1
|
Lichtfouse J, Lécluse L, Demelier A, Giannoni P. Brine shrimp Artemia salina to evaluate the impact of environmental concentrations of BMAA and isomers, DAB and AEG, via mortality (nauplii) and behavioural (adult) tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177521. [PMID: 39551205 DOI: 10.1016/j.scitotenv.2024.177521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
BMAA and its isomers, DAB and AEG, are toxins mainly produced by cyanobacterial blooms and represent an emerging risk worldwide. Anthropization and climate changes are expanding blooms and the presence of these toxins has been evidenced in different environments including water and air. Investigated since decades, BMAA is a recognized danger in cases of bioaccumulation or when directly exposed to relatively high doses (μg/L). However, little is known about its isomers, DAB and AEG, and in general about toxicity at environmental doses (ng/L). With the present study we investigated the effect of environmental concentrations of BMAA, AEG and DAB on a model representative of aquatic organisms, the crustacean Artemia salina. Toxicological effects of these molecules were tested at two different developmental stages. Mortality experiments were developed on artemia nauplii while behavioural tests were performed on adult artemia. BMAA was evidenced as the most toxic compound in mortality essays showing a statistically significant impact already after 24 h of exposure. DAB and AEG reached a statistically significant effect only following 48 h of exposure, a result that was of reduced intensity when compared to BMAA. Furthermore, all tested molecules altered the behavioural tests performed on adult artemia 1 h after exposure. Male artemia demonstrated to be more impacted than females thus suggesting possible sex differences in the involved toxicological pathways.
Collapse
Affiliation(s)
- J Lichtfouse
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France
| | - L Lécluse
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France
| | - A Demelier
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France
| | - P Giannoni
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France.
| |
Collapse
|
2
|
Peters SJ, Mitrovic SM, Rodgers KJ, Bishop DP. Bioaccumulation of β-methylamino-L-alanine (BMAA) by mussels exposed to the cyanobacteria Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125081. [PMID: 39374762 DOI: 10.1016/j.envpol.2024.125081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Cyanobacterial blooms are increasingly common in aquatic environments, raising concerns about the health impacts associated with the toxins they produce. One of these toxins is β-methylamino-L-alanine (BMAA), a neurotoxin linked to neurodegenerative diseases. Monitoring BMAA levels in the environment is challenging due to trace concentrations and complex matrices, and new approaches are needed for assessing exposure risk. In this laboratory study, Australian freshwater mussels, Velesunio ambiguus, were exposed to a BMAA-producing cyanobacterium, Microcystis aeruginosa, to assess its accumulation of the toxin over time. A sample preparation and analysis method was developed to allow accurate quantification of BMAA in the mussels at concentrations as low as 0.4 ng/g. Mussels exposed to M. aeruginosa accumulated BMAA, with concentrations increasing over the exposure period. Rapid depuration occurred after exposure to the cyanobacterium ended, with concentrations of BMAA quickly returning to pre-exposure levels. These results demonstrate the potential for mussels to be used as bioindicators in the field for monitoring BMAA levels over time, where rapid depuration is unlikely.
Collapse
Affiliation(s)
- Siobhan J Peters
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Simon M Mitrovic
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
3
|
Lichtfouse J, Courtier A, Vergunst AC, Giannoni P. Effects of environmental concentrations of toxins BMAA and its isomers DAB and AEG on zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117045. [PMID: 39305776 DOI: 10.1016/j.ecoenv.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/17/2024]
Abstract
The increasing concern over the environmental presence of β-N-Methylamino-L-alanine (BMAA), a toxin primarily produced by cyanobacteria and diatoms, has stimulated numerous studies to evaluate the risk for exposed populations, mainly aquatic organisms and humans. This study focuses on the toxicity of environmental concentrations of BMAA and its isomers, l-2,4 diaminobutyric acid dihydrochloride (DAB) and N-(2-aminoethyl) glycine (AEG) on zebrafish embryo development (ng.L-1). Presence of BMAA in various environments, including aquatic sources, air, and desert crusts, has raised concerns due to its potential link to neurodegenerative diseases such as the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC). Despite its known toxicity at high concentrations, there is limited information on the effects of environmental concentrations of BMAA and its isomers. These isomers are often found in association with BMAA and have been detected in seafood intended for human consumption, indicating potential risks from bioaccumulation and biomagnification. Zebrafish embryos have been chosen as a model due to their relevance for embryonic development and toxicity studies. The study employed fish embryo acute toxicity tests and behavioural analyses to specifically assess the sublethal effects of BMAA, DAB, and AEG. The results demonstrated larval mortality rates between 0 % and 3.75 %, while morphological defects were detected across all tested concentrations for each molecule. Behavioural analyses showed alterations in swimming behaviour. Unexpectedly, the changes in morphology and locomotion of the zebrafish larvae were detected more frequently at the lowest concentrations tested, suggesting potential non-monotonic dose responses. Overall, this research underscores the environmental risks associated with BMAA and its isomers, highlighting the importance of continuous monitoring and understanding of their sublethal effects on aquatic organisms and potential implications for human health. Further studies are warranted to elucidate the mechanisms of toxicity, evaluate long-term effects, and assess the risks associated with chronic exposure to these toxins.
Collapse
Affiliation(s)
- Jeanne Lichtfouse
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France
| | - Audrey Courtier
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France
| | | | - Patrizia Giannoni
- UPR CHROME (Risques CHROniques et eMErgents), University of Nîmes, Nîmes, France.
| |
Collapse
|
4
|
Kim SY, Kim M, Lim YK, Baek SH, Kim JY, An KG, Hong S. First investigation of the temporal distribution of neurotoxin β-N-methylamino-L-alanine (BMAA) and the candidate causative microalgae along the South Sea Coast of Korea. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135486. [PMID: 39151364 DOI: 10.1016/j.jhazmat.2024.135486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA), produced by cyanobacteria and diatoms, has been implicated as an environmental risk factor for neurodegenerative diseases. This study first investigated the occurrence and monthly distributions of BMAA and its isomers, 2,4-diaminobutyric acid (DAB) and N-2-aminoethylglycine (AEG), in phytoplankton and mussels from 11 sites along the South Sea Coast of Korea throughout 2021. These toxins were quantified using LC-MS/MS, revealing elevated BMAA concentrations from late autumn to spring, with phase lags observed between phytoplankton and mussels. The highest concentration of BMAA in phytoplankton was detected in November (mean: 1490 ng g-1 dry weight (dw)), while in mussels, it peaked in December (mean: 1240 ng g-1 dw). DAB was detected in phytoplankton but was absent in mussels, indicating limited bioaccumulation potential. In February, the peak mean DAB concentration in phytoplankton was 89 ng g-1 dw. AEG was not detected in any samples. Chlorophyll-a concentrations consistently showed an inverse correlation with BMAA concentrations in mussels throughout the year. Through correlation analysis, four diatom genera, Bacillaria, Hemiaulus, Odontella, and Pleurosigma, were identified as potential causative microalgae of BMAA. This study offers insights into identifying the causative microalgae for BMAA and informs future regulatory efforts regarding unmanaged biotoxins.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young Kyun Lim
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Seung Ho Baek
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Ji Yoon Kim
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kwang-Guk An
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
5
|
Santiago-Maldonado X, Rodríguez-Martínez JA, López L, Cunci L, Bayro M, Nicolau E. Selection, characterization, and biosensing applications of DNA aptamers targeting cyanotoxin BMAA. RSC Adv 2024; 14:13787-13800. [PMID: 38681844 PMCID: PMC11046380 DOI: 10.1039/d4ra02384f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Scientists have established a connection between environmental exposure to toxins like β-N-methylamino-l-alanine (BMAA) and a heightened risk of neurodegenerative disorders. BMAA is a byproduct from certain strains of cyanobacteria that are present in ecosystems worldwide and is renowned for its bioaccumulation and biomagnification in seafood. The sensitivity, selectivity, and reproducibility of the current analytical techniques are insufficient to support efforts regarding food safety and environment monitoring adequately. This work outlines the in vitro selection of BMAA-specific DNA aptamers via the systematic evolution of ligands through exponential enrichment (SELEX). Screening and characterization of the full-length aptamers was achieved using the SYBR Green (SG) fluorescence displacement assay. Aptamers BMAA_159 and BMAA_165 showed the highest binding affinities, with dissociation constants (Kd) of 2.2 ± 0.1 μM and 0.32 ± 0.02 μM, respectively. After truncation, the binding affinity was confirmed using a BMAA-conjugated fluorescence assay. The Kd values for BMAA_159_min and BMAA_165_min were 6 ± 1 μM and 0.63 ± 0.02 μM, respectively. Alterations in the amino proton region studied using solution nuclear magnetic resonance (NMR) provided further evidence of aptamer-target binding. Additionally, circular dichroism (CD) spectroscopy revealed that BMAA_165_min forms hybrid G-quadruplex (G4) structures. Finally, BMAA_165_min was used in the development of an electrochemical aptamer-based (EAB) sensor that accomplished sensitive and selective detection of BMAA with a limit of detection (LOD) of 1.13 ± 0.02 pM.
Collapse
Affiliation(s)
- Xaimara Santiago-Maldonado
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
| | | | - Luis López
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
| | - Marvin Bayro
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
- Molecular Science Research Center, University of Puerto Rico San Juan 00931-3346 USA
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico San Juan PR 00925-2437 USA +1-787-522-2150 +1-787-292-9820
- Molecular Science Research Center, University of Puerto Rico San Juan 00931-3346 USA
| |
Collapse
|
6
|
Sandhu PK, Solonenka JT, Murch SJ. Neurotoxic non-protein amino acids in commercially harvested Lobsters (Homarus americanus H. Milne-Edwards). Sci Rep 2024; 14:8017. [PMID: 38580836 PMCID: PMC10997655 DOI: 10.1038/s41598-024-58778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024] Open
Abstract
Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of β-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and β-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.
Collapse
Affiliation(s)
- Pawanjit K Sandhu
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC, V1V 1V7, Canada
| | - Julia T Solonenka
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC, V1V 1V7, Canada
| | - Susan J Murch
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
7
|
Bal P, Sinam G, Yahavi C, Singh SP, Jena S, Pant AB, Barik SK. A UPLC-MS/MS method for quantification of β-N-methylamino-L-alanine (BMAA) in Cycas sphaerica roxb. and its use in validating efficacy of a traditional BMAA removal method. Toxicon 2024; 238:107566. [PMID: 38151204 DOI: 10.1016/j.toxicon.2023.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
The presence of neurotoxin β-N-Methylamino-L-alanine (BMAA) in the seeds of Cycas sphaerica is reported for first time. We developed a UPLC-MS/MS method for BMAA quantification by derivatizing with dansyl chloride. The method successfully differentiated L-BMAA from its structural isomer 2,4-diaminobutyric acid (DAB). The extracting mixture 0.1M TCA: ACN 4:1 v/v had a recovery level of >95%. The method is a high throughput sensitive chromatographic technique with 16.42 ng g-1 Limit of Quantification. BMAA was present in the endosperm of C. sphaerica, and was not detected in the leaves and pith. Washing of seeds in running cold water for 48 h reduced BMAA content by 86%. The local communities also treat the seeds under running cold water, but only for 24 h. The results of the study thus validated the traditional BMAA removal process through cold water treatment, but recommend for increase in the treatment period to 48 h or more.
Collapse
Affiliation(s)
- Pankajini Bal
- Plant Genetic Resources & Improvement Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Geetgovind Sinam
- Plant Ecology & Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India.
| | | | | | - Satyanarayan Jena
- Plant Genetic Resources & Improvement Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Aditya Bhushan Pant
- Systems Toxicology & Health Risk Assessment, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Saroj Kanta Barik
- Department of Botany, North-Eastern Hill University, Shillong, India.
| |
Collapse
|
8
|
Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins (Basel) 2023; 15:toxins15030233. [PMID: 36977124 PMCID: PMC10057253 DOI: 10.3390/toxins15030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Nugumanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, 3010 Bern, Switzerland
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
9
|
Shkodrova M, Mishonova M, Chichova M, Sazdova I, Ilieva B, Doncheva-Stoimenova D, Raikova N, Keremidarska-Markova M, Gagov H. β-N-Methylamino-L-Alanine (BMAA) Modulates the Sympathetic Regulation and Homeostasis of Polyamines. Toxins (Basel) 2023; 15:141. [PMID: 36828455 PMCID: PMC9960692 DOI: 10.3390/toxins15020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria. Non-neuronal toxicity of BMAA is poorly studied with a reported increase in reactive oxygen species and a decrease in the antioxidant capacity of liver, kidney, and colorectal adenocarcinoma cells. The aim of this research is to study the toxicity of BMAA (0.1-1 mM) on mitochondria and submitochondrial particles with ATPase activity, on the semicarbazide-sensitive amino oxidases (SSAOs) activity of rat liver, and on an in vitro model containing functionally active excitable tissues-regularly contracting heart muscle preparation with a preserved autonomic innervation. For the first time the BMAA-dependent inhibition of SSAO activity, the elimination of the positive inotropic effect of adrenergic innervation, and the direct and reversible inhibition of adrenaline signaling in ventricular myocytes with 1 mM BMAA were observed. Additionally, it is confirmed that 1 mM BMAA can activate mitochondrial ATPase indirectly. It is concluded that a higher dose of BMAA may influence multiple physiological and pathological processes as it slows down the degradation of biogenic amines, downregulates the sympathetic neuromediation, and embarrasses the cell signaling of adrenergic receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
10
|
Lopicic S, Svirčev Z, Palanački Malešević T, Kopitović A, Ivanovska A, Meriluoto J. Environmental Neurotoxin β- N-Methylamino-L-alanine (BMAA) as a Widely Occurring Putative Pathogenic Factor in Neurodegenerative Diseases. Microorganisms 2022; 10:2418. [PMID: 36557671 PMCID: PMC9781992 DOI: 10.3390/microorganisms10122418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In the present review we have discussed the occurrence of β-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions.
Collapse
Affiliation(s)
- Srdjan Lopicic
- Faculty of Medicine, University of Belgrade, Dr Subotića Starijeg 8, 11000 Belgrade, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Tamara Palanački Malešević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Aleksandar Kopitović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Aleksandra Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|