1
|
Krol A, Kokotkiewicz A, Krolicka A, Hinc K, Badura A, Lorenc A, Marzec-Wroblewska U, Bucinski A, Kuzma L, Luczkiewicz M. Adventitious and Hairy Root Cultures of Salvia apiana as a Source of Rosmarinic Acid. Int J Mol Sci 2025; 26:3138. [PMID: 40243886 PMCID: PMC12077260 DOI: 10.3390/ijms26073138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
For the first time, adventitious and hairy root cultures of Salvia apiana (white sage) have been established and analyzed for the content of secondary metabolites. Non-transformed roots derived from sterile seedlings were maintained on a full-strength IBA-supplemented SH medium. Adventitious roots yielded up to 44.5 mg/g and 18.7 mg/g DW rosmarinic acid when grown in shake flasks and immersion-column bioreactors, respectively. Transformed root cultures were established from S. apiana microshoots, infected with A4 and LBA9402 strains of Rhizobium rhizogenes. The obtained hairy root cultures (three and two clonal lines established using A4 and LBA9402 strains, respectively) were maintained in the PGR-free, full-strength SH medium. The most productive root line, established using A4 strain, accumulated rosmarinic acid at 38.1 and 39.6 mg/g DW when grown in shake flasks and spray bioreactors, respectively. Neither adventitious nor transformed roots of S. apiana produced diterpenoids, identified in roots of the field-grown plants, and instead proved to be a selective source of rosmarinic acid.
Collapse
Affiliation(s)
- Agata Krol
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, Generała Józefa Hallera Street 107, 80-416 Gdansk, Poland; (A.K.); (M.L.)
| | - Adam Kokotkiewicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, Generała Józefa Hallera Street 107, 80-416 Gdansk, Poland; (A.K.); (M.L.)
| | - Aleksandra Krolicka
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Abrahama Street 58, 80-307 Gdańsk, Poland;
| | - Krzysztof Hinc
- Division of Molecular Bacteriology, Medical University of Gdansk, Dębinki Street 1, 80-211 Gdańsk, Poland;
| | - Anna Badura
- Department of Biopharmacy, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska Street 15, 85-067 Bydgoszcz, Poland; (A.B.); (A.L.); (U.M.-W.); (A.B.)
| | - Andzelika Lorenc
- Department of Biopharmacy, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska Street 15, 85-067 Bydgoszcz, Poland; (A.B.); (A.L.); (U.M.-W.); (A.B.)
| | - Urszula Marzec-Wroblewska
- Department of Biopharmacy, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska Street 15, 85-067 Bydgoszcz, Poland; (A.B.); (A.L.); (U.M.-W.); (A.B.)
| | - Adam Bucinski
- Department of Biopharmacy, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska Street 15, 85-067 Bydgoszcz, Poland; (A.B.); (A.L.); (U.M.-W.); (A.B.)
| | - Lukasz Kuzma
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 1 Muszyńskiego Street, 90-151 Lodz, Poland;
| | - Maria Luczkiewicz
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, Generała Józefa Hallera Street 107, 80-416 Gdansk, Poland; (A.K.); (M.L.)
| |
Collapse
|
2
|
Iobbi V, Donadio G, Lanteri AP, Maggi N, Kirchmair J, Parisi V, Minuto G, Copetta A, Giacomini M, Bisio A, De Tommasi N, Drava G. Targeted metabolite profiling of Salvia rosmarinus Italian local ecotypes and cultivars and inhibitory activity against Pectobacterium carotovorum subsp. carotovorum. FRONTIERS IN PLANT SCIENCE 2024; 15:1164859. [PMID: 38390298 PMCID: PMC10883066 DOI: 10.3389/fpls.2024.1164859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Introduction The development of agriculture in terms of sustainability and low environmental impact is, at present, a great challenge, mainly in underdeveloped and marginal geographical areas. The Salvia rosmarinus "Eretto Liguria" ecotype is widespread in Liguria (Northwest Italy), and farmers commonly use it by for cuttings and for marketing. In the present study, this ecotype was characterized in comparison with other cultivars from the same geographical region and Campania (Southern Italy), with a view to application and registration processes for the designation of protected geographical indications. Moreover, the possibility of using the resulting biomass after removing cuttings or fronds as a source of extracts and pure compounds to be used as phytosanitary products in organic farming was evaluated. Specifically, the potential of rosemary extracts and pure compounds to prevent soft rot damage was then tested. Methods A targeted NMR metabolomic approach was employed, followed by multivariate analysis, to characterize the rosemary accessions. Bacterial soft rot assay and disk diffusion test were carried out to evaluate the activity of extracts and isolated compounds against Pectobacterium carotovorum subsp. carotovorum. Enzymatic assay was performed to measure the in vitro inhibition of the pectinase activity produced by the selected pathogen. Molecular docking simulations were used to explore the possible interaction of the selected compounds with the pectinase enzymes. Results and Discussion The targeted metabolomic analysis highlighted those different geographical locations can influence the composition and abundance of bioactive metabolites in rosemary extracts. At the same time, genetic factors are important when a single geographical area is considered. Self-organizing maps (SOMs) showed that the accessions of "Eretto Liguria" appeared well characterized when compared to the others and had a good content in specialized metabolites, particularly carnosic acid. Soft rotting Enterobacteriaceae belonging to the Pectobacterium genus represent a serious problem in potato culture. Even though rosemary methanolic extracts showed a low antibacterial activity against a strain of Pectobacterium carotovorum subsp. carotovorum in the disk diffusion test, they showed ability in reducing the soft rot damage induced by the bacterium on potato tissue. 7-O-methylrosmanol, carnosol and isorosmanol appeared to be the most active components. In silico studies indicated that these abietane diterpenoids may interact with P. carotovorum subsp. carotovorum pectate lyase 1 and endo-polygalacturonase, thus highlighting these rosemary components as starting points for the development of agents able to prevent soft rot progression.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Genova, Italy
| | | | - Anna Paola Lanteri
- Plant Pathology Laboratory, Section Microbiology and Molecular Biology, Centro di Sperimentazione e Assistenza Agricola (CeRSAA), Albenga, Italy
| | - Norbert Maggi
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Genova, Italy
| | - Johannes Kirchmair
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Giovanni Minuto
- Plant Pathology Laboratory, Section Microbiology and Molecular Biology, Centro di Sperimentazione e Assistenza Agricola (CeRSAA), Albenga, Italy
| | - Andrea Copetta
- Research Centre For Vegetable and Ornamental Crops (CREA), Sanremo, Italy
| | - Mauro Giacomini
- Department of Informatics, Bioengineering, Robotics and System Science, University of Genova, Genova, Italy
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Genova, Italy
| | | | - Giuliana Drava
- Department of Pharmacy, University of Genova, Genova, Italy
| |
Collapse
|
3
|
Sothearith Y, Appiah KS, Sophea C, Smith J, Samal S, Motobayashi T, Fujii Y. Influence of β-Ionone in the Phytotoxicity of the Rhizome of Iris pallida Lam. PLANTS (BASEL, SWITZERLAND) 2024; 13:326. [PMID: 38276783 PMCID: PMC10819377 DOI: 10.3390/plants13020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Iris pallida Lam., also known as Sweetie Iris, is a perennial ornamental and medicinal plant that produces a wide range of secondary metabolites. The Sweetie Iris was recently reported to have high allelopathic properties with the potential to be explored in sustainable weed management. This study aimed to identify and evaluate the contributions of compounds involved in the inhibitory effects of the rhizome of Sweetie Iris. High-performance liquid chromatography (HPLC) analysis was used to determine the content of β-ionone in the rhizome of Sweetie Iris. The phytotoxicity of β-ionone was evaluated on lettuce (Lactuca sativa L.) and other test plants. The content of β-ionone in the crude extract of Sweetie Iris rhizome was found to be 20.0 mg g-1 by HPLC analysis. The phytotoxicity bioassay showed that β-ionone had strong inhibitory activity on the growth of lettuce (Lactuca sativa L.) and the other test plants, including Taraxacum officinale, Stellaria media, Eleusine indica, Amaranthus hybridus, Vicia villosa, and Brassica napus. At a concentration of 23.0 µg mL-1, β-ionone inhibited the growth of all test plant species treated. Therefore, β-ionone is an active compound among the other allelopathic substances contained in the rhizome of Sweetie Iris.
Collapse
Affiliation(s)
- Yourk Sothearith
- Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu 183-8509, Tokyo, Japan;
- Ministry of Environment, Morodok Techcho (Lot 503) Tonle Bassac, Chamkarmorn, Phnom Penh 120101, Cambodia; (C.S.); (S.S.)
| | - Kwame Sarpong Appiah
- Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu 183-8509, Tokyo, Japan;
- Department of Crop Science, University of Ghana, Legon, Accra P.O. Box LG 44, Ghana
| | - Chhin Sophea
- Ministry of Environment, Morodok Techcho (Lot 503) Tonle Bassac, Chamkarmorn, Phnom Penh 120101, Cambodia; (C.S.); (S.S.)
- Centre for Biodiversity Conservation, Royal University of Phnom Penh, Russian Federation Boulevard, Toul Kork, Phnom Penh 120404, Cambodia
| | - Jady Smith
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Say Samal
- Ministry of Environment, Morodok Techcho (Lot 503) Tonle Bassac, Chamkarmorn, Phnom Penh 120101, Cambodia; (C.S.); (S.S.)
- Ministry of Land Management, Urban and Construction, Lot 2005, Street 307, Sangkat Khmuonh, Khan Sen Sok, Phnom Penh 120803, Cambodia
| | - Takashi Motobayashi
- Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu 183-8509, Tokyo, Japan;
| | - Yoshiharu Fujii
- Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu 183-8509, Tokyo, Japan;
| |
Collapse
|
4
|
Rob MM, Hossen K, Ozaki K, Teruya T, Kato-Noguchi H. Phytotoxicity and Phytotoxic Substances in Calamus tenuis Roxb. Toxins (Basel) 2023; 15:595. [PMID: 37888626 PMCID: PMC10611027 DOI: 10.3390/toxins15100595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Calamus tenuis is a shrub species distributed across South Asia. It grows well in diversified habitats and tends to dominate plants in the surrounding environment. The phytotoxicity of C. tenuis and the action of its phytochemicals against other plant species could explain its dominant behavior. Compounds with phytotoxic activity are in high demand as prospective sources of ecofriendly bioherbicides. Therefore, we investigated the phytotoxicity of C. tenuis. Aqueous methanol extracts of this plant species significantly limited the growth of four test plant species, two monocots (barnyard grass and timothy), and two dicots (alfalfa and cress), in a dose- and species-dependent manner. Bio-directed chromatographic isolation of the C. tenuis extracts yielded two major active substances: a novel compound, calamulactone {(S)-methyl 8-(5-oxo-2,5-dihydrofuran-2-yl) octanoate}, and 3-oxo-α-ionone. Both of the identified compounds exerted strong growth inhibitory effects on cress and timothy seedlings. The concentrations of 3-oxo-α-ionone and calamulactone required to limit the growth of the cress seedlings by 50% (I50) were 281.6-199.5 and 141.1-105.5 µM, respectively, indicating that the effect of calamulactone was stronger with lower I50 values. Similarly, the seedlings of timothy also showed a considerably higher sensitivity to calamulactone (I50: 40.5-84.4 µM) than to 3-oxo-α-ionone (I50: 107.8-144.7 µM). The findings indicated that the leaves of C. tenuis have marked growth-inhibitory potential, and could affect surrounding plants to exert dominance over the surrounding plant community. Moreover, the two identified phytotoxic substances might play a key role in the phytotoxicity of C. tenuis, and could be a template for bioherbicide development. This paper was the first to report calamulactone and its phytotoxicity.
Collapse
Affiliation(s)
- Md. Mahfuzur Rob
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Japan
- Department of Horticulture, Faculty of Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Kawsar Hossen
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Japan
- Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Kaori Ozaki
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan;
| | - Toshiaki Teruya
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan;
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan;
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama 790-8566, Japan
| |
Collapse
|
5
|
Wu JW, Li FL, Yao SK, Zhao ZY, Feng X, Chen RZ, Xu YQ. Iva xanthiifolia leaf extract reduced the diversity of indigenous plant rhizosphere bacteria. BMC PLANT BIOLOGY 2023; 23:297. [PMID: 37268959 DOI: 10.1186/s12870-023-04316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Iva xanthiifolia, native to North America, is now widely distributed in northeastern China and has become a vicious invasive plant. This article aims to probe the role of leaf extract in the invasion of I. xanthiifolia. METHODS We collected the rhizosphere soil of Amaranthus tricolor and Setaria viridis in the invasive zone, the noninvasive zone and the noninvasive zone treated with extract from I. xanthiifolia leaf, and obtained I. xanthiifolia rhizosphere soil in the invasive zone. All wild plants were identified by Xu Yongqing. I. xanthiifolia (collection number: RQSB04100), A. tricolor (collection number: 831,030) and S. viridis (collection number: CF-0002-034) are all included in Chinese Virtual Herbarium ( https://www.cvh.ac.cn/index.php ). The soil bacterial diversity was analyzed based on the Illumina HiSeq sequencing platform. Subsequently, taxonomic analysis and Faprotax functional prediction were performed. RESULTS The results showed that the leaf extract significantly reduced the diversity of indigenous plant rhizosphere bacteria. A. tricolor and S. viridis rhizobacterial phylum and genus abundances were significantly reduced under the influence of I. xanthiifolia or its leaf extract. The results of functional prediction showed that bacterial abundance changes induced by leaf extracts could potentially hinder nutrient cycling in native plants and increased bacterial abundance in the A. tricolor rhizosphere related to aromatic compound degradation. In addition, the greatest number of sensitive Operational Taxonomic Units (OTUs) appeared in the rhizosphere when S. viridis was in response to the invasion of I. xanthiifolia. It can be seen that A. tricolor and S. viridis have different mechanisms in response to the invasion of I. xanthiifolia. CONCLUSION I. xanthiifolia leaves material has potential role in invasion by altering indigenous plant rhizosphere bacteria.
Collapse
Affiliation(s)
- Jia-Wen Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Feng-Lan Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shu-Kuan Yao
- Agriculture and Rural Affairs Bureau, Jinxiang, Jining, Shandong, 272200, China
| | - Zi-Yi Zhao
- Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Xu Feng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rong-Ze Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yong-Qing Xu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Ghasemi M, Poorjavad N. Soil Fertilization With Medicinal Plant Processing Wastes Suppresses Tuta absoluta (Lepidoptera: Gelechiidae) and Aphis gossypii (Hemiptera: Aphididae) Populations. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1172-1181. [PMID: 36166572 DOI: 10.1093/ee/nvac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 06/16/2023]
Abstract
Organic soil amendments can influence insect pest populations and the damage to plants they cause. In this study, the effects of medicinal plant processing wastes (MPPWs) applied as organic fertilizers on the host preference and performance of Tuta absoluta and Aphis gossypii were investigated on tomato and cucumber plants, respectively. Processing wastes of cumin, rosemary, thyme, artichoke, chamomile, fenugreek, and nettle were applied in four levels of 0, 20, 40, and 80 g dry matter/1kg culture media in pot experiments. Results showed the application of MPPWs, especially 80 g of nettle, reduced the number of T. absoluta eggs (from 0.8 to 0.4 egg/leaf) and their hatching percentage (from 90 to 76%). The highest and lowest number of aphids were observed in control (36 aphids/plant) and treated cucumbers with 80 g of cumin (18 aphids/plant). Also, the lowest intrinsic rate of increase (0.08 d-1) and net reproductive rate (20 offspring) of T. absoluta were observed in tomatoes fertilized with nettle. The highest and lowest net reproductive rate of A. gossypii were obtained on control and treated plants with 80 g of nettle, respectively. Results of damage assessment showed that the percentage of dry weight loss in the aphid-infested plants was reduced by the use of MPPWs, so that lowest weight loss was observed in the treatment with 80 g of nettle. In conclusion, soil amendment using MPPWs could result in lower pest populations and may improve plant tolerance to insect pest stress, thus these by-products could be considered a valuable tool in pest management.
Collapse
Affiliation(s)
- Meysam Ghasemi
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Nafiseh Poorjavad
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
7
|
Cernaro V, Calabrese V, Loddo S, Corsaro R, Macaione V, Ferlazzo VT, Cigala RM, Crea F, De Stefano C, Gembillo G, Romeo A, Longhitano E, Santoro D, Buemi M, Benvenga S. Indole-3-acetic acid correlates with monocyte-to-high-density lipoprotein (HDL) ratio (MHR) in chronic kidney disease patients. Int Urol Nephrol 2022; 54:2355-2364. [PMID: 35147839 DOI: 10.1007/s11255-022-03137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Indole-3-acetic acid is a protein-bound indolic uremic toxin deriving from tryptophan metabolism. Increased levels are associated with higher thrombotic risk and both cardiovascular and all-cause mortality. An emerging biomarker of cardiovascular disease is the monocyte-to-high-density lipoprotein ratio (MHR). The main purpose of this study was to investigate the association of indole-3-acetic acid with MHR and other markers of cardiovascular risk in patients with chronic kidney disease (CKD). METHODS We enrolled 61 non-dialysis CKD patients and 6 dialysis patients. Indole-3-acetic acid levels were measured with ELISA technique. RESULTS In the whole cohort of 67 patients, indole-3-acetic acid was directly related to Ca × P (ρ = 0.256; P = 0.0365) and MHR (ρ = 0.321; P = 0.0082). In the 40 patients with previous cardiovascular events, indole-3-acetic acid correlated with uric acid (r = 0.3952; P = 0.0116) and MHR (ρ = 0.380; P = 0.0157). MHR was related with fibrinogen (ρ = 0.426; P = 0.0010), arterial hypertension (ρ = 0.274; P = 0.0251), C-reactive protein (ρ = 0.332; P = 0.0061), gender (ρ = - 0.375; P = 0.0017; 0 = male, 1 = female), and CKD stage (ρ = 0.260; P = 0.0337). A multiple regression analysis suggested that indole-3-acetic acid might be an independent predictor of MHR. CONCLUSION This study shows a significant association between indole-3-acetic acid and MHR. Prospective studies are required to evaluate if decreasing indole-3-acetic acid concentrations may reduce MHR levels and cardiovascular events and improve clinical outcomes.
Collapse
Affiliation(s)
- Valeria Cernaro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy.
| | - Vincenzo Calabrese
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Saverio Loddo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberta Corsaro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Macaione
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Rosalia Maria Cigala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Crea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta De Stefano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Adolfo Romeo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Elisa Longhitano
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Michele Buemi
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Salvatore Benvenga
- Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy
- Interdepartmental Program of Molecular and Clinical Endocrinology, and Women's Endocrine Health, University Hospital, Policlinico Universitario G. Martino, Messina, Italy
| |
Collapse
|
8
|
Appiah KS, Omari RA, Onwona-Agyeman S, Amoatey CA, Ofosu-Anim J, Smaoui A, Arfa AB, Suzuki Y, Oikawa Y, Okazaki S, Katsura K, Isoda H, Kawada K, Fujii Y. Seasonal Changes in the Plant Growth-Inhibitory Effects of Rosemary Leaves on Lettuce Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:673. [PMID: 35270143 PMCID: PMC8912698 DOI: 10.3390/plants11050673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Plant biodiversity has been studied to explore allelopathic species for the sustainable management of weeds to reduce the reliance on synthetic herbicides. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.), was found to have plant growth-inhibitory effects, and carnosic acid was reported as an allelochemical in the plant. In this study, the effects of seasonal variation (2011−2012) on the carnosic acid concentration and phytotoxicity of rosemary leaves from two locations in Tunisia (Fahs and Matmata) were investigated. The carnosic acid concentration in rosemary leaves was determined by HPLC, and lettuce (Lactuca sativa L.) was used as the receptor plant in the phytotoxicity bioassay. The highest carnosic acid concentration was found in rosemary samples collected in June 2011, which also had the highest inhibitory activity. Furthermore, a significant inverse correlation (r = −0.529; p < 0.01) was found between the inhibitory activity on lettuce hypocotyl and the carnosic acid concentration in rosemary leaves. Both temperature and elevation had a significant positive correlation with carnosic acid concentration, while rainfall showed a negative correlation. The results showed that the inhibitory effects of rosemary leaf samples collected in summer was highest due to their high carnosic acid concentration. The phytotoxicity of rosemary needs to be studied over time to determine if it varies by season under field conditions.
Collapse
Affiliation(s)
- Kwame Sarpong Appiah
- Department of International Innovative Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan; (Y.O.); (S.O.); (K.K.); (Y.F.)
- Department of Crop Science, College of Basic and Applied Science, University of Ghana, Legon, Accra P.O. Box LG 44, Ghana;
| | - Richard Ansong Omari
- Leibniz Centre for Agricultural Landscape Research, Institute of Land Use Systems, Eberswalder Str. 84, 15374 Muencheberg, Germany;
- Institute of Agriculture and Horticulture, Faculty of Life Science, Humboldt-University of Berlin, Albrecht-Thaer-Weg 5, 14195 Berlin, Germany
| | - Siaw Onwona-Agyeman
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan;
| | - Christiana Adukwei Amoatey
- Department of Crop Science, College of Basic and Applied Science, University of Ghana, Legon, Accra P.O. Box LG 44, Ghana;
| | - John Ofosu-Anim
- School of Architecture and Science, Central University, Tema P.O. Box 2305, Ghana;
| | - Abderrazak Smaoui
- Centre of Biotechnology of Borj Cédria, BP 901 Hammam-Lif, Borj Cedria 2025, Tunisia;
| | - Abdelkarim Ben Arfa
- L’Institut des Régions Arides, Route du Djorf Km 22.5, Médenine 4119, Tunisia;
| | - Yoko Suzuki
- Aromatic Repos, AHOLA, A2 Soleil Jiyugaoka, 1-21-3, Jiyugaoka, Meguro 152-0035, Tokyo, Japan;
| | - Yosei Oikawa
- Department of International Innovative Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan; (Y.O.); (S.O.); (K.K.); (Y.F.)
| | - Shin Okazaki
- Department of International Innovative Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan; (Y.O.); (S.O.); (K.K.); (Y.F.)
| | - Keisuke Katsura
- Department of International Innovative Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan; (Y.O.); (S.O.); (K.K.); (Y.F.)
| | - Hiroko Isoda
- School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan;
| | - Kiyokazu Kawada
- School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan;
| | - Yoshiharu Fujii
- Department of International Innovative Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu 183-8509, Tokyo, Japan; (Y.O.); (S.O.); (K.K.); (Y.F.)
| |
Collapse
|
9
|
Kheirabadi M, Azizi M, Taghizadeh SF, Fujii Y. Recent Advances in Saffron Soil Remediation: Activated Carbon and Zeolites Effects on Allelopathic Potential. PLANTS 2020; 9:plants9121714. [PMID: 33291406 PMCID: PMC7761994 DOI: 10.3390/plants9121714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022]
Abstract
Saffron (Crocus sativus L.) is a highly valuable plant. Iran provides nearly 90% of the world’s total saffron and is the biggest global producer. The allelopathic effects of saffron corm (SC) and saffron field soil (SFS) have been hypothesized to play an important role in replanting. Recently, adsorbent materials have been used to neutralize the effects of allelochemicals. These materials, including activated carbon and zeolite, have large surface areas, pore volumes, as well as tremendous adsorptive capacity and complex chemical and physical properties. In this study, three independent experiments were conducted. In the first test, the allelopathic effects of aqueous and methanolic extracts of SC remnant and 9-year-old SFS as well as filtered aqueous extract of soil were investigated. In the second assay, the effects of SC remnants and SFS with different ages (i.e., 4, 6, and 9 years old) in combination with adsorbents were examined on the germination and growth of lettuce (Lactuca sativa L.) seedlings by the sandwich method. In the third experiment, we examined the effects of SC remnants combined with adsorbents on lettuce growth parameters. Our results showed that the allelopathic effects of aqueous and methanolic extracts of SC remnant were significantly superior to those of 9-year-old SFS. The aqueous extract of SC remnant reduced the root length of lettuce by 50%. The use of activated carbon and zeolites significantly decreased the observed allelopathic effect. Moreover, lettuce growth in rhizosphere soil was significantly inhibited by SC remnant and SFS extracts. The allelopathic effects of SC remnants caused a growth imbalance between the shoot and roots. Based on biochemical analyses, using the adsorbents increased the carotenoid content and chlorophyll index of lettuce by 23.33% and 5.25%, respectively. Adsorbents may play a role in treating soils contaminated by allelochemicals.
Collapse
Affiliation(s)
- Mahdieh Kheirabadi
- Department of Horticultural Science, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran; (M.K.); (S.F.T.)
| | - Majid Azizi
- Department of Horticultural Science, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran; (M.K.); (S.F.T.)
- Correspondence: (M.A.); (Y.F.)
| | - Seyedeh Faezeh Taghizadeh
- Department of Horticultural Science, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran; (M.K.); (S.F.T.)
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran
| | - Yoshiharu Fujii
- Department of International Environmental and Agricultural Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
- Correspondence: (M.A.); (Y.F.)
| |
Collapse
|
10
|
Hossen K, Das KR, Okada S, Iwasaki A, Suenaga K, Kato-Noguchi H. Allelopathic Potential and Active Substances from Wedelia Chinensis (Osbeck). Foods 2020; 9:foods9111591. [PMID: 33147830 PMCID: PMC7692298 DOI: 10.3390/foods9111591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
Wedelia chinensis (Asteraceae) is a wetland herb native to India, China, and Japan. It is a valuable medicinal plant recorded to have pharmaceutical properties. However, the phytotoxic potential of Wedelia chinensis has not yet been examined. Thus, we carried out this study to establish the allelopathic effects of Wedelia chinensis and to identify its phytotoxic substances. Extracts of Wedelia chinensis exhibited high inhibitory activity against the root and shoot growth of cress, alfalfa, rapeseed, lettuce, foxtail fescue, Italian ryegrass, timothy, and barnyard grass. The inhibition was varied with species and was dependent on concentrations. The extracts were separated through several purification steps, and the two effective substances were isolated and characterized as vanillic acid and gallic acid using spectral analysis. Vanillic acid and gallic acid significantly arrested the growth of cress and Italian ryegrass seedlings. The concentrations of vanillic acid and gallic acid needed for 50% inhibition (I50 values) of the seedling growth of the cress and Italian ryegrass were 0.04–15.4 and 0.45–6.6 mM, respectively. The findings suggest that vanillic acid and gallic acid may be required for the growth inhibitory activities of Wedelia chinensis.
Collapse
Affiliation(s)
- Kawsar Hossen
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan; (K.H.); (K.R.D.); (S.O.)
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Krishna Rany Das
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan; (K.H.); (K.R.D.); (S.O.)
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
- Department of Entomology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shun Okada
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan; (K.H.); (K.R.D.); (S.O.)
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan; (A.I.); (K.S.)
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan; (A.I.); (K.S.)
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan; (K.H.); (K.R.D.); (S.O.)
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
- Correspondence:
| |
Collapse
|
11
|
Vitalini S, Orlando F, Vaglia V, Bocchi S, Iriti M. Potential Role of Lolium multiflorum Lam. in the Management of Rice Weeds. PLANTS 2020; 9:plants9030324. [PMID: 32143343 PMCID: PMC7154922 DOI: 10.3390/plants9030324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 11/22/2022]
Abstract
The phytotoxic relationships between crops and weeds can cover a role in weed management, reducing the use of chemical herbicides. Starting from the organic farmers’ experience, the study aimed to define the inhibitory action of Lolium multiflorum Lam., used as a cover crop before rice sowing, against Echinochloa oryzoides (Ard.) Fritsch, one of the main rice weeds. In vitro 7-day assays were carried out in Petri dishes to compare the effect of different L. multiflorum Lam. parts, in the form of aqueous extract or powder, on the seed germination and seedling growth of Oryza sativa L. and E. oryzoides and to verify the hypothesis of a higher susceptibility of the weed. The total polyphenolic content, as the potential source of allelochemicals, in the L. multiflorum parts was measured. The results showed that both species suffer the phytotoxic action of L. multiflorum, but a more marked effect against E. oryzoides was recorded. In according with the polyphenol quantities, stem and inflorescence extracts showed the more significant species-specific inhibition. In all assays, the weed showed a stronger reduction in the root length and seedling vigor index, and, in some cases, also in the germination percentage and shoot length compared to rice.
Collapse
Affiliation(s)
- Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence: (S.V.); (M.I.)
| | - Francesca Orlando
- Department of Molecular and Translational Medicine (DMMT), Università degli Studi di Brescia, 25123 Brescia, Italy;
| | - Valentina Vaglia
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy; (V.V.); (S.B.)
| | - Stefano Bocchi
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milan, Italy; (V.V.); (S.B.)
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence: (S.V.); (M.I.)
| |
Collapse
|
12
|
Phytotoxic Activity and Identification of Phytotoxic Substances from Schumannianthus dichotomus. PLANTS 2020; 9:plants9010102. [PMID: 31947649 PMCID: PMC7020185 DOI: 10.3390/plants9010102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 11/16/2022]
Abstract
The phytotoxic potential of plants and their constituents against other plants is being increasingly investigated as a possible alternative to synthetic herbicides to control weeds in crop fields. In this study, we explored the phytotoxicity and phytotoxic substances of Schumannianthus dichotomus, a perennial wetland shrub native to Bangladesh, India, and Myanmar. Leaf extracts of S. dichotomus exerted strong phytotoxicity against two dicot species, alfalfa and cress, and two monocot species, barnyard grass and Italian ryegrass. A bioassay-driven purification process yielded two phenolic derivatives, syringic acid and methyl syringate. Both constituents significantly inhibited the growth of cress and Italian ryegrass in a concentration-dependent manner. The concentrations required for 50% growth inhibition (I50 value) of the shoot and root growth of cress were 75.8 and 61.3 μM, respectively, for syringic acid, compared with 43.2 and 31.5 μM, respectively, for methyl syringate. Similarly, to suppress the shoot and root growth of Italian rye grass, a greater amount of syringic acid (I50 = 213.7 and 175.9 μM) was needed than methyl syringate (I50 = 140.4 to 130.8 μM). Methyl syringate showed higher phytotoxic potential than syringic acid, and cress showed higher sensitivity to both substances. This study is the first to report on the phytotoxic potential of S. dichotomus and to identify phytotoxic substances from this plant material.
Collapse
|
13
|
Rob MM, Iwasaki A, Suzuki R, Suenaga K, Kato-Noguchi H. Garcienone, a Novel Compound Involved in Allelopathic Activity of Garcinia Xanthochymus Hook. PLANTS (BASEL, SWITZERLAND) 2019; 8:E301. [PMID: 31450571 PMCID: PMC6784076 DOI: 10.3390/plants8090301] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
Plants are sources of diversified allelopathic substances that can be investigated for use in eco-friendly and efficient herbicides. An aqueous methanol extract from the leaves of Garcinia xanthochymus exhibited strong inhibitory activity against barnyard grass (Echinochloa crus-galli (L.) P. Beauv.), foxtail fescue (Vulpia myuros (L.) C.C.), alfalfa (Medicago sativa L.), and cress (Lepidium sativum L.), and appears to be a promising source of allelopathic substances. Hence, bio-activity guided purification of the extract through a series of column chromatography steps yielded a novel compound assigned as garcienone ((R, E)-5-hydroxy-5-((6S, 9S)-6-methyl-9-(prop-13-en-10-yl) tetrahydrofuran-6-yl) pent-3-en-2-one). Garcienone significantly inhibited the growth of cress at a concentration of 10 μM. The concentrations resulting in 50% growth inhibition (I50) of cress roots and shoots were 120.5 and 156.3 μM, respectively. This report is the first to isolate and identify garcienone and to determine its allelopathic potential.
Collapse
Affiliation(s)
- Md Mahfuzur Rob
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan.
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| | - Arihiro Iwasaki
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Ryota Suzuki
- Kawasaki Refinery, JXTG Nippon Oil & Energy Co., 7-1, Ukishima-cho, Kawasaki-ku, Kawasaki-shi 210-8523, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan
| |
Collapse
|