1
|
Palacios-Valladares JR, Martinez-Jimenez YI, Morillon-Torres V, Rivera-Maya OB, Gómez R, Calderon-Aranda ES. Bisphenol A and Its Emergent Substitutes: State of the Art of the Impact of These Plasticizers on Oxidative Stress and Its Role in Vascular Dysfunction. Antioxidants (Basel) 2024; 13:1468. [PMID: 39765797 PMCID: PMC11673293 DOI: 10.3390/antiox13121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
The "One Health approach" has evidenced the significant impact of xenobiotic exposure to health, and humans are a relevant target for their toxic effects. Bisphenol A (BPA) exerts a ubiquitous exposure source in all ecosystems. Given its endocrine-disrupting and harmful consequences on health, several countries have enforced new regulations to reduce exposure to BPA. Cardiovascular diseases (CVDs) are complex conditions that lead to higher mortality worldwide, where family history, lifestyle, and environmental factors, like BPA exposure, have a remarkable contribution. This chemical compound is the most widely used in plastic and epoxy resin manufacturing and has been associated with effects on human health. Therefore, new-generation bisphenols (NGBs) are replacing BPA use, arguing that they do not harm health. Nonetheless, the knowledge about whether NGBs are secure options is scanty. Although BPA's effects on several organs and systems have been documented, the role of BPA and NGBs in CVDs has yet to be explored. This review's goals are focused on the processes of endothelial activation (EA)-endothelial dysfunction (ED), a cornerstone of CVDs development, bisphenols' (BPs) effects on these processes through oxidant and antioxidant system alteration. Despite the scarce evidence on pro-oxidant effects associated with NGBs, our review demonstrated a comparable harmful effect on BPA. The results from the present review suggest that the biological mechanisms to explain BPs cardiotoxic effects are the oxidant stress ↔ inflammatory response ↔ EA ↔ ED → atherosclerotic plate → coagulation promotion. Other effects contributing to CVD development include altered lipid metabolism, ionic channels, and the activation of different intracellular pathways, which contribute to ED perpetuation in a concerted manner.
Collapse
Affiliation(s)
| | | | | | | | - Rocio Gómez
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| | - Emma S. Calderon-Aranda
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| |
Collapse
|
2
|
Zuo YB, Wen ZJ, Cheng MD, Jia DD, Zhang YF, Yang HY, Xu HM, Xin H, Zhang YF. The pro-atherogenic effects and the underlying mechanisms of chronic bisphenol S (BPS) exposure in apolipoprotein E-deficient mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117133. [PMID: 39342757 DOI: 10.1016/j.ecoenv.2024.117133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Atherosclerosis (AS) and its related cardiovascular diseases (CVDs) remain the most frequent cause of morbidity and mortality worldwide. Researches showed that bisphenol A (BPA) exposure might exacerbate AS progression. However, as an analogue of BPA, little is known about the cardiovascular toxicity of bisphenol S (BPS), especially whether BPS exposure has the pro-atherogenic effects in mammals is still unknown. Here, we firstly constructed an apolipoprotein E knockout (ApoE-/-) mouse model and cultured cells to investigate the risk of BPS on AS and explore the underlying mechanisms. Results showed that prolonged exposure to 50 μg/kg body weight (bw)/day BPS indeed aggravated AS lesions both in the en face aortas and aortic sinuses of ApoE-/- mice. Moreover, BPS were found to be implicated in the AS pathological process: 1) stimulates adhesion molecule expression to promote monocyte-endothelial cells (ECs) adhesion with 3.6 times more than the control group in vivo; 2) increases the distribution of vascular smooth muscle cells (VSMCs) with 9.3 times more than the control group in vivo, possibly through the migration of VSMCs; and 3) induces an inflammatory response by increasing the number of macrophages (MACs), with 3.7 times more than the control group in vivo, and the release of inflammatory mediators. Furthermore, we have identified eight significant AS-related genes induced by BPS, including angiopoietin-like protein 7 (Angptl17) and lipocalin-2 (Lcn2) in ECs; matrix metalloproteinase 9 (Mmp13), secreted phosphoprotein 1 (Spp1), and collagen type II alpha 1 (Col2a1) in VSMCs; and kininogen 1 (Kng1), integrin alpha X (Itgax), and MAC-expressed gene 1 (Mpeg1) in MACs. Overall, this study firstly found BPS exposure could exacerbate mammalian AS and might also provide a theoretical basis for elucidating BPS and its analogues induced AS and related CVDs.
Collapse
Affiliation(s)
- Ying-Bing Zuo
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China; Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao 266000, China
| | - Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Meng-Die Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China; Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao 266000, China
| | - Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hong-Yu Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao 266000, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| |
Collapse
|
3
|
Lu X, Yu M, Yang Y, Zhang X, Chen T, Lei B. G-Protein Coupled Receptor 1 Is Involved in Tetrachlorobisphenol A-Induced Inflammatory Response in Jurkat Cells. TOXICS 2024; 12:485. [PMID: 39058137 PMCID: PMC11281156 DOI: 10.3390/toxics12070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Estrogens can affect the immune inflammatory response through estrogen receptor alpha (ERα), but the specific role of estrogen member receptor G-protein coupled receptor 1 (GPER1) in this process remains unclear. In this study, we evaluated the effects of tetrachlorobisphenol A (TCBPA), which has estrogen activity, on immune inflammatory-related indicators of Jurkat cells, as well as investigated the role of GPER1 in these effects. The results showed that TCBPA at lower concentrations significantly promoted the viability of Jurkat cells, whereas higher concentrations decreased cell viability. TCBPA at concentrations ranging from 1 to 25 μM increased the intracellular reactive oxygen species (ROS) levels. Additionally, treatment with 10 μM TCBPA increased the protein expression of ERα and GPER1, elevated the phosphorylation of protein kinase B (p-Akt), and upregulated the mRNA levels of GPER1, Akt, and phosphoinositide 3-kinase (PI3K) genes. Treatment with 10 μM TCBPA also upregulated the protein or gene expression of pro-inflammatory cytokines, such as interleukins (IL1β, IL2, IL6, IL8, IL12α) and tumor necrosis factor alpha (TNFα) in Jurkat cells. Furthermore, pretreatment with a GPER1 inhibitor G15 significantly reduced the mRNA levels of Akt induced by 10 μM TCBPA. Moreover, the upregulation of mRNA expression of RelA (p65), TNFα, IL6, IL8, and IL12α induced by 10 μM TCBPA was also significantly attenuated after G15 pretreatment. These findings suggest that TCBPA upregulates the expression of genes related to inflammatory responses by activating the GPER1-mediated PI3K/Akt signaling pathway. This study provides new insights into the mechanism of TCBPA-induced inflammatory response.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Tian Chen
- Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| |
Collapse
|
4
|
Kolya H, Kang CW. Toxicity of Metal Oxides, Dyes, and Dissolved Organic Matter in Water: Implications for the Environment and Human Health. TOXICS 2024; 12:111. [PMID: 38393206 PMCID: PMC10892313 DOI: 10.3390/toxics12020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
This study delves into the critical issue of water pollution caused by the presence of metal oxides, synthetic dyes, and dissolved organic matter, shedding light on their potential ramifications for both the environment and human health. Metal oxides, ubiquitous in industrial processes and consumer products, are known to leach into water bodies, posing a significant threat to aquatic ecosystems. Additionally, synthetic dyes, extensively used in various industries, can persist in water systems and exhibit complex chemical behavior. This review provides a comprehensive examination of the toxicity associated with metal oxides, synthetic dyes, and dissolved organic matter in water systems. We delve into the sources and environmental fate of these contaminants, highlighting their prevalence in natural water bodies and wastewater effluents. The study highlights the multifaceted impacts of them on human health and aquatic ecosystems, encompassing effects on microbial communities, aquatic flora and fauna, and the overall ecological balance. The novelty of this review lies in its unique presentation, focusing on the toxicity of metal oxides, dyes, and dissolved organic matter. This approach aims to facilitate the accessibility of results for readers, providing a streamlined and clear understanding of the reported findings.
Collapse
Affiliation(s)
| | - Chun-Won Kang
- Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea;
| |
Collapse
|
5
|
Maugeri A, Russo C, Patanè GT, Barreca D, Mandalari G, Navarra M. The Inhibition of Mitogen-Activated Protein Kinases (MAPKs) and NF-κB Underlies the Neuroprotective Capacity of a Cinnamon/Curcumin/Turmeric Spice Blend in Aβ-Exposed THP-1 Cells. Molecules 2023; 28:7949. [PMID: 38138438 PMCID: PMC10745857 DOI: 10.3390/molecules28247949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by an increased level of β-amyloid (Aβ) protein deposition in the brain, yet the exact etiology remains elusive. Nowadays, treatments only target symptoms, thus the search for novel strategies is constantly stimulated, and looking to natural substances from the plant kingdom. The aim of this study was to investigate the neuroprotective effects of a spice blend composed of cinnamon bark and two different turmeric root extracts (CCSB) in Aβ-exposed THP-1 cells as a model of neuroinflammation. In abiotic assays, CCSB demonstrated an antioxidant capacity up to three times stronger than Trolox in the ORAC assay, and it reduced reactive oxygen species (ROS) induced by the amyloid fragment in THP-1 cells by up to 39.7%. Moreover, CCSB lowered the Aβ stimulated secretion of the pro-inflammatory cytokines IL-1β and IL-6 by up to 24.9% and 43.4%, respectively, along with their gene expression by up to 25.2% and 43.1%, respectively. The mechanism involved the mitogen-activated protein kinases ERK, JNK and p38, whose phosphorylation was reduced by up to 51.5%, 73.7%, and 58.2%, respectively. In addition, phosphorylation of p65, one of the five components forming NF-κB, was reduced by up to 86.1%. Our results suggest that CCSB can counteract the neuroinflammatory stimulus induced by Aβ-exposure in THP-1 cells, and therefore can be considered a potential candidate for AD management.
Collapse
Affiliation(s)
- Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (G.T.P.); (D.B.)
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (G.T.P.); (D.B.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (G.T.P.); (D.B.)
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (G.T.P.); (D.B.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (G.T.P.); (D.B.)
| |
Collapse
|