1
|
Fang S, Wang H, Qiu K, Pang Y, Li C, Liang X. The fungicide pyraclostrobin affects gene expression by altering the DNA methylation pattern in Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2024; 15:1391900. [PMID: 38745924 PMCID: PMC11091397 DOI: 10.3389/fpls.2024.1391900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Introduction Rice blast disease caused by Magnaporthe oryzae has long been the main cause of rice (Oryza sativa L.) yield reduction worldwide. The quinone external inhibitor pyraclostrobin is widely used as a fungicide to effectively control the spread of pathogenic fungi, including M. oryzae. However, M. oryzae can develop resistance through multiple levels of mutation, such as target protein cytb mutation G143A/S, leading to a decrease in the effectiveness of the biocide after a period of application. Therefore, uncovering the possible mutational mechanisms from multiple perspectives will further provide feasible targets for drug development. Methods In this work, we determined the gene expression changes in M. oryzae in response to pyraclostrobin stress and their relationship with DNA methylation by transcriptome and methylome. Results The results showed that under pyraclostrobin treatment, endoplasmic reticulum (ER)-associated and ubiquitin-mediated proteolysis were enhanced, suggesting that more aberrant proteins may be generated that need to be cleared. DNA replication and repair processes were inhibited. Glutathione metabolism was enhanced, while lipid metabolism was impaired. The number of alternative splicing events increased. These changes may be related to the elevated methylation levels of cytosine and adenine in gene bodies. Both hypermethylation and hypomethylation of differentially methylated genes (DMGs) mainly occurred in exons and promoters. Some DMGs and differentially expressed genes (DEGs) were annotated to the same pathways by GO and KEGG, including protein processing in the ER, ubiquitin-mediated proteolysis, RNA transport and glutathione metabolism, suggesting that pyraclostrobin may affect gene expression by altering the methylation patterns of cytosine and adenine. Discussion Our results revealed that 5mC and 6mA in the gene body are associated with gene expression and contribute to adversity adaptation in M. oryzae. This enriched the understanding for potential mechanism of quinone inhibitor resistance, which will facilitate the development of feasible strategies for maintaining the high efficacy of this kind of fungicide.
Collapse
Affiliation(s)
- Shumei Fang
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hanxin Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Kaihua Qiu
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanyuan Pang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chen Li
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xilong Liang
- Heilongjiang Plant Growth Regulator Engineering Technology Research Center, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
2
|
Wittekind MA, Briaud P, Smith JL, Tennant JR, Carroll RK. The Small Protein ScrA Influences Staphylococcus aureus Virulence-Related Processes via the SaeRS System. Microbiol Spectr 2023; 11:e0525522. [PMID: 37154710 PMCID: PMC10269730 DOI: 10.1128/spectrum.05255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive commensal and opportunistic pathogen able to cause diseases ranging from mild skin infections to life-threatening endocarditis and toxic shock syndrome. The ability to cause such an array of diseases is due to the complex S. aureus regulatory network controlling an assortment of virulence factors, including adhesins, hemolysins, proteases, and lipases. This regulatory network is controlled by both protein and RNA elements. We previously identified a novel regulatory protein called ScrA, which, when overexpressed, leads to the increased activity and expression of the SaeRS regulon. In this study, we further explore the role of ScrA and examine the consequences to the bacterial cell of scrA gene disruption. These results demonstrate that scrA is required for several virulence-related processes, and in many cases, the phenotypes of the scrA mutant are inverse to those observed in cells overexpressing ScrA. Interestingly, while the majority of ScrA-mediated phenotypes appear to rely on the SaeRS system, our results also indicate that ScrA may also act independently of SaeRS when regulating hemolytic activity. Finally, using a murine model of infection, we demonstrate that scrA is required for virulence, potentially in an organ-specific manner. IMPORTANCE Staphylococcus aureus is the cause of several potentially life-threatening infections. An assortment of toxins and virulence factors allows such a wide range of infections. However, an assortment of toxins or virulence factors requires complex regulation to control expression under all of the different conditions encountered by the bacterium. Understanding the intricate web of regulatory systems allows the development of novel approaches to combat S. aureus infections. Here, we have shown that the small protein ScrA, which was previously identified by our laboratory, influences several virulence-related functions through the SaeRS global regulatory system. These findings add ScrA to the growing list of virulence regulators in S. aureus.
Collapse
Affiliation(s)
| | - Paul Briaud
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Jayanna L. Smith
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Julia R. Tennant
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Ronan K. Carroll
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| |
Collapse
|
3
|
The Small RNA Teg41 Is a Pleiotropic Regulator of Virulence in Staphylococcus aureus. Infect Immun 2022; 90:e0023622. [PMID: 36214557 PMCID: PMC9670889 DOI: 10.1128/iai.00236-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, our group demonstrated a role for the small RNA (sRNA) Teg41 in regulating production of the alpha phenol-soluble modulin toxins (αPSMs) in Staphylococcus aureus. Overexpressing Teg41 increased αPSM production while deleting the 3' end of Teg41 (Teg41Δ3' strain) resulted in a decrease in αPSM production, reduced hemolytic activity of S. aureus culture supernatants, and attenuated virulence in a murine abscess model of infection. In this study, we further explore the attenuation of virulence in the Teg41Δ3' strain. Using both localized and systemic models of infection, we demonstrate that the Teg41Δ3' strain is more severely attenuated than an ΔαPSM mutant, strongly suggesting that Teg41 influences more than the αPSMs. Proteomic and transcriptomic analysis of the wild-type and Teg41Δ3' strains reveals widespread alterations in transcript abundance and protein production in the absence of Teg41, confirming that Teg41 has pleiotropic effects in the cell. We go on to investigate the molecular mechanism underlying Teg41-mediated gene regulation. Surprisingly, results demonstrate that certain Teg41 target genes, including the αPSMs and βPSMs, are transcriptionally altered in the Teg41Δ3' strain, while other targets, specifically spa (encoding surface protein A), are regulated at the level of transcript stability. Collectively, these data demonstrate that Teg41 is a pleiotropic RNA regulator in S. aureus that influences expression of a variety of genes using multiple different mechanisms.
Collapse
|
4
|
Wittekind MA, Frey A, Bonsall AE, Briaud P, Keogh RA, Wiemels RE, Shaw LN, Carroll RK. The novel protein ScrA acts through the SaeRS two-component system to regulate virulence gene expression in Staphylococcus aureus. Mol Microbiol 2022; 117:1196-1212. [PMID: 35366366 PMCID: PMC9324805 DOI: 10.1111/mmi.14901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is a Gram-positive commensal that can also cause a variety of infections in humans. S. aureus virulence factor gene expression is under tight control by a complex regulatory network, which includes, sigma factors, sRNAs, and two-component systems (TCS). Previous work in our laboratory demonstrated that overexpression of the sRNA tsr37 leads to an increase in bacterial aggregation. Here, we demonstrate that the clumping phenotype is dependent on a previously unannotated 88 amino acid protein encoded within the tsr37 sRNA transcript (which we named ScrA for S. aureus clumping regulator A). To investigate the mechanism of action of ScrA we performed proteomics and transcriptomics in a ScrA overexpressing strain and show that a number of surface adhesins are upregulated, while secreted proteases are downregulated. Results also showed upregulation of the SaeRS TCS, suggesting that ScrA is influencing SaeRS activity. Overexpression of ScrA in a saeR mutant abrogates the clumping phenotype confirming that ScrA functions via the Sae system. Finally, we identified the ArlRS TCS as a positive regulator of scrA expression. Collectively, our results show that ScrA is an activator of the SaeRS system and suggests that ScrA may act as an intermediary between the ArlRS and SaeRS systems.
Collapse
Affiliation(s)
| | - Andrew Frey
- Department of Cell Biology, Microbiology & Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | | | - Paul Briaud
- Department of Biological SciencesOhio UniversityAthensOhioUSA
| | - Rebecca A. Keogh
- Department of Biological SciencesOhio UniversityAthensOhioUSA
- Present address:
Department of Immunology & MicrobiologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | | | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology & Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Ronan K. Carroll
- Department of Biological SciencesOhio UniversityAthensOhioUSA
- Infectious and Tropical Disease InstituteOhio UniversityAthensOhioUSA
| |
Collapse
|
5
|
Briaud P, Frey A, Marino EC, Bastock RA, Zielinski RE, Wiemels RE, Keogh RA, Murphy ER, Shaw LN, Carroll RK. Temperature Influences the Composition and Cytotoxicity of Extracellular Vesicles in Staphylococcus aureus. mSphere 2021; 6:e0067621. [PMID: 34612674 PMCID: PMC8510519 DOI: 10.1128/msphere.00676-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a pathogenic bacterium but also a commensal of skin and anterior nares in humans. As S. aureus transits from skins/nares to inside the human body, it experiences changes in temperature. The production and content of S. aureus extracellular vesicles (EVs) have been increasingly studied over the past few years, and EVs are increasingly being recognized as important to the infectious process. Nonetheless, the impact of temperature variation on S. aureus EVs has not been studied in detail, as most reports that investigate EV cargoes and host cell interactions are performed using vesicles produced at 37°C. Here, we report that EVs in S. aureus differ in size and protein/RNA cargo depending on the growth temperature used. We demonstrate that the temperature-dependent regulation of vesicle production in S. aureus is mediated by the alpha phenol-soluble modulin peptides (αPSMs). Through proteomic analysis, we observed increased packaging of virulence factors at 40°C, whereas the EV proteome has greater diversity at 34°C. Similar to the protein content, we perform transcriptomic analysis and demonstrate that the RNA cargo also is impacted by temperature. Finally, we demonstrate greater αPSM- and alpha-toxin-mediated erythrocyte lysis with 40°C EVs, but 34°C EVs are more cytotoxic toward THP-1 cells. Together, our study demonstrates that small temperature variations have great impact on EV biogenesis and shape the interaction with host cells. IMPORTANCE Extracellular vesicles (EVs) are lipid bilayer spheres that contain proteins, nucleic acids, and lipids secreted by bacteria. They are involved in Staphylococcus aureus infections, as they package virulence factors and deliver their contents inside host cells. The impact of temperature variations experienced by S. aureus during the infectious process on EVs is unknown. Here, we demonstrate the importance of temperature in vesicle production and packaging. High temperatures promote packaging of virulence factors and increase the protein and lipid concentration but reduce the overall RNA abundance and protein diversity in EVs. The importance of temperature changes is highlighted by the fact that EVs produced at low temperature are more toxic toward macrophages, whereas EVs produced at high temperature display more hemolysis toward erythrocytes. Our research brings new insights into temperature-dependent vesiculation and interaction with the host during S. aureus transition from colonization to virulence.
Collapse
Affiliation(s)
- Paul Briaud
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Andrew Frey
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Emily C. Marino
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Raeven A. Bastock
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | | | | | - Rebecca A. Keogh
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Erin R. Murphy
- Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Ohio University, Athens, Ohio, USA
- Infectious and Tropical Disease Institute, Ohio University, Athens, Ohio, USA
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Ronan K. Carroll
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
- Infectious and Tropical Disease Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
6
|
Staphylococcus aureus Responds to Physiologically Relevant Temperature Changes by Altering Its Global Transcript and Protein Profile. mSphere 2021; 6:6/2/e01303-20. [PMID: 33731473 PMCID: PMC8546721 DOI: 10.1128/msphere.01303-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that colonizes the anterior nares of 30 to 50% of the population. Colonization is most often asymptomatic; however, self-inoculation can give rise to potentially fatal infections of the deeper tissues and blood. Like all bacteria, S. aureus can sense and respond to environmental cues and modify gene expression to adapt to specific environmental conditions. The transition of S. aureus from the nares to the deeper tissues and blood is accompanied by changes in environmental conditions, such as nutrient availability, pH, and temperature. In this study, we perform transcriptomics and proteomics on S. aureus cultures growing at three physiologically relevant temperatures, 34°C (nares), 37°C (body), and 40°C (pyrexia), to determine if small scale, biologically meaningful alterations in temperature impact S. aureus gene expression. Results show that small but definite temperature changes elicit a large-scale restructuring of the S. aureus transcriptome and proteome in a manner that, most often, inversely correlates with increasing temperature. We also provide evidence that a large majority of these changes are modulated at the posttranscriptional level, possibly by sRNA regulatory elements. Phenotypic analyses were also performed to demonstrate that these changes have physiological relevance. Finally, we investigate the impact of temperature-dependent alterations in gene expression on S. aureus pathogenesis and demonstrate decreased intracellular invasion of S. aureus grown at 34°C. Collectively, our results demonstrate that small but biologically meaningful alterations in temperature influence S. aureus gene expression, a process that is likely a major contributor to the transition from a commensal to pathogen. IMPORTANCE Enteric bacterial pathogens, like Escherichia coli, are known to experience large temperature differences as they are transmitted through the fecal oral route. This change in temperature has been demonstrated to influence bacterial gene expression and facilitate infection. Staphylococcus aureus is a human-associated pathogen that can live as a commensal on the skin and nares or cause invasive infections of the deeper tissues and blood. Factors influencing S. aureus nasal colonization are not fully understood; however, individuals colonized with S. aureus are at increased risk of invasive infections through self-inoculation. The transition of S. aureus from the nose (colonization) to the body (infection) is accompanied by a modest but definite temperature increase, from 34°C to 37°C. In this study, we investigate whether these host-associated small temperature changes can influence S. aureus gene expression. Results show widespread changes in the bacterial transcriptome and proteome at three physiologically relevant temperatures (34°C, 37°C, and 40°C).
Collapse
|
7
|
Staphylococcus aureus Trigger Factor Is Involved in Biofilm Formation and Cooperates with the Chaperone PpiB. J Bacteriol 2021; 203:JB.00681-20. [PMID: 33468596 DOI: 10.1128/jb.00681-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes that assist in protein folding around proline-peptide bonds, and they often possess chaperone activity. Staphylococcus aureus encodes three PPIases, i.e., PrsA, PpiB, and trigger factor (TF). Previous work by our group demonstrated a role for both PrsA and PpiB in S. aureus; however, TF remains largely unstudied. Here, we identify a role for TF in S. aureus biofilm formation and demonstrate cooperation between TF and the cytoplasmic PPIase PpiB. Mutation of the tig gene (encoding TF) led to reduced biofilm development in vitro but no significant attenuation of virulence in a mouse model of infection. To investigate whether TF possesses chaperone activity, we analyzed the ability of a tig mutant to survive acid and base stress. While there was no significant decrease for a tig mutant, a ppiB tig double mutant exhibited significant decreases in cell viability after acid and base challenges. We then demonstrated that a ppiB tig double mutant had exacerbated phenotypes in vitro and in vivo, compared to either single mutant. Finally, in vivo immunoprecipitation of epitope-tagged PpiB revealed that PpiB interacted with 4 times the number of proteins when TF was absent from the cell, suggesting that it may be compensating for the loss of TF. Interestingly, the only proteins found to interact with TF were TF itself, fibronectin-binding protein B (FnBPB), and the chaperone protein ClpB. Collectively, these results support the first phenotype for S. aureus TF and demonstrate a greater network of cooperation between chaperone proteins in Staphylococcus aureus IMPORTANCE S. aureus encodes a large number of virulence factors that aid the bacterium in survival and pathogenesis. These virulence factors have a wide variety of functions; however, they must all be properly secreted in order to be functional. Bacterial chaperone proteins often assist in secretion by trafficking proteins to secretion machinery or assisting in proper protein folding. Here, we report that the S. aureus chaperone TF contributes to biofilm formation and cooperates with the chaperone PpiB to regulate S. aureus virulence processes. These data highlight the first known role for TF in S. aureus and suggest that S. aureus chaperone proteins may be involved in a greater regulatory network in the cell.
Collapse
|
8
|
Scheuplein NJ, Bzdyl NM, Kibble EA, Lohr T, Holzgrabe U, Sarkar-Tyson M. Targeting Protein Folding: A Novel Approach for the Treatment of Pathogenic Bacteria. J Med Chem 2020; 63:13355-13388. [PMID: 32786507 DOI: 10.1021/acs.jmedchem.0c00911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infectious diseases are a major cause of morbidity and mortality worldwide, exacerbated by increasing antibiotic resistance in many bacterial species. The development of drugs with new modes of action is essential. A leading strategy is antivirulence, with the aim to target bacterial proteins that are important in disease causation and progression but do not affect growth, resulting in reduced selective pressure for resistance. Immunophilins, a superfamily of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes have been shown to be important for virulence in a broad-spectrum of pathogenic bacteria. This Perspective will provide an overview of the recent advances made in understanding the role of each immunophilin family, cyclophilins, FK506 binding proteins (FKBPs), and parvulins in bacteria. Inhibitor design and medicinal chemistry strategies for development of novel drugs against bacterial FKBPs will be discussed. Furthermore, drugs against human cyclophilins and parvulins will be reviewed in their current indication as antiviral and anticancer therapies.
Collapse
Affiliation(s)
- Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia.,School of Veterinary and Life Sciences, Murdoch University, 6150 Murdoch, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| |
Collapse
|
9
|
Reading between the Lines: Utilizing RNA-Seq Data for Global Analysis of sRNAs in Staphylococcus aureus. mSphere 2020; 5:5/4/e00439-20. [PMID: 32727859 PMCID: PMC7392542 DOI: 10.1128/msphere.00439-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regulatory small RNAs (sRNAs) are known to play important roles in the Gram-positive bacterial pathogen Staphylococcus aureus; however, their existence is often overlooked, primarily because sRNA genes are absent from genome annotation files. Consequently, transcriptome sequencing (RNA-Seq)-based experimental approaches, performed using standard genome annotation files as a reference, have likely overlooked data for sRNAs. Previously, we created an updated S. aureus genome annotation file, which included annotations for 303 known sRNAs in USA300. Here, we utilized this updated reference file to reexamine publicly available RNA-Seq data sets in an attempt to recover lost information on sRNA expression, stability, and potential to encode peptides. First, we used transcriptomic data from 22 studies to identify how the expression of 303 sRNAs changed under 64 different experimental conditions. Next, we used RNA-Seq data from an RNA stability assay to identify highly stable/unstable sRNAs. We went on to reanalyze a ribosome profiling (Ribo-seq) data set to identify sRNAs that have the potential to encode peptides and to experimentally confirm the presence of three of these peptides in the USA300 background. Interestingly, one of these sRNAs/peptides, encoded at the tsr37 locus, influences the ability of S. aureus cells to autoaggregate. Finally, we reexamined two recently published in vivo RNA-Seq data sets, from the cystic fibrosis (CF) lung and a murine vaginal colonization study, and identified 29 sRNAs that may play a role in vivo Collectively, these results can help inform future studies of these important regulatory elements in S. aureus and highlight the need for ongoing curating and updating of genome annotation files.IMPORTANCE Regulatory small RNAs (sRNAs) are a class of RNA molecules that are produced in bacterial cells but that typically do not encode proteins. Instead, they perform a variety of critical functions within the cell as RNA. Most bacterial genomes do not include annotations for sRNA genes, and any type of analysis that is performed using a bacterial genome as a reference will therefore overlook data for sRNAs. In this study, we reexamined hundreds of previously generated S. aureus RNA-Seq data sets and reanalyzed them to generate data for sRNAs. To do so, we utilized an updated S. aureus genome annotation file, previously generated by our group, which contains annotations for 303 sRNAs. The data generated (which were previously discarded) shed new light on sRNAs in S. aureus, most of which are unstudied, and highlight certain sRNAs that are likely to play important roles in the cell.
Collapse
|
10
|
Adu KT, Wilson R, Baker AL, Bowman J, Britz ML. Prolonged Heat Stress of Lactobacillus paracasei GCRL163 Improves Binding to Human Colorectal Adenocarcinoma HT-29 Cells and Modulates the Relative Abundance of Secreted and Cell Surface-Located Proteins. J Proteome Res 2020; 19:1824-1846. [PMID: 32108472 DOI: 10.1021/acs.jproteome.0c00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lactobacillus casei group bacteria improve cheese ripening and may interact with host intestinal cells as probiotics, where surface proteins play a key role. Three complementary methods [trypsin shaving (TS), LiCl-sucrose (LS) extraction, and extracellular culture fluid precipitation] were used to analyze cell surface proteins of Lactobacillus paracasei GCRL163 by label-free quantitative proteomics after culture to the mid-exponential phase in bioreactors at pH 6.5 and temperatures of 30-45 °C. A total of 416 proteins, including 300 with transmembrane, cell wall anchoring, and secretory motifs and 116 cytoplasmic proteins, were quantified as surface proteins. Although LS caused significantly greater cell lysis as growth temperature increased, higher numbers of extracytoplasmic proteins were exclusively obtained by LS treatment. Together with the increased positive surface charge of cells cultured at supra-optimal temperatures, proteins including cell wall hydrolases Msp1/p75 and Msp2/p40, α-fucosidase AlfB, SecA, and a PspC-domain putative adhesin were upregulated in surface or secreted protein fractions, suggesting that cell adhesion may be altered. Prolonged heat stress (PHS) increased binding of L. paracasei GCRL163 to human colorectal adenocarcinoma HT-29 cells, relative to acid-stressed cells. This study demonstrates that PHS influences cell adhesion and relative abundance of proteins located on the surface, which may impact probiotic functionality, and the detected novel surface proteins likely linked to the cell cycle and envelope stress.
Collapse
Affiliation(s)
- Kayode T Adu
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Anthony L Baker
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - John Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Margaret L Britz
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
11
|
Schwan WR. Staphylococcus aureus Toxins: Armaments for a Significant Pathogen. Toxins (Basel) 2019; 11:toxins11080457. [PMID: 31382602 PMCID: PMC6724065 DOI: 10.3390/toxins11080457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus species are common inhabitants of humans and other animals [...].
Collapse
Affiliation(s)
- William R Schwan
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State St., La Crosse, WI 54601, USA.
| |
Collapse
|