1
|
Fraga M, Churro C, Leão-Martins J, Rudnitskaya A, Botelho MJ. Cyanotoxins on the move - Freshwater origins with marine consequences: A systematic review of global changes and emerging trends. MARINE POLLUTION BULLETIN 2025; 216:118017. [PMID: 40279773 DOI: 10.1016/j.marpolbul.2025.118017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
The increasing occurrence of toxic freshwater cyanobacteria blooms in marine or brackish waters, coupled with elevated cyanotoxin concentrations in marine life, poses an emerging threat to human health. These events are often associated with temperature, salinity and the eutrophication of affected areas, however global changes causing extreme events can cause rapid shifts in their dynamics and subsequent propagation. This systematic review presents reports from 2010 to 2024 where the main objectives were to describe (i) worldwide occurrence of freshwater cyanobacteria toxins in transitional waters; (ii) global changes and shifts in cyanobacteria dynamics and (iii) patterns of the cyanotoxins microcystins, nodularins, saxitoxins, cylindrospermopsin and anatoxins in marine organisms. PRISMA ("Preferred Reporting Items for Systematic Reviews and MetaAnalyses") protocol was used, and literature search was done using two databases (PubMed and Web of Science) to summarise the research outcomes. The higher number of events was reported in the USA (west coast and east coast), followed by the Baltic Sea. Both Mediterranean and Atlantic coasts of Europe had experienced the severe impact of these events in coastal and brackish environments. Locations in South America, Africa and Asia have also been affected. Despite the lack of consensus for cyanotoxin guidelines, the highest values of the most common cyanotoxins accumulated in marine organisms were in bivalves (microcystins) and in fish (nodularins), with values largely exceeding the existing guideline of 51 μg cyanotoxins.kg-1 body weight.
Collapse
Affiliation(s)
- Marta Fraga
- Laboratory of Marine Biotoxins, Department of the Sea and Marine Resources, IPMA-Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Catarina Churro
- Laboratory of Phytoplankton, Department of the Sea and Marine Resources, IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; Blue Biotechnology, Environment and Health, CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - José Leão-Martins
- Department of Analytical and Food Chemistry, Faculty of Chemistry, University of Vigo, University Campus of Vigo, As Lagoas Marcosende, 36310 Vigo, Spain
| | - Alisa Rudnitskaya
- CESAM- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria João Botelho
- Laboratory of Marine Biotoxins, Department of the Sea and Marine Resources, IPMA-Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; Contaminant Pathways in Marine Environment, CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
2
|
Weiss MB, Borges RM, Sullivan P, Domingues JPB, da Silva FHS, Trindade VGS, Luo S, Orjala J, Crnkovic CM. Chemical diversity of cyanobacterial natural products. Nat Prod Rep 2025; 42:6-49. [PMID: 39540765 PMCID: PMC11948988 DOI: 10.1039/d4np00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Covering: 2010 to 2023Cyanobacterial natural products are a diverse group of molecules with promising biotechnological applications. This review examines the chemical diversity of 995 cyanobacterial metabolites reported from 2010 to 2023. A computational analysis using similarity networking was applied to visualize the chemical space and to compare the diversity of cyanobacterial metabolites among taxonomic orders and environmental sources. Key examples are highlighted, detailing their sources, biological activities, and discovery processes.
Collapse
Affiliation(s)
- Márcio B Weiss
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Ricardo M Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Peter Sullivan
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123, Saarbrücken, Germany
| | - João P B Domingues
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Francisco H S da Silva
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| | - Victória G S Trindade
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jimmy Orjala
- College of Pharmacy, University of Illinois at Chicago, 60612, Chicago, IL, USA
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Hirozumi R, Hakamada M, Minowa T, Cho Y, Kudo Y, Konoki K, Oshima Y, Nagasawa K, Yotsu‐Yamashita M. Synthesis of Saxitoxin Biosynthetic Intermediates: Reveal the Mechanism for Formation of its Tricyclic Skeleton in Biosynthesis. Chem Asian J 2024; 19:e202400834. [PMID: 39305001 PMCID: PMC11639635 DOI: 10.1002/asia.202400834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/15/2024] [Indexed: 11/02/2024]
Abstract
The synthesis and biosynthesis of the complex saxitoxin (STX) structure have garnered significant interest. Previously, we hypothesized that the tricyclic skeleton of STX originates from the monocyclic precursor 11-hydroxy-IntC'2 during biosynthesis, although direct evidence has been lacking. In this study, we identified conditions to synthesize a proposed tricyclic biosynthetic intermediate, 12,12-dideoxy-decarbamoyloxySTX (dd-doSTX), along with its 6-epimer (6-epi-dd-doSTX) and a bicyclic compound, in a single step from di-Boc protected 11-hydroxy-IntC'2. The reaction mechanism involves successive aza-Michael addition of a guanidino amine to the conjugated olefin. Notably, both dd-doSTX and 6-epi-dd-doSTX were detected in a toxin-producing cyanobacterium, suggesting that the biosynthetic enzymes may generate these compounds via similar mechanisms.
Collapse
Affiliation(s)
- Ryosuke Hirozumi
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
| | - Mayu Hakamada
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
| | - Takashi Minowa
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
| | - Yuko Cho
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
| | - Yuta Kudo
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
- The Frontier Research Institute for Interdisciplinary SciencesTohoku University6-3 Aramaki-Aza-Aoba, Aoba-kuSendai980-8578Japan
| | - Keiichi Konoki
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
| | - Yasukatsu Oshima
- Graduate School of Life SciencesTohoku University (Prof. emeritous)2-1-1 Katahira, Aoba-kuSendai980-8577Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology2-24-16, Naka-choKoganei, Tokyo184-8588Japan
| | - Mari Yotsu‐Yamashita
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
| |
Collapse
|
4
|
Liu X, Bian Z, Hu S, Dickinson CF, Benjamin MM, Jia J, Tian Y, Place A, Hanna GS, Luesch H, Croot P, Reddy MM, Thomas OP, Hardiman G, Puglisi MP, Yang M, Zhong Z, Lemasters JJ, Korte JE, Waters AL, Heltzel CE, Williamson RT, Strangman WK, Valeriote F, Tius MA, DiTullio GR, Ferreira D, Alekseyenko A, Wang S, Hamann MT, Wang X. The Chemistry of Phytoplankton. Chem Rev 2024; 124:13099-13177. [PMID: 39571071 PMCID: PMC11638913 DOI: 10.1021/acs.chemrev.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 12/12/2024]
Abstract
Phytoplankton have a high potential for CO2 capture and conversion. Besides being a vital food source at the base of oceanic and freshwater food webs, microalgae provide a critical platform for producing chemicals and consumer products. Enhanced nutrient levels, elevated CO2, and rising temperatures increase the frequency of algal blooms, which often have negative effects such as fish mortalities, loss of flora and fauna, and the production of algal toxins. Harmful algal blooms (HABs) produce toxins that pose major challenges to water quality, ecosystem function, human health, tourism, and the food web. These toxins have complex chemical structures and possess a wide range of biological properties with potential applications as new therapeutics. This review presents a balanced and comprehensive assessment of the roles of algal blooms in generating fixed carbon for the food chain, sequestering carbon, and their unique secondary metabolites. The structural complexity of these metabolites has had an unprecedented impact on structure elucidation technologies and total synthesis, which are highlighted throughout this review. In addition, the influence of biogeochemical environmental perturbations on algal blooms and their influence on biospheric environments is discussed. Lastly, we summarize work on management strategies and technologies for the control and treatment of HABs.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Zhiwei Bian
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Shian Hu
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Cody F. Dickinson
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Menny M. Benjamin
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Jia Jia
- School
of Life Sciences, Shanghai University, Shanghai 200031, China
| | - Yintai Tian
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| | - Allen Place
- Institute
of Marine Biotechnology and Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland 21202, United States
| | - George S. Hanna
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Hendrik Luesch
- Department
of Medicinal Chemistry and Center for Natural Products, Drug Discovery
and Development, University of Florida, Gainesville, Florida 32610, United States
- Program
in Cancer and Stem Cell Technology, Duke-NUS
Medical School, Singapore 169857, Singapore
| | - Peter Croot
- Irish
Centre
for Research in Applied Geoscience, Earth and Ocean Sciences and Ryan
Institute, School of Natural Sciences, University
of Galway, Galway H91TK33, Ireland
| | - Maggie M. Reddy
- School
of
Biological and Chemical Sciences, Ryan Institute, University of Galway, H91TK33 Galway, Ireland
| | - Olivier P. Thomas
- School
of
Biological and Chemical Sciences, Ryan Institute, University of Galway, H91TK33 Galway, Ireland
| | - Gary Hardiman
- School of
Biological Sciences Institute for Global Food Security, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN, U.K.
| | - Melany P. Puglisi
- Department
of Pharmaceutical Sciences, Chicago State
University, Chicago, Illinois 60628, United States
| | - Ming Yang
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Zhi Zhong
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - John J. Lemasters
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Jeffrey E. Korte
- Department
of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Amanda L. Waters
- Department
of Chemistry, University of Central Oklahoma, Edmond, Oklahoma 73034, United States
| | - Carl E. Heltzel
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - R. Thomas Williamson
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Wendy K. Strangman
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Fred Valeriote
- Henry
Ford Health Systems, Detroit, Michigan 48202, United States
| | - Marcus A. Tius
- Department
of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Giacomo R. DiTullio
- Department
of Oceanography, College of Charleston, Charleston, South Carolina 29403, United States
| | - Daneel Ferreira
- Department
of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Alexander Alekseyenko
- Department
of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Shengpeng Wang
- State Key
Laboratory of Quality Research in Chinese Medicine, Institute of Chinese
Medical Sciences, University of Macau, Macau 999078, China
| | - Mark T. Hamann
- Department
of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Xiaojuan Wang
- Department
of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu China
| |
Collapse
|
5
|
Cho Y, Hidema S, Omura T, Tsuchiya S, Konoki K, Oshima Y, Yotsu-Yamashita M. Intracellular abundance, localization, and enzymatic activity of a saxitoxin biosynthesis enzyme, SxtG, in two sister subclones of the dinoflagellate Alexandrium catenella with extremely different levels of paralytic shellfish toxins. HARMFUL ALGAE 2024; 139:102723. [PMID: 39567066 DOI: 10.1016/j.hal.2024.102723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/22/2024]
Abstract
Paralytic shellfish poisoning is caused by saxitoxin (STX), and its analogues (paralytic shellfish toxins (PSTs)) produced by marine dinoflagellates. SxtA and SxtG are the most essential enzymes in STX biosynthesis. Previous studies investigated the abundance and subcellular localization (i.e., chloroplasts) of SxtA in dinoflagellates using immunostaining. The present study characterized SxtG, and positive signals were detected in sister subclones of Alexandrium catenella (Group I) with extremely different levels of PSTs. Multiplex fluorescence immunostaining detection of a PST-positive subclone revealed co-localization of SxtA and SxtG, suggesting that SxtG localizes to chloroplasts. In vitro amidino-transfer from arginine to Int-A', the first intermediate product in the biosynthesis, was presumed to be catalyzed by SxtG, and the reaction was established using crude extracts of PST-positive and negative A. catenella subclones. These analyses suggested that the PST-negative subclone expresses active SxtG but not SxtA. These findings support our hypothesis that decrease of SxtA leads to the loss of toxicity in the PST-negative subclone of A. catenella. Our results identified a key reaction that could enhance understanding of the biochemistry of STX biosynthesis in dinoflagellates.
Collapse
Affiliation(s)
- Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
| | - Shizu Hidema
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Takuo Omura
- Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Shigeki Tsuchiya
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yasukatsu Oshima
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
6
|
Mandhata CP, Bishoyi AK, Sahoo CR, Maharana S, Padhy RN. Insight to biotechnological utility of phycochemicals from cyanobacterium Anabaena sp.: An overview. Fitoterapia 2023; 169:105594. [PMID: 37343687 DOI: 10.1016/j.fitote.2023.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Cyanobacteria (blue-green algae) are well-known for the ability to excrete extra-cellular products, as a variety of cyanochemicals (phycocompounds) of curio with several extensive therapeutic applications. Among these phycocompound, the cyanotoxins from certain water-bloom forming taxa are toxic to biota, including crocodiles. Failure of current non-renewable source compounds in producing sustainable and non-toxic therapeutics led the urgency of discovering products from natural sources. Particularly, compounds of the filamentous N2-fixing Anabaena sp. have effective antibacterial, antifungal, antioxidant, and anticancer properties. Today, such newer compounds are the potential targets for the possible novel chemical scaffolds, suitable for mainstream-drug development cascades. Bioactive compounds of Anabaena sp. such as, anatoxins, hassallidins and phycobiliproteins have proven their inherent antibacterial, antifungal, and antineoplastic activities, respectively. Herein, the available details of the biomass production and the inherent phyco-constituents namely, alkaloids, lipids, phenols, peptides, proteins, polysaccharides, terpenoids and cyanotoxins are considered, along with geographical distributions and morphological characteristics of the cyanobacterium. The acquisitions of cyanochemicals in recent years have newly addressed several pharmaceutical aliments, and the understanding of the associated molecular interactions of phycochemicals have been considered, for plausible use in drug developments in future.
Collapse
Affiliation(s)
- Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| | | | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
7
|
First Identification of 12β-Deoxygonyautoxin 5 (12α-Gonyautoxinol 5) in the Cyanobacterium Dolichospermum circinale (TA04) and 12β-Deoxysaxitoxin (12α-Saxitoxinol) in D. circinale (TA04) and the Dinoflagellate Alexandrium pacificum (Group IV) (120518KureAC). Mar Drugs 2022; 20:md20030166. [PMID: 35323466 PMCID: PMC8954441 DOI: 10.3390/md20030166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Saxitoxin and its analogues, paralytic shellfish toxins (PSTs), are potent and specific voltage-gated sodium channel blockers. These toxins are produced by some species of freshwater cyanobacteria and marine dinoflagellates. We previously identified several biosynthetic intermediates of PSTs, as well as new analogues, from such organisms and proposed the biosynthetic and metabolic pathways of PSTs. In this study, 12β-deoxygonyautoxin 5 (12α-gonyautoxinol 5 = gonyautoxin 5-12(R)-ol) was identified in the freshwater cyanobacterium, Dolichospermum circinale (TA04), and 12β-deoxysaxitoxin (12α-saxitoxinol = saxitoxin-12(R)-ol) was identified in the same cyanobacterium and in the marine dinoflagellate Alexandrium pacificum (Group IV) (120518KureAC) for the first time from natural sources. The authentic standards of these compounds and 12α-deoxygonyautoxin 5 (12β-gonyautoxinol 5 = gonyautoxin 5-12(S)-ol) were prepared by chemical derivatization from the major PSTs, C1/C2, produced in D. circinale (TA04). These standards were used to identify the deoxy analogues by comparing the retention times and MS/MS spectra using high-resolution LC-MS/MS. Biosynthetic or metabolic pathways for these analogues have also been proposed based on their structures. The identification of these compounds supports the α-oriented stereoselective oxidation at C12 in the biosynthetic pathway towards PSTs.
Collapse
|
8
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
9
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
10
|
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| |
Collapse
|
11
|
Numano S, Kudo Y, Cho Y, Konoki K, Kaga Y, Nagasawa K, Yotsu-Yamashita M. Two new skeletal analogues of saxitoxin found in the scallop, Patinopecten yessoensis, as possible metabolites of paralytic shellfish toxins. CHEMOSPHERE 2021; 278:130224. [PMID: 33813339 DOI: 10.1016/j.chemosphere.2021.130224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The scallop, Patinopecten yessoensis, was screened for new saxitoxin analogues to study the metabolism of paralytic shellfish toxins (PSTs), and this resulted in the discovery of two new analogues: M5-hemiaminal (HA) and M6-HA. M5-HA was isolated and its structure was determined by using NMR spectroscopy. It contains hydrogen at C-4 with opposite stereochemistry to that in saxitoxin, and a hemiaminal was formed between 9-NH2 and the hydrated ketone at C-12 in α-orientation. This is the first reported structural feature in a natural saxitoxin analogue, whereas the same ring system has previously been reported in a synthetic saxitoxin analogue, FD-saxitoxin. Acid hydrolysis of the carbamoyl N-sulfate in M5-HA produced M6-HA which was also identified in P. yessoensis by using LC-MSMS. M5-HA was not synthetically produced from M1 (11-hydroxy gonyautoxin-5) and M3 (11,11-dihydroxy gonyautoxin-5) through incubation in aqueous buffers. Furthermore, PSTs in the hepatopancreas of P. yessoensis, cultured in a bay located in northeastern Japan, were chronologically analyzed in 2018. The highest concentrations of M1/M3/M5-HA were observed two weeks after C-toxins had reached their highest concentrations, which provides evidence that M1/M3/M5-HA are metabolites of C-toxins. The voltage-gated sodium channel blockage activity of M6-HA was not detected at the concentration of 140 nM by using the Neuro-2A veratridine/ouabain assay.
Collapse
Affiliation(s)
- Satoshi Numano
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan; Iwate Prefectural Research Institute for Environmental Sciences and Public Health, 1-11-16 Kita-Iioka, Morioka, Iwate, 020-0857, Japan
| | - Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Yoshimasa Kaga
- Iwate Prefectural Inland Fisheries Technology Center, Yoriki, Matsuo, Iwate, 028-7302, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan.
| |
Collapse
|
12
|
Cho Y, Hidema S, Omura T, Koike K, Koike K, Oikawa H, Konoki K, Oshima Y, Yotsu-Yamashita M. SxtA localizes to chloroplasts and changes to its 3'UTR may reduce toxin biosynthesis in non-toxic Alexandrium catenella (Group I) ✰. HARMFUL ALGAE 2021; 101:101972. [PMID: 33526188 DOI: 10.1016/j.hal.2020.101972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
SxtA is the enzyme that catalyses the first step of saxitoxin biosynthesis. We developed an immunofluorescent method to detect SxtA using antibodies against SxtA peptides. Confocal microscopy revealed the presence of abundant, sub-cellularly localized signal in cells of toxic species and its absence in non-toxic species. Co-localization of SxtA with Rubisco II and ultra-structural observation by transmission electron microscopy strongly suggested the association of SxtA with chloroplasts. We also characterized a non-toxic sub-clone of Alexandrium catenella (Group I) to elucidate the mutation responsible for its loss of toxicity. Although sxtA4 gene copy number was indistinguishable in toxic and non-toxic sub-clones, mRNA and protein expression were significantly reduced in the non-toxic sub-clone and we uncovered sequence variation at the 3' untranslated region (3'UTR) of sxtA4 mRNA. We propose that differences in the sxtA4 mRNA 3'UTR lead to down-regulation of STX biosynthesis post-transcriptionally, thereby explaining the differences in toxicity amongst different A. catenella (Group I) sub-clones.
Collapse
Affiliation(s)
- Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
| | - Shizu Hidema
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Takuo Omura
- Laboratory of Aquatic Science Consultant Co., Ltd. 2-30-17, Higashikamata, Ota-ku, Tokyo 144-0031, Japan
| | - Kazuhiko Koike
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Kanae Koike
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Hiroshi Oikawa
- Japan Fisheries Research and Education Agency, Fisheries Technology Institute, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Yasukatsu Oshima
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
13
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
14
|
Raposo MIC, Gomes MTSR, Botelho MJ, Rudnitskaya A. Paralytic Shellfish Toxins (PST)-Transforming Enzymes: A Review. Toxins (Basel) 2020; 12:E344. [PMID: 32456077 PMCID: PMC7290730 DOI: 10.3390/toxins12050344] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 01/13/2023] Open
Abstract
Paralytic shellfish toxins (PSTs) are a group of toxins that cause paralytic shellfish poisoning through blockage of voltage-gated sodium channels. PSTs are produced by prokaryotic freshwater cyanobacteria and eukaryotic marine dinoflagellates. Proliferation of toxic algae species can lead to harmful algal blooms, during which seafood accumulate high levels of PSTs, posing a health threat to consumers. The existence of PST-transforming enzymes was first remarked due to the divergence of PST profiles and concentrations between contaminated bivalves and toxigenic organisms. Later, several enzymes involved in PST transformation, synthesis and elimination have been identified. The knowledge of PST-transforming enzymes is necessary for understanding the processes of toxin accumulation and depuration in mollusk bivalves. Furthermore, PST-transforming enzymes facilitate the obtainment of pure analogues of toxins as in natural sources they are present in a mixture. Pure compounds are of interest for the development of drug candidates and as analytical reference materials. PST-transforming enzymes can also be employed for the development of analytical tools for toxin detection. This review summarizes the PST-transforming enzymes identified so far in living organisms from bacteria to humans, with special emphasis on bivalves, cyanobacteria and dinoflagellates, and discusses enzymes' biological functions and potential practical applications.
Collapse
Affiliation(s)
- Mariana I. C. Raposo
- CESAM and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (M.I.C.R.); (M.T.S.R.G.)
| | - Maria Teresa S. R. Gomes
- CESAM and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (M.I.C.R.); (M.T.S.R.G.)
| | - Maria João Botelho
- Portuguese Institute for the Sea and Atmosphere, 1449-006 Lisbon, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-123 Porto, Portugal
| | - Alisa Rudnitskaya
- CESAM and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal; (M.I.C.R.); (M.T.S.R.G.)
| |
Collapse
|
15
|
Numano S, Kudo Y, Cho Y, Konoki K, Yotsu-Yamashita M. Temporal Variation of the Profile and Concentrations of Paralytic Shellfish Toxins and Tetrodotoxin in the Scallop, Patinopecten yessoensis, Cultured in a Bay of East Japan. Mar Drugs 2019; 17:E653. [PMID: 31766477 PMCID: PMC6950525 DOI: 10.3390/md17120653] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Paralytic shellfish toxins (PSTs) are the major neurotoxic contaminants of edible bivalves in Japan. Tetrodotoxin (TTX) was recently detected in bivalve shellfish around the world, drawing widespread attention. In Japan, high levels of TTX were reported in the digestive gland of the scallop, Patinopecten yessoensis, in 1993; however, no new data have emerged since then. In this study, we simultaneously analyzed PSTs and TTX in scallops cultured in a bay of east Japan using hydrophilic interaction chromatography (HILIC)-MS/MS. These scallops were temporally collected from April to December 2017. The highest concentration of PSTs (182 µmol/kg, total congeners) in the hepatopancreas was detected in samples collected on May 23, lined to the cell density of the dinoflagellate, Alexandrium tamarense, in seawater around the scallops, whereas the highest concentration of TTX (421 nmol/kg) was detected in samples collected on August 22. Contrary to the previous report, temporal variation of the PSTs and TTX concentrations did not coincide. The highest concentration of TTX in the entire edible tissues was 7.3 µg/kg (23 nmol/kg) in samples obtained on August 22, which was lower than the European Food Safety Authority (EFSA)-proposed threshold, 44 µg TTX equivalents/kg shellfish meat. In addition, 12β-deoxygonyautoxin 3 was firstly identified in scallops.
Collapse
Affiliation(s)
| | | | | | | | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan; (S.N.); (Y.K.); (Y.C.); (K.K.)
| |
Collapse
|