1
|
Cummings CO, Eisenbarth JM. Snakebite Envenoming in Avian Species: A Systematic Scoping Review and Practitioner Experience Survey. J Avian Med Surg 2023; 37:118-131. [PMID: 37733451 PMCID: PMC10787666 DOI: 10.1647/22-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Snakebite envenoming in avian species is infrequently reported in the veterinary literature, although perhaps not as rarely as recent publications suggest. A systematic scoping review was performed on the topic using PubMed and Google Scholar, 21 veterinary textbooks, and 139 conference proceedings. A practitioner experience survey was also performed, with recruitment from Facebook groups for exotic animal practitioners and professional organization email listservs. Only 31 texts met our inclusion/exclusion criteria, which meant they described clinicopathologic signs of snakebite envenomation in avian species, the treatment of snakebite envenomation in avian species, or expanded the geographic range or the number of captive avian and snake species involved. Reports included approximately 15-20 different species of both snakes and birds worldwide; however, no reports described clinicopathologic signs of naturally occurring snakebites from Asia, Australasia, or Europe. The few responses from our practitioner experience survey suggest that snakebite envenomation may be more common than previously reported. Clinical signs of snake envenomation in birds appear to depend on the snake species involved but often include local swelling and subcutaneous edema or hemorrhage with paired fang marks; weakness, bleeding, neurologic deficits, and death may follow. A wide variety of treatment protocols have been used to counter snakebite envenomation in birds, including the successful use of antivenom. Based on this body of evidence, much remains to be learned about snakebite envenomation of birds, particularly about the efficacy of different treatment protocols.
Collapse
Affiliation(s)
- Charles O Cummings
- Tufts Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA 02111, USA,
| | - Jessica M Eisenbarth
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
2
|
Chong HP, Tan KY, Liu BS, Sung WC, Tan CH. Cytotoxicity of Venoms and Cytotoxins from Asiatic Cobras (Naja kaouthia, Naja sumatrana, Naja atra) and Neutralization by Antivenoms from Thailand, Vietnam, and Taiwan. Toxins (Basel) 2022; 14:toxins14050334. [PMID: 35622581 PMCID: PMC9144634 DOI: 10.3390/toxins14050334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Envenoming by cobras (Naja spp.) often results in extensive local tissue necrosis when optimal treatment with antivenom is not available. This study investigated the cytotoxicity of venoms and purified cytotoxins from the Monocled Cobra (Naja kaouthia), Taiwan Cobra (Naja atra), and Equatorial Spitting Cobra (Naja sumatrana) in a mouse fibroblast cell line, followed by neutralization of the cytotoxicity by three regional antivenoms: the Thai Naja kaouthia monovalent antivenom (NkMAV), Vietnamese snake antivenom (SAV) and Taiwanese Neuro bivalent antivenom (NBAV). The cytotoxins of N. atra (NA-CTX) and N. sumatrana (NS-CTX) were identified as P-type cytotoxins, whereas that of N. kaouthia (NK-CTX) is S-type. All venoms and purified cytotoxins demonstrated varying concentration-dependent cytotoxicity in the following trend: highest for N. atra, followed by N. sumatrana and N. kaouthia. The antivenoms moderately neutralized the cytotoxicity of N. kaouthia venom but were weak against N. atra and N. sumatrana venom cytotoxicity. The neutralization potencies of the antivenoms against the cytotoxins were varied and generally low across NA-CTX, NS-CTX, and NK-CTX, possibly attributed to limited antigenicity of CTXs and/or different formulation of antivenom products. The study underscores the need for antivenom improvement and/or new therapies in treating local tissue toxicity caused by cobra envenomings.
Collapse
Affiliation(s)
- Ho Phin Chong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Bing-Sin Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
- Correspondence: (W.-C.S.); (C.H.T.)
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: (W.-C.S.); (C.H.T.)
| |
Collapse
|
3
|
Microsphere Peptide-Based Immunoassay for the Detection of Recombinant Bovine Somatotropin in Injection Preparations. BIOSENSORS 2022; 12:bios12030138. [PMID: 35323408 PMCID: PMC8946150 DOI: 10.3390/bios12030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/02/2022]
Abstract
The use of peptides in immunoassays can be favored over the use of the full protein when more cost effective or less toxic approaches are needed, or when access to the full protein is lacking. Due to restricted access to recombinant bovine somatotropin (rbST), a protein enhancing growth and lactating performances of livestock, which use has been banned in the EU, Canada and Australia (amongst others), we developed a peptide-based biorecognition assay on an imaging planar array analyzer. For this, we identified the rbST epitope that is responsible for binding to the rbST-targeting monoclonal antibody 4H12 (MAb 4H12) to be 115DLEEGILALMR125. This linear peptide was synthesized and coupled to microspheres, after which it was tested in a biorecognition competitive inhibition assay format. We observed IC50 values of approximately 0.11 μg mL−1, which are lower than observed for the full rbST protein (IC50 = 0.20 μg mL−1). Importantly, there was no binding with the scrambled peptide. Preliminary results of directly coupled peptides in a microsphere biorecognition assay for detection of rbST are presented. Real-life applicability for detection of somatotropins (STs) in injection preparations of bovine-, porcine- and equine ST are shown. This newly developed immunoassay strongly supports future developments of peptide-based immunoassays to circumvent the limited access to the full protein.
Collapse
|
4
|
Lin JH, Sung WC, Mu HW, Hung DZ. Local Cytotoxic Effects in Cobra Envenoming: A Pilot Study. Toxins (Basel) 2022; 14:toxins14020122. [PMID: 35202149 PMCID: PMC8877591 DOI: 10.3390/toxins14020122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 01/31/2023] Open
Abstract
The cobra (genus Naja (N.)) is one of the most common venomous snakes. Due to its frequency and deadly complications of muscle paralysis, local necrosis, and chronic musculoskeletal disability, it should not be ignored. The pathology of devastating tissue destruction, even though specific antivenoms exist, is not fully clear. Here, we attempted to dig in envenomed tissues to study the clinical toxicology of cobra venom. Four cases of N. atra snake envenomation, in which the subjects developed advanced tissue injury, were involved in this study. We used enzyme-ligand sandwich immunoassay (ELISA) to assay the whole venom, cytotoxin A3 and short-chain neurotoxin (sNTX) in blood, bullae, wound discharge, and debrided tissue. We found that persistently high concentrations of venom and toxins, especially cytotoxin A3, were detected in bullae, wound discharge fluid and necrotic tissue of these patients even after large doses of specific antivenom treatment, and wide excision and advanced debridement could largely remove these toxins, lessen the size of necrosis, and promote wound healing. We also found that the point-of-care apparatus, ICT-Cobra kit, might be used to promptly monitor the wound condition and as one of the indicators of surgical intervention in cases of cobra envenomation in Taiwan.
Collapse
Affiliation(s)
- Jing-Hua Lin
- Division of Toxicology, China Medical University Hospital, Taichung 40447, Taiwan; (J.-H.L.); (H.-W.M.)
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Han-Wei Mu
- Division of Toxicology, China Medical University Hospital, Taichung 40447, Taiwan; (J.-H.L.); (H.-W.M.)
| | - Dong-Zong Hung
- Division of Toxicology, China Medical University Hospital, Taichung 40447, Taiwan; (J.-H.L.); (H.-W.M.)
- Correspondence: ; Tel.: +886-4-2205-2121
| |
Collapse
|
5
|
Development of Antibody Detection ELISA Based on Immunoreactive Toxins and Toxin-Derived Peptides to Evaluate the Neutralization Potency of Equine Plasma against Naja atra in Taiwan. Toxins (Basel) 2021; 13:toxins13110818. [PMID: 34822602 PMCID: PMC8622849 DOI: 10.3390/toxins13110818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Naja atra, also known as Taiwanese cobra, is one of the most prevalent venomous snakes in Taiwan. Clinically, freeze-dried neurotoxic antivenom (FNAV) produced from horses by Taiwan Centers for Disease Control (CDC) has been the only approved treatment for N. atra envenoming for the last few decades. During antivenom production, large numbers of mice are used in the in vivo assay to determine whether the neutralization potency of hyperimmunized equines is satisfactory for large-scale harvesting. However, this in vivo assay is extremely laborious, expensive, and significantly impairs animal welfare. In the present study, we aimed to develop an in vitro ELISA-based system that could serve as an alternative assay to evaluate the neutralization potency of plasma from hyperimmunized equines. We initially obtained 51 plasma samples with known (high or low) neutralization potency assessed in vivo from 9 hyperimmunized equines and subsequently determined their antibody titers against the five major protein components of N. atra venom (neurotoxin (NTX), phospholipase A2 (PLA2), cytotoxin (CTX), cysteine-rich secretory protein (CRISP), and snake venom metalloproteinase (SVMP)) via ELISA. The antibody titer against NTX was the most effective in discriminating between high and low potency plasma samples. To identify the specific epitope(s) of NTX recognized by neutralization potency-related antibodies, 17 consecutive NTX-derived pentadecapeptides were synthesized and used as antigens to probe the 51 equine plasma samples. Among the 17 peptides, immunoreactive signals for three consecutive peptides (NTX1-8, NTX1-9, and NTX1-10) were significantly higher in the high potency relative to low potency equine plasma groups (p < 0.0001). Our ELISA system based on NTX1-10 peptide (RWRDHRGYRTERGCG) encompassing residues 28–42 of NTX displayed optimal sensitivity (96.88%) and specificity (89.47%) for differentiating between high- and low-potency plasma samples (area under the receiver operating characteristic curve (AUC) = 0.95). The collective data clearly indicate that the antibody titer against NTX protein or derived peptides can be used to efficiently discriminate between high and low neutralization potency of plasma samples from venom-immunized horses. This newly developed antibody detection ELISA based on NTX or its peptide derivatives has good potential to complement or replace the in vivo rodent assay for determining whether the neutralization potency of equine plasma is satisfactory for large-scale harvesting in the antivenom production process against N. atra.
Collapse
|
6
|
Liu BS, Jiang BR, Hu KC, Liu CH, Hsieh WC, Lin MH, Sung WC. Development of a Broad-Spectrum Antiserum against Cobra Venoms Using Recombinant Three-Finger Toxins. Toxins (Basel) 2021; 13:556. [PMID: 34437427 PMCID: PMC8402450 DOI: 10.3390/toxins13080556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Three-finger toxins (3FTXs) are the most clinically relevant components in cobra (genus Naja) venoms. Administration of the antivenom is the recommended treatment for the snakebite envenomings, while the efficacy to cross-neutralize the different cobra species is typically limited, which is presumably due to intra-specific variation of the 3FTXs composition in cobra venoms. Targeting the clinically relevant venom components has been considered as an important factor for novel antivenom design. Here, we used the recombinant type of long-chain α-neurotoxins (P01391), short-chain α-neurotoxins (P60770), and cardiotoxin A3 (P60301) to generate a new immunogen formulation and investigated the potency of the resulting antiserum against the venom lethality of three medially important cobras in Asia, including the Thai monocled cobra (Naja kaouthia), the Taiwan cobra (Naja atra), and the Thai spitting cobra (Naja Siamensis) snake species. With the fusion of protein disulfide isomerase and the low-temperature settings, the correct disulfide bonds were built on these recombinant 3FTXs (r3FTXs), which were confirmed by the circular dichroism spectra and tandem mass spectrometry. Immunization with r3FTX was able to induce the specific antibody response to the native 3FTXs in cobra venoms. Furthermore, the horse and rabbit antiserum raised by the r3FTX mixture is able to neutralize the venom lethality of the selected three medically important cobras. Thus, the study demonstrated that the r3FTXs are potential immunogens in the development of novel antivenom with broad neutralization activity for the therapeutic treatment of victims involving cobra snakes in countries.
Collapse
Affiliation(s)
- Bing-Sin Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan; (B.-S.L.); (B.-R.J.); (K.-C.H.); (M.-H.L.)
| | - Bo-Rong Jiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan; (B.-S.L.); (B.-R.J.); (K.-C.H.); (M.-H.L.)
| | - Kai-Chieh Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan; (B.-S.L.); (B.-R.J.); (K.-C.H.); (M.-H.L.)
| | - Chien-Hsin Liu
- Centers for Disease Control, Ministry of Health and Welfare, Taipei 10050, Taiwan; (C.-H.L.); (W.-C.H.)
| | - Wen-Chin Hsieh
- Centers for Disease Control, Ministry of Health and Welfare, Taipei 10050, Taiwan; (C.-H.L.); (W.-C.H.)
| | - Min-Han Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan; (B.-S.L.); (B.-R.J.); (K.-C.H.); (M.-H.L.)
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan; (B.-S.L.); (B.-R.J.); (K.-C.H.); (M.-H.L.)
| |
Collapse
|
7
|
Lin JH, Sung WC, Liao JW, Hung DZ. A Rapid and International Applicable Diagnostic Device for Cobra (Genus Naja) Snakebites. Toxins (Basel) 2020; 12:toxins12090572. [PMID: 32899472 PMCID: PMC7551368 DOI: 10.3390/toxins12090572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Cobra snakes (genus Naja) are some of the most dangerous snake species in Asia and Africa, as their bites cause severe life-threatening respiratory failure and local tissue destruction, especially in the case of late diagnosis. The differential diagnosis of snakebite envenomation still mainly relies upon symptomatology, the patient’s description, and the experience of physicians. We have designed a rapid test, immunochromatographic test of cobra (ICT-Cobra), which obtained fair results in improving the diagnosis and treatment of Naja (N.) atra snakebites in Taiwan. In this study, we further investigated the feasibility of applying the kit for the detection of other cobra venoms based on the potential interspecies similarity. We firstly demonstrated the cross-reactivity between eight venoms of medically important cobra species and the rabbit anti-N. atra IgG that was used in ICT-Cobra by Western blotting and sandwich enzyme-linked immunosorbent assay. Then, ICT-Cobra was used to detect various concentrations of the eight venoms to elucidate its performance. Noticeable correlations between the cross-reactivity of venoms from genus Naja snakes and existing geographical characteristics were found. ICT-Cobra could detect venoms from other Asian cobras with variable detection limits comparable to those observed for N. atra, but the kit was less successful in the detection of venom from African cobras. The similar but slightly different venom components and the interaction between venom and rabbit anti-N. atra IgG led to variations in the detection limits. The transcontinental usage of ICT-Cobra might be possible due to the cross-reactivity of antibodies and similarities among the larger-sized proteins. This study showed that the close immunological relationships in the genus Naja could be used to develop a venom detection kit for the diagnosis of cobra envenomation in both Asian and African regions. Additional clinical studies and technical adjustments are still needed to improve the efficacy and broadening the application of ICT-Cobra in the future.
Collapse
Affiliation(s)
- Jing-Hua Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan;
- Correspondence: (J.-W.L.); (D.-Z.H.); Tel.: +886-4-2284-0894 (J.-W.L.); +886-4-2205-2121 (D.-Z.H.)
| | - Dong-Zong Hung
- Division of Toxicology, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: (J.-W.L.); (D.-Z.H.); Tel.: +886-4-2284-0894 (J.-W.L.); +886-4-2205-2121 (D.-Z.H.)
| |
Collapse
|
8
|
Monitoring the Disulfide Bonds of Folding Isomers of Synthetic CTX A3 Polypeptide Using MS-Based Technology. Toxins (Basel) 2019; 11:toxins11010052. [PMID: 30658470 PMCID: PMC6356385 DOI: 10.3390/toxins11010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Native disulfide formation is crucial to the process of disulfide-rich protein folding in vitro. As such, analysis of the disulfide bonds can be used to track the process of the folding reaction; however, the diverse structural isomers interfere with characterization due to the non-native disulfide linkages. Previously, a mass spectrometry (MS) based platform coupled with peptide demethylation and an automatic disulfide bond searching engine demonstrated the potential to screen disulfide-linked peptides for the unambiguous assignment of paired cysteine residues of toxin components in cobra venom. The developed MS-based platform was evaluated to analyze the disulfide bonds of structural isomers during the folding reaction of synthetic cardiotoxin A3 polypeptide (syn-CTX A3), an important medical component in cobra venom. Through application of this work flow, a total of 13 disulfide-linked peptides were repeatedly identified across the folding reaction, and two of them were found to contain cysteine pairings, like those found in native CTX A3. Quantitative analysis of these disulfide-linked peptides showed the occurrence of a progressive disulfide rearrangement that generates a native disulfide bond pattern on syn-CTX A3 folded protein. The formation of these syn-CTX A3 folded protein reaches a steady level in the late stage of the folding reaction. Biophysical and cell-based assays showed that the collected syn-CTX A3 folded protein have a β-sheet secondary structure and cytotoxic activity similar to that of native CTX A3. In addition, the immunization of the syn-CTX A3 folded proteins could induce neutralization antibodies against the cytotoxic activity of native CTX A3. In contrast, these structure activities were poorly observed in the other folded isomers with non-native disulfide bonds. The study highlights the ability of the developed MS platform to assay isomers with heterogeneous disulfide bonds, providing insight into the folding mechanism of the bioactive protein generation.
Collapse
|
9
|
Calvete JJ, Rodríguez Y, Quesada-Bernat S, Pla D. Toxin-resolved antivenomics-guided assessment of the immunorecognition landscape of antivenoms. Toxicon 2018; 148:107-122. [PMID: 29704534 DOI: 10.1016/j.toxicon.2018.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 04/22/2018] [Indexed: 01/23/2023]
Abstract
Snakebite envenoming represents a major issue in rural areas of tropical and subtropical regions across sub-Saharan Africa, South to Southeast Asia, Latin America and Oceania. Antivenoms constitute the only scientifically validated therapy for snakebite envenomings, provided they are safe, effective, affordable, accessible and administered appropriately. However, the lack of financial incentives in a technology that has remained relatively unchanged for more than a century, has contributed to some manufacturers leaving the market and others downscaling production or increasing the prices, leading to a decline in the availability and accessibility for these life-saving antidotes to millions of rural poor most at risk from snakebites in low income countries. The shortage of antivenoms can be significantly alleviated by optimizing the use of current antivenoms (through the assessment of their specific and paraspecific efficacy against the different medically relevant homologous and heterologous snake venoms) and by generating novel polyspecific antivenoms exhibiting broad clinical spectrum and wide geographic distribution range. Research on venoms has been continuously enhanced by advances in technology. Particularly, the last decade has witnessed the development of omics strategies for unravelling the toxin composition of venoms ("venomics") and to assess the immunorecognition profile of antivenoms ("antivenomics"). Here, we review recent developments and reflect on near future innovations that promise to revolutionize the mutually enlightening relationship between evolutionary and translational venomics.
Collapse
Affiliation(s)
- Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - Yania Rodríguez
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Sarai Quesada-Bernat
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Davinia Pla
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| |
Collapse
|