1
|
Liu X, Ding F, Tian J, Wu J, Zhao S, Zhao Y. Causal association between PM 2.5 and metabolic syndrome in the Chinese elderly population-insights from a cohort study of CHARLS. Sci Rep 2025; 15:15028. [PMID: 40301484 PMCID: PMC12041316 DOI: 10.1038/s41598-025-00160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025] Open
Abstract
Existing evidence suggests that the components of metabolic syndrome (MS) are sensitive to PM2.5, especially in the elderly population, and related results targeting different regions and populations are inconsistent. This study aims to quantify the risk of association between PM2.5 and MS components in the elderly population, as well as the moderating effect of physical exercise (PE) for this association. Biochemical data, demographic data and health behavior data were obtained from CHARLS dataset in 2011 and 2015, and the individual information was matched to obtain the two-wave panel data. We match meteorological data by region to obtain population exposure indicators. Subsequently, the directed acyclic graphs was used to control confonding, then instrumental variable method and fixed effects model were employed to evaluate the causal relationship between PM2.5 and MS components and the moderating effect of PE. A total of 6125 individuals were included. The prevalence of MS was 34.5% and 32.9% in 2011 and 2015 respectively. The instrumental variable probit regression indicated that high concentration PM2.5 exposure (coefPM2.5 = 0.007, P < 0.001) may increase the risk of MS, and PM2.5 had a significant impact on the components of MS, with a positive impact on waist circumference (WC) (coef = 0.052, P < 0.001) and systolic blood pressure (SYS) (coef = 0.214, P < 0.001), and with a negative impact on high-density lipoprotein cholesterol (HDL-C) (coef = - 0.030, P = 0.021), Triglyceride (TG) (coef = - 0.275, P = 0.048) and diastolic blood pressure (DIA) (coef = - 0.030, P = 0.007). Specifically, for each 1 SD increase in PM2.5 exposure, HDL-C decreased by 0.57 mg/dL, TG decreased by 5.29 mg/dL, DIA decreased by 0.57 mmHg, waist circumference increased by 1.001 cm, and SYS increased by 4.11 mmHg. Additionally, low-intensity physical exercise may alleviate the effect of PM2.5 on WC and SYS, while the high intensity exercise may increase the effect of PM2.5 on WC. Exposure to PM2.5 is associated with the occurrence of MS in the elderly population, and has a significant impact on the components of MS in different directions. The moderating effect of physical activity on PM2.5 and MS varies by component. These results may provide scientific support for the prevention and treatment of MS in the elderly.
Collapse
Affiliation(s)
- Xianglong Liu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Fan Ding
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiayi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Jie Wu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300203, China.
| | - Yu Zhao
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China.
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, China.
| |
Collapse
|
2
|
Butler HM, Keller E, McCrorey M, Keceli G, Combs CK, Kayed R, Namakkal-S R, Paolocci N, Jacobs Wolf B, Wold LE, Del Monte F. Particulate matter and co-occurring genetic risk induce oxidative stress and cardiac and brain Alzheimer's pathology. Commun Biol 2025; 8:603. [PMID: 40221628 PMCID: PMC11993720 DOI: 10.1038/s42003-025-07701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/07/2025] [Indexed: 04/14/2025] Open
Abstract
Amyloid-beta (Aβ) aggregates, an Alzheimer's disease (AD) pathological hallmark, extend beyond the brain to the heart of heart failure (HF) and AD patients. Being diseases of the elderly, increased prevalence is expected as the population ages. However, changes in the incidence and prevalence of dementia over the past decades, and the independent association of exposure to air particulate matter (PM) with poor cognitive function, adverse cardiovascular effects, and oxidative stress hint to the contribution of other factors beyond senescence. Therefore we evaluate whether, and by which mechanism(s), PM exposure affects heart and brain proteinopathy with/without genetic predisposition.AD-prone and control mice are exposed for three months to filtered air (FA) or concentrated ambient PM < 2.5μm in diameter (PM2.5), and evaluated for Aβ pathology, cognitive and cardiac function, and markers of oxidative stress. Aβ pathology become noticeable in AD hearts and worsens with PM2.5 in AD brains. Functionally, PM2.5 lead to anxiety and memory deficits and worsens diastolic function. Redox homeostasis is negatively impacted by genotype and PM2.5. This study identifies environmental pollution as a potential key contributor to early progression of heart and brain proteinopathy, delineating a crucial timepoint for early interventions to limit multiorgan damage in vulnerable patients.
Collapse
Affiliation(s)
- Helen M Butler
- College of Graduate Studies, Medical University of South Carolina, Charleston, SC, USA
| | - Everette Keller
- College of Medicine, Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marice McCrorey
- College of Graduate Studies, Medical University of South Carolina, Charleston, SC, USA
| | - Gizem Keceli
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Colin K Combs
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rajasekaran Namakkal-S
- Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nazareno Paolocci
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Bethany Jacobs Wolf
- College of Medicine, Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Loren E Wold
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Federica Del Monte
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Medicine and Surgery, University of Bologna Alma Mater, Bologna, Italy.
| |
Collapse
|
3
|
Jaikang C, Konguthaithip G, Amornlertwatana Y, Autsavapromporn N, Rattanachitthawat S, Liampongsabuddhi N, Monum T. Metabolic Disruptions and Non-Communicable Disease Risks Associated with Long-Term Particulate Matter Exposure in Northern Thailand: An NMR-Based Metabolomics Study. Biomedicines 2025; 13:742. [PMID: 40149718 PMCID: PMC11940625 DOI: 10.3390/biomedicines13030742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Particulate matter (PM) is a primary health hazard associated with metabolic pathway disruption. Population characteristics, topography, sources, and PM components contribute to health impacts. Methods: In this study, NMR-based metabolomics was used to evaluate the health impacts of prolonged exposure to PM. Blood samples (n = 197) were collected from healthy volunteers in low- (control; CG) and high-exposure areas (exposure; EG) in Northern Thailand. Non-targeted metabolite analysis was performed using proton nuclear magnetic resonance spectroscopy (1H-NMR). Results: Compared to CG, EG showed significantly increased levels of dopamine, N6-methyladenosine, 3-hydroxyproline, 5-carboxylcytosine, and cytidine (p < 0.05), while biopterin, adenosine, L-Histidine, epinephrine, and norepinephrine were significantly higher in CG (p < 0.05). These metabolic disturbances suggest that chronic exposure to particulate matter (PM) impairs energy and amino acid metabolism while enhancing oxidative stress, potentially contributing to the onset of non-communicable diseases (NCDs) such as cancer and neurodegenerative conditions. Conclusions: This study highlighted the connection between sub-chronic PM2.5 exposure, metabolic disturbances, and an increased risk of non-communicable diseases (NCDs), stressing the critical need for effective PM2.5 reduction strategies in Northern Thailand.
Collapse
Affiliation(s)
- Churdsak Jaikang
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.J.); (G.K.); (Y.A.); (N.L.)
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Giatgong Konguthaithip
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.J.); (G.K.); (Y.A.); (N.L.)
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yutti Amornlertwatana
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.J.); (G.K.); (Y.A.); (N.L.)
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Nitip Liampongsabuddhi
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.J.); (G.K.); (Y.A.); (N.L.)
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tawachai Monum
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.J.); (G.K.); (Y.A.); (N.L.)
| |
Collapse
|
4
|
Lu Y, Qiu W, Liao R, Cao W, Huang F, Wang X, Li M, Li Y. Subacute PM2.5 Exposure Induces Hepatic Insulin Resistance Through Inflammation and Oxidative Stress. Int J Mol Sci 2025; 26:812. [PMID: 39859525 PMCID: PMC11766349 DOI: 10.3390/ijms26020812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Epidemiological studies prove that type II diabetes, characterized by insulin resistance (IR), may be caused by fine particulate matter 2.5 (PM2.5). However, underlying mechanisms whereby PM2.5, particularly during short-term exposure, induces liver dysfunction leading to IR remains poorly understood. In the present study, HepG2 cells and the BALB/c mouse model were used to explore how PM2.5 affects insulin sensitivity. The effects of subacute PM2.5 exposure on glucose metabolism were examined using commercial kits. Oxidative stress and inflammation were detected by fluorescent staining and RT-qPCR. The phosphorylation of PI3K/AKT was examined by Western blot. Subacute PM2.5 exposure induced IR, as reflected by increased glucose levels in cell supernatants, elevated insulin levels, and the impaired intraperitoneal glucose tolerance test in mice. PM2.5 induced oxidative stress, as evidenced by increased reactive oxygen species, cytochrome P450 2E1, and malondialdehyde, along with reduced superoxide dismutase 1/2 and silent information regulator 1. IL-6 and TNF-α were found to be upregulated using RT-qPCR. Western blot showed that PM2.5 inhibited the PI3K-AKT signaling pathway, indicated by the decreased phosphorylation of PI3K/AKT in HepG2 cells. Additionally, H&E staining showed only mild hepatic injury in mice liver. These results firmly suggest that subacute PM2.5 exposure induces insulin resistance through oxidative stress, inflammation, and the inhibition of the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Yao Lu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (Y.L.)
| | - Wenke Qiu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China
| | - Ruiwei Liao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (Y.L.)
| | - Wenjuan Cao
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China
| | - Feifei Huang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China
| | - Xinyuan Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (Y.L.)
| | - Ming Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, No. 280, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China
| | - Yan Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China; (Y.L.)
| |
Collapse
|
5
|
Chanda F, Lin KX, Chaurembo AI, Huang JY, Zhang HJ, Deng WH, Xu YJ, Li Y, Fu LD, Cui HD, Shu C, Chen Y, Xing N, Lin HB. PM 2.5-mediated cardiovascular disease in aging: Cardiometabolic risks, molecular mechanisms and potential interventions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176255. [PMID: 39276993 DOI: 10.1016/j.scitotenv.2024.176255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Air pollution, particularly fine particulate matter (PM2.5) with <2.5 μm in diameter, is a major public health concern. Studies have consistently linked PM2.5 exposure to a heightened risk of cardiovascular diseases (CVDs) such as ischemic heart disease (IHD), heart failure (HF), and cardiac arrhythmias. Notably, individuals with pre-existing age-related cardiometabolic conditions appear more susceptible. However, the specific impact of PM2.5 on CVDs susceptibility in older adults remains unclear. Therefore, this review addresses this gap by discussing the factors that make the elderly more vulnerable to PM2.5-induced CVDs. Accordingly, we focused on physiological aging, increased susceptibility, cardiometabolic risk factors, CVDs, and biological mechanisms. This review concludes by examining potential interventions to reduce exposure and the adverse health effects of PM2.5 in the elderly population. The latter includes dietary modifications, medications, and exploration of the potential benefits of supplements. By comprehensively analyzing these factors, this review aims to provide a deeper understanding of the detrimental effects of PM2.5 on cardiovascular health in older adults. This knowledge can inform future research and guide strategies to protect vulnerable populations from the adverse effects of air pollution.
Collapse
Affiliation(s)
- Francis Chanda
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yang Chen
- University of Chinese Academy of Sciences, Beijing, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China.
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Zhang J, Zhang J, Duan Z, Nie J, Li X, Yu W, Niu Z, Yan Y. Association between long-term exposure to PM 2.5 chemical components and metabolic syndrome in middle-aged and older adults. Front Public Health 2024; 12:1462548. [PMID: 39234085 PMCID: PMC11371722 DOI: 10.3389/fpubh.2024.1462548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Background Previous studies indicated that exposure to ambient fine particulate matter (PM2.5) could increase the risk of metabolic syndrome (MetS). However, the specific impact of PM2.5 chemical components remains uncertain. Methods A national cross-sectional study of 12,846 Chinese middle-aged and older adults was conducted. Satellite-based spatiotemporal models were employed to determine the 3-year average PM2.5 components exposure, including sulfates (SO4 2-), nitrates (NO3 -), ammonia (NH4 +), black carbon (BC), and organic matter (OM). Generalized linear models were used to investigate the associations of PM2.5 components with MetS and the components of MetS, and restricted cubic splines curves were used to establish the exposure-response relationships between PM2.5 components with MetS, as well as the components of MetS. Results MetS risk increased by 35.1, 33.5, 33.6, 31.2, 32.4, and 31.4% for every inter-quartile range rise in PM2.5, SO4 2-, NO3 -, NH4 +, OM and BC, respectively. For MetS components, PM2.5 chemical components were associated with evaluated risks of central obesity, high blood pressure (high-BP), high fasting glucose (high-FBG), and low high-density lipoprotein cholesterol (low-HDL). Conclusion This study indicated that exposure to PM2.5 components is related to increased risk of MetS and its components, including central obesity, high-BP, high-FBG, and low-HDL. Moreover, we found that the adverse effect of PM2.5 chemical components on MetS was more sensitive to people who were single, divorced, or widowed than married people.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Medical Imaging Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Jinglong Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jing Nie
- Population Research Institute, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xiangyu Li
- Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wenyuan Yu
- School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhiping Niu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Yangjin Yan
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Gao Y, Zhang X, Li X, Zhang J, Lv Z, Guo D, Mao H, Wang T. Lipid Dysregulation Induced by Gasoline and Diesel Exhaust Exposure and the Interaction with Age. TOXICS 2024; 12:303. [PMID: 38668526 PMCID: PMC11054039 DOI: 10.3390/toxics12040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Limited knowledge exists regarding gasoline and diesel exhaust effects on lipid metabolism. This study collected gasoline and diesel exhaust under actual driving conditions and conducted inhalation exposure on male young and middle-aged C57BL/6J mice for 4 h/day for 5 days to simulate commuting exposure intensity. Additionally, PM2.5 from actual roadways, representing gasoline and diesel vehicles, was generated for exposure to human umbilical vein endothelial cells (HUVECs) and normal liver cells (LO2) for 24, 48, and 72 h to further investigate exhaust particle toxicity. Results showed that diesel exhaust reduced total cholesterol and low-density lipoprotein cholesterol levels in young mice, indicating disrupted lipid metabolism. Aspartate aminotransferase and alanine aminotransferase levels increased by 53.7% and 21.7%, respectively, suggesting potential liver injury. Diesel exhaust exposure decreased superoxide dismutase and increased glutathione peroxidase levels. Cell viability decreased, and reactive oxygen species levels increased in HUVECs and LO2 following exposure to exhaust particles, with dose- and time-dependent effects. Diesel exhaust particles exhibited more severe inhibition of cell proliferation and oxidative damage compared to gasoline exhaust particles. These findings provide novel evidence of the risk of disrupted lipid metabolism due to gasoline and diesel exhaust, emphasizing the toxicity of diesel exhaust.
Collapse
Affiliation(s)
- Yutong Gao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xinzhuo Zhang
- Department of Visual Optics Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Xinting Li
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jinsheng Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zongyan Lv
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Dongping Guo
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Tang JH, Jian HL, Chan TC. The impact of co-exposure to air and noise pollution on the incidence of metabolic syndrome from a health checkup cohort. Sci Rep 2024; 14:8841. [PMID: 38632465 PMCID: PMC11024131 DOI: 10.1038/s41598-024-59576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Previous studies have found associations between the incidence of metabolic syndrome (MetS) and exposure to air pollution or road traffic noise. However, investigations on environmental co-exposures are limited. This study aimed to investigate the association between co-exposure to air pollution and road traffic noise and MetS and its subcomponents. Participants living in Taipei City who underwent at least two health checkups between 2010 and 2016 were included in the study. Data were sourced from the MJ Health database, a longitudinal, large-scale cohort in Taiwan. The monthly traffic noise exposure (Lden and Lnight) was computed using a dynamic noise map. Monthly fine particulate data at one kilometer resolution were computed from satellite imagery data. Cox proportional hazards regression models with month as the underlying time scale were used to estimate hazard ratios (HRs) for the impact of PM2.5 and road traffic noise exposure on the risk of developing MetS or its subcomponents. Data from 10,773 participants were included. We found significant positive associations between incident MetS and PM2.5 (HR: 1.88; 95% CI 1.67, 2.12), Lden (HR: 1.10; 95% CI 1.06, 1.15), and Lnight (HR: 1.07; 95% CI 1.02, 1.13) in single exposure models. Results further showed significant associations with an elevated risk of incident MetS in co-exposure models, with HRs of 1.91 (95% CI 1.69, 2.16) and 1.11 (95% CI 1.06, 1.16) for co-exposure to PM2.5 and Lden, and 1.90 (95% CI 1.68, 2.14) and 1.08 (95% CI 1.02, 1.13) for co-exposure to PM2.5 and Lnight. The HRs for the co-exposure models were higher than those for models with only a single exposure. This study provides evidence that PM2.5 and noise exposure may elevate the risk of incident MetS and its components in both single and co-exposure models. Therefore, preventive approaches to mitigate the risk of MetS and its subcomponents should consider reducing exposure to PM2.5 and noise pollution.
Collapse
Affiliation(s)
- Jia-Hong Tang
- Research Center for Humanities and Social Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Hong-Lian Jian
- Research Center for Humanities and Social Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
- Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan.
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Liu Q, Wang Z, Lu J, Li Z, Martinez L, Tao B, Wang C, Zhu L, Lu W, Zhu B, Pei X, Mao X. Effects of short-term PM 2.5 exposure on blood lipids among 197,957 people in eastern China. Sci Rep 2023; 13:4505. [PMID: 36934119 PMCID: PMC10024762 DOI: 10.1038/s41598-023-31513-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 03/13/2023] [Indexed: 03/20/2023] Open
Abstract
Globally, air pollution is amongst the most significant causes of premature death. Nevertheless, studies on the relationship between fine particulate matter (PM2.5) exposure and blood lipids have typically not been population-based. In a large, community-based sample of residents in Yixing city, we assessed the relationship between short-term outdoor PM2.5 exposure and blood lipid concentrations. Participants who attended the physical examination were enrolled from Yixing People's hospital from 2015 to 2020. We collected general characteristics of participants, including gender and age, as well as test results of indicators of blood lipids. Data on daily meteorological factors were collected from the National Meteorological Data Sharing Center ( http://data.cma.cn/ ) and air pollutant concentrations were collected from the China Air Quality Online Monitoring and Analysis Platform ( https://www.aqistudy.cn/ ) during this period. We applied generalized additive models to estimate short-term effects of ambient PM2.5 exposure on each measured blood lipid-related indicators and converted these indicators into dichotomous variables (non- hyperlipidemia and hyperlipidemia) to calculate risks of hyperlipidemia associated with PM2.5 exposure. A total of 197,957 participants were included in the analysis with mean age 47.90 years (± SD, 14.28). The increase in PM2.5 was significantly associated with hyperlipidemia (odds ratio (OR) 1.003, 95% CI 1.001-1.004), and it was still significant in subgroups of males and age < 60 years. For every 10 μg/m3 increase in PM2.5, triglyceride levels decreased by 0.5447% (95% CI - 0.7873, - 0.3015), the low-density lipoprotein cholesterol concentration increased by 0.0127 mmol/L (95% CI 0.0099, 0.0156), the total cholesterol concentration increased by 0.0095 mmol/L (95% CI 0.0053, 0.0136), and no significant association was observed between PM2.5 and the high-density lipoprotein cholesterol concentration. After excluding people with abnormal blood lipid concentrations, the associations remained significant except for the high-density lipoprotein cholesterol concentration. PM2.5 was positively correlated with low-density lipoprotein cholesterol and total cholesterol, and negatively correlated with triglyceride, indicating PM2.5 can potentially affect health through blood lipid levels.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhan Wang
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu Province, People's Republic of China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Junjie Lu
- Department of Critical Care Medicine, Affiliated Yixing People's Hospital, Jiangsu University, Wuxi, People's Republic of China
| | - Zhongqi Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Leonardo Martinez
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Bilin Tao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunlai Wang
- Department of Physical Examination Center, Affiliated Yixing People's Hospital, Jiangsu University, Wuxi, People's Republic of China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu Province, People's Republic of China
| | - Wei Lu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu Province, People's Republic of China
| | - Baoli Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaohua Pei
- Divison of Geriatric Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.
| | - Xuhua Mao
- Department of Clinical Laboratory, Affiliated Yixing People's Hospital, Jiangsu University, Wuxi, Jiangsu Province, People's Republic of China.
| |
Collapse
|