium, immunomodulation and oxidative stress, and neuronal and endocrine control. Environmental agents that have similarly damaging effects on the cardiovascular system are heavily regulated and monitored, yet globally there is no air quality regulation specific for PAHs like Phe. Environmental monitoring of Phe is not the international standard with benzo[a]pyrene being frequently used as a proxy despite the two PAH species exhibiting significant differences in sources, concentration variations and toxic effects. The evidence summarised in this evaluation highlights the need to move away from proxied PAH measurements and develop a monitoring network capable of measuring Phe concentration. It also stresses the need to raise awareness amongst the medical community of the potential cardiovascular impact of PAH exposure. This will allow the production of mitigation strategies and possibly the development of new policies for the protection of the societal groups most vulnerable to cardiovascular disease.
Collapse
Affiliation(s)
- E England
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - J W Morris
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - C Bussy
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - J C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - H A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Kahe D, Sabeti Z, Sarbakhsh P, Shakerkhatibi M, Gholampour A, Goudarzi G, Sharbafi J, Dastgiri S, Separham A, Seyedrezazadeh E. Effect of PM 2.5 exposure on adhesion molecules and systemic nitric oxide in healthy adults: The role of metals, PAHs, and oxidative potential. CHEMOSPHERE 2024; 354:141631. [PMID: 38462178 DOI: 10.1016/j.chemosphere.2024.141631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Since there is limited evidence on the impact of PM2.5 content on cardiovascular biomarkers, we conducted a cross-sectional study on 89 healthy adults from October 12 to November 21, 2021. We measured daily PM2.5 in two distinct regions during different time windows: a high-traffic urban area and an industrial suburb. The concentrations of metals, PAHs, and oxidative potential (OP) were determined using ICP-MS, GC-MS, and dithiothreitol (DTT), respectively. Systemic biomarkers, including NO, sICAM-1, sVCAM-1, MDA, and CRP, were quantified in each subject simultaneously. A generalized linear model was used to examine the association between PM2.5 toxicity and each health endpoint. Our findings indicated that daily PM2.5 concentrations exceeded the WHO-recommended level by approximately sevenfold. We found that PM2.5 exposure was associated with adverse cardiovascular outcomes. Moreover, exposure to PM2.5 mass, total PAHs, and certain trace metals (Ni, Fe, V, As, and Pb) resulted in a decline in serum NO levels. At lag 3, exposure to PM2.5 mass resulted in a significant decrease in NO levels [1.32% (95% CI: -2.27, -0.12)] and total PAHs [2.05% (95% CI: -3.93, -0.12)]. In contrast, OP exhibited a mild correlation with NO level increases. Positive associations were observed between PM2.5 and its chemical constituents (PAHs, As, Cu, OP) and adhesion molecules at different lag times. An increase of 0.16 ppb in PAH concentrations at an interquartile range was associated with a 4.74% decline (95% CI, -7.80, -0.55) in the sVCAM-1 level. However, our study did not reveal any significant trend between pollutants and other biomarkers (sICAM-1, MDA, and CRP). Consequently, our findings suggest that different PM2.5 chemical compositions exhibit diverse behavior in biological responses.
Collapse
Affiliation(s)
- Danian Kahe
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sabeti
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Sarbakhsh
- Department of Statistics and Epidemiology, Faculty of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shakerkhatibi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Akbar Gholampour
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Goudarzi
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jabraeil Sharbafi
- East Azerbaijan Province Health Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Dastgiri
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Separham
- Cardiovascular Research Center, Tabriz University of Medical Science, Madani Heart Center, Cardiology Department, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, Gulej R, Ungvari A, Fekete M, Tompa A, Tarantini S, Yabluchanskiy A, Conley S, Csiszar A, Tabak AG, Benyo Z, Adany R, Ungvari Z. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience 2023; 45:3381-3408. [PMID: 37688657 PMCID: PMC10643494 DOI: 10.1007/s11357-023-00913-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer's disease, Parkinson's disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood-brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population.
Collapse
Affiliation(s)
- Tamas Pandics
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health Laboratory, National Public Health Centre, Budapest, Hungary
- Department of Public Health Siences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Peterfi
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Tompa
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam G Tabak
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, H-1052, Hungary
| | - Roza Adany
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
- Epidemiology and Surveillance Centre, Semmelweis University, 1085, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
17
|
Rojas GA, Saavedra N, Morales C, Saavedra K, Lanas F, Salazar LA. Modulation of the Cardiovascular Effects of Polycyclic Aromatic Hydrocarbons: Physical Exercise as a Protective Strategy. TOXICS 2023; 11:844. [PMID: 37888695 PMCID: PMC10610936 DOI: 10.3390/toxics11100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) present in air pollution increases cardiovascular risk. On the contrary, physical exercise is a widely used therapeutic approach to mitigate cardiovascular risk, but its efficacy in an environment of air pollution, particularly with PAHs, remains unclear. This study investigates the effects of exercise on inflammation, endothelial dysfunction, and REDOX imbalance due to PAH exposure using a mouse model. Twenty male BALB/c mice were subjected to a mixture of PAHs (phenanthrene, fluoranthene, pyrene) in conjunction with aerobic exercise. The investigation evaluated serum levels of inflammatory cytokines, gene expression linked to inflammatory markers, endothelial dysfunction, and REDOX imbalance in aortic tissues. Furthermore, the study evaluated the expression of the ICAM-1 and VCAM-1 proteins. Exercise led to notable changes in serum inflammatory cytokines, as well as the modulation of genes associated with endothelial dysfunction and REDOX imbalance in aortic tissue. In turn, exercise produced a modulation in the protein expression of ICAM-1 and VCAM-1. The findings implicate the potential of exercise to counter PAH-induced damage, as demonstrated by changes in markers. In conclusion, exercise could mitigate the adverse effects related to exposure to PAHs present in air pollution, as evidenced by changes in inflammatory markers, endothelial dysfunction, and REDOX imbalance.
Collapse
Affiliation(s)
- Gabriel A. Rojas
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
- PhD Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Escuela Kinesiología, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| | - Cristian Morales
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
- PhD Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco 4811230, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| | - Fernando Lanas
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Luis A. Salazar
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| |
Collapse
|
18
|
Zhao L, Li B, Zhou L, Song C, Kang T, Xu Y, Liu Y, Han Y, Zhao W, Jia H, Zhang B, Guo J. PM 2.5 exposure promotes asthma in aged Brown-Norway rats: Implication of multiomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115393. [PMID: 37611479 DOI: 10.1016/j.ecoenv.2023.115393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Children are disproportionately represented among those who suffer asthma, which is a kind of chronic airway inflammation. Asthma symptoms might worsen when exposed to the air pollutant particulate matter 2.5 (PM2.5). However, it is becoming more prevalent among older adults, with more asthma-related deaths occurring in this pollution than in any other age group, and symptoms caused by asthma can reduce the quality of life of the elderly, whose asthma is underdiagnosed due to physiological factors. Therefore, in an effort to discover a therapy for older asthma during exposure to air pollution, we sought to ascertain the effects of pre-exposure (PA) and persistent exposure (PAP) to PM2.5 in aged asthma rats. In this study, we exposed aged rats to PM2.5 at different times (PA and PAP) and established an ovalbumin-mediated allergic asthma model. The basic process of elderly asthma caused by PM2.5 exposure was investigated by lung function detection, enzyme-linked immunosorbent assay (ELISA), histopathology, cytology, cytokine microarray, untargeted metabolomics, and gut microbiota analysis. Our findings demonstrated that in the PA and PAP groups, exposure to PM2.5 reduced lung function and exacerbated lung tissue damage, with varying degrees of effect on immunoglobulin levels, the findings of a cytological analysis, cytokines, and chemokines. The PA and PAP rats had higher amounts of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, 2-methylNaphthalene, 1-methylNaphthalene and flourene. Moreover, exposure to PM2.5 at different times showed different effects on plasma metabolism and gut microbiota. Bioinformatics analysis showed a strong correlation between PAHs, cytokines, and gut microbiota, and PAHs may cause metabolic disorders through the gut microbiota. These findings point to a possible mechanism for the development of asthma in older people exposure to PM2.5 that may be related to past interactions between PAHs, cytokines, gut microbiota, and plasma metabolites.
Collapse
Affiliation(s)
- Lianlian Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China; Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China
| | - Baicun Li
- Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine Laboratories, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
| | - Li Zhou
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Chenchen Song
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Taisheng Kang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Yanfeng Xu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Yunpeng Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Yunlin Han
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Wenjie Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China
| | - Hongliang Jia
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China
| | - Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, 116026, China
| | - Jianguo Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China.
| |
Collapse
|
19
|
Di D, Zhang R, Zhou H, Wei M, Cui Y, Zhang J, Yuan T, Liu Q, Zhou T, Liu J, Wang Q. Exposure to phenols, chlorophenol pesticides, phthalate and PAHs and mortality risk: A prospective study based on 6 rounds of NHANES. CHEMOSPHERE 2023; 329:138650. [PMID: 37037349 DOI: 10.1016/j.chemosphere.2023.138650] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVES Human exposure to various endocrine disrupting chemicals (EDCs) is widespread and long-lasting. The primary objective of this study was to prospectively evaluate the association of combined exposure of phenols, chlorophenol pesticides, phthalate and polycyclic aromatic hydrocarbons (PAHs) and mortality risk in a representative US population. METHODS The data on urinary levels of phenols, chlorophenol pesticides, phthalates, and PAH metabolites, were collected from participants aged ≥20 years in six rounds of the National Health and Nutrition Examination Survey (NHANES) (2003-2014). NHANES-linked death records up to December 31, 2015 were used to ascertain mortality status and cause of death. Cox proportional hazards and competing risk models were mainly used for chemical and mortality risk association analysis. The weighted quantile sum (WQS) regression and the least absolute shrinkage and selection operator regression were employed to estimate the association between EDC co-exposure and mortality risk. RESULTS High levels of mono-n-butyl phthalate, monobenzyl phthalate, and 1-napthol were significantly associated with increased risk of all cause, cardiovascular disease (CVD) and cancer mortality among all participants. WQS index was associated with the risks of all-cause (hazard ratio [HR] = 1.389, 95%CI: 1.155-1.669) and CVD mortality (HR = 1.925, 95%CI: 1.152-3.216). High co-exposure scores were associated with elevated all-cause (HR = 2.842, 95% CI: 1.2.094-3.858), CVD (HR = 1.855, 95% CI: 1.525-2.255), and cancer mortality risks (HR = 2.961, 95% CI: 1.468-5.972). The results of subgroup analysis, competing risk model, and sensitivity analysis were generally consistent with the findings from the main analyses, indicating the robustness of our findings. CONCLUSIONS This study provided the first epidemiological evidence that co-exposure to EDC at fairly low levels contributed to elevated mortality risk among US adults. The underlying mechanisms for the effects of EDC co-exposure on human health are worthy of future exploration.
Collapse
Affiliation(s)
- Dongsheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruyi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianli Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Yuan
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Liu
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junan Liu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
20
|
Bayo Jimenez MT, Hahad O, Kuntic M, Daiber A, Münzel T. Noise, Air, and Heavy Metal Pollution as Risk Factors for Endothelial Dysfunction. Eur Cardiol 2023; 18:e09. [PMID: 37377448 PMCID: PMC10291605 DOI: 10.15420/ecr.2022.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/12/2022] [Indexed: 06/29/2023] Open
Abstract
During the last two decades, large epidemiological studies have shown that the physical environment, including noise, air pollution or heavy metals, have a considerable impact on human health. It is known that the most common cardiovascular risk factors are all associated with endothelial dysfunction. Vascular tone, circulation of blood cells, inflammation, and platelet activity are some of the most essential functions regulated by the endothelium that suffer negative effects as a consequence of environmental pollution, causing endothelial dysfunction. In this review, we delineate the impact of environmental risk factors in connection to endothelial function. On a mechanistic level, a significant number of studies suggest the involvement of endothelial dysfunction to fundamentally drive the adverse endothelium health effects of the different pollutants. We focus on well-established studies that demonstrate the negative effects on the endothelium, with a focus on air, noise, and heavy metal pollution. This in-depth review on endothelial dysfunction as a consequence of the physical environment aims to contribute to the associated research needs by evaluating current findings from human and animal studies. From a public health perspective, these findings may also help to reinforce efforts promoting the research for adequate promising biomarkers for cardiovascular diseases since endothelial function is considered a hallmark of environmental stressor health effects.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Omar Hahad
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
- Leibniz Institute for Resilience Research (LIR)Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Andreas Daiber
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
| | - Thomas Münzel
- Department of Cardiology – Cardiology I, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Rhine-MainMainz, Germany
| |
Collapse
|
21
|
Pantzke J, Koch A, Zimmermann EJ, Rastak N, Offer S, Bisig C, Bauer S, Oeder S, Orasche J, Fiala P, Stintz M, Rüger CP, Streibel T, Di Bucchianico S, Zimmermann R. Processing of carbon-reinforced construction materials releases PM 2.5 inducing inflammation and (secondary) genotoxicity in human lung epithelial cells and fibroblasts. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104079. [PMID: 36796551 DOI: 10.1016/j.etap.2023.104079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Building demolition following domestic fires or abrasive processing after thermal recycling can release particles harmful for the environment and human health. To mimic such situations, particles release during dry-cutting of construction materials was investigated. A reinforcement material consisting of carbon rods (CR), carbon concrete composite (C³) and thermally treated C³ (ttC³) were physicochemically and toxicologically analyzed in monocultured lung epithelial cells, and co-cultured lung epithelial cells and fibroblasts at the air-liquid interface. C³ particles reduced their diameter to WHO fibre dimensions during thermal treatment. Caused by physical properties or by polycyclic aromatic hydrocarbons and bisphenol A found in the materials, especially the released particles of CR and ttC³ induced an acute inflammatory response and (secondary) DNA damage. Transcriptome analysis indicated that CR and ttC³ particles carried out their toxicity via different mechanisms. While ttC³ affected pro-fibrotic pathways, CR was mostly involved in DNA damage response and in pro-oncogenic signaling.
Collapse
Affiliation(s)
- Jana Pantzke
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Arne Koch
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Svenja Offer
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jürgen Orasche
- Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Petra Fiala
- Department of Mechanical Process Engineering, Technical University of Dresden, 01187 Dresden, Germany
| | - Michael Stintz
- Department of Mechanical Process Engineering, Technical University of Dresden, 01187 Dresden, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Department Life, Light & Matter (LLM), University of Rostock, 18051 Rostock, Germany
| | - Thorsten Streibel
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany; Joint Mass Spectrometry Center, Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department Life, Light & Matter (LLM), University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
22
|
Fan Y, Tao C, Li Z, Huang Y, Yan W, Zhao S, Gao B, Xu Q, Qin Y, Wang X, Peng Z, Covaci A, Li Y, Xia Y, Lu C. Association of Endocrine-Disrupting Chemicals with All-Cause and Cause-Specific Mortality in the U.S.: A Prospective Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2877-2886. [PMID: 36728834 DOI: 10.1021/acs.est.2c07611] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wide exposure to endocrine-disrupting chemicals (EDCs) poses a great risk on human health. However, few large-scale cohort studies have comprehensively estimated the association between EDCs exposure and mortality risk. This study aimed to investigate the association of urinary EDCs exposure with mortality risk and quantify attributable mortality and economic loss. Multivariable Cox proportional hazards regression models were performed to investigate the association of 38 representative EDCs exposure with mortality risk in the National Health and Nutrition Examination Survey (NHANES). During a median follow-up of 7.7 years, 47,279 individuals were enrolled. All-cause mortality was positively associated with 1-hydroxynaphthalene, 2-hydroxynaphthalene, cadmium, antimony, cobalt, and monobenzyl phthalate. Cancer mortality was positively associated with cadmium. Cardiovascular disease (CVD) mortality was positively associated with 1-hydroxynaphthalene, 2-hydroxynaphthalene, and 2-hydroxyfluorene. Nonlinear U-shaped relationships were found between all-cause mortality and cadmium and cobalt, which was also identified between 2-hydroxyfluorene and CVD mortality. J-shaped association of cadmium exposure with cancer mortality was also determined. EDCs exposure may cause 56.52% of total deaths (1,528,500 deaths) and around 1,897 billion USD in economic costs. Exposure to certain phthalates, polycyclic aromatic hydrocarbons, phytoestrogens, or toxic metals, even at substantially low levels, is significantly associated with mortality and induces high economic costs.
Collapse
Affiliation(s)
- Yun Fan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chengzhe Tao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuna Huang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenkai Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shuangshuang Zhao
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Beibei Gao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yufeng Qin
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Microbes and Infection, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhihang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Wilrijk 2610, Belgium
| | - You Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|