1
|
Hoogstra S, Renaud JB, McMullin DR, Kelman MJ, Garnham CP, Sumarah MW. Biotransformation of Deoxynivalenol to the Novel Metabolite Deoxynivalenol-8,15-hemiketal-7-glucoside by the Bacillus subtilis Glycosyltransferase YjiC. ACS OMEGA 2025; 10:14496-14507. [PMID: 40256532 PMCID: PMC12004161 DOI: 10.1021/acsomega.5c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/22/2025]
Abstract
The mycotoxin deoxynivalenol (DON) is a chronic problem in cereals in temperate areas worldwide. Above regulatory levels, DON contamination can result in significant economic loss both to the primary producer and the feed industry in terms of increased costs. Here we report the enzymatic biotransformation of DON to a novel stable metabolite by a soil-borne strain of Bacillus subtilis. Proteomic analysis of activity-enriched protein fractions from this B. subtilis strain identified the glycosyltransferase YjiC as the enzyme responsible for the observed DON biotransformation. Liquid chromatography high-resolution tandem mass spectrometry and NMR spectroscopic analysis demonstrated that YjiC glycosylates DON at the 7-hydroxyl position, producing the novel metabolite DON-8,15-hemiketal-7-glucoside (HKDON7G). In toxicity experiments, duckweed exposed to 20 μM HKDON7G showed no phytotoxicity when compared to DON. Stability testing of HKDON7G demonstrated that it is significantly more resistant to enzymatic and microbial hydrolysis compared to DON-3-glucoside. This study is the first to report a chemical modification to the 7-hydroxyl position of DON and presents a novel mechanism for the detoxification of DON-contaminated food and feed.
Collapse
Affiliation(s)
- Shawn
J. Hoogstra
- Agriculture
and Agri-Food Canada, London Research and
Development Centre, 1391
Sandford Street, London, ON N5V4T3, Canada
| | - Justin B. Renaud
- Agriculture
and Agri-Food Canada, London Research and
Development Centre, 1391
Sandford Street, London, ON N5V4T3, Canada
| | - David R. McMullin
- Department
of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Megan J. Kelman
- Agriculture
and Agri-Food Canada, London Research and
Development Centre, 1391
Sandford Street, London, ON N5V4T3, Canada
| | - Christopher P. Garnham
- Agriculture
and Agri-Food Canada, London Research and
Development Centre, 1391
Sandford Street, London, ON N5V4T3, Canada
| | - Mark W. Sumarah
- Agriculture
and Agri-Food Canada, London Research and
Development Centre, 1391
Sandford Street, London, ON N5V4T3, Canada
| |
Collapse
|
2
|
An J, Chen Y, Zhou S, Gao Y, Yang C, Zhang J, Ou X, Wang Y, Jiang W, Zhou T, Yuan QS. Identification and characterization of Morganella morganii strain YC12-C3 and Enterococcus faecalis strain YC12-C10 and elucidation of its deoxynivalenol-degrading potential. Mycotoxin Res 2025; 41:113-126. [PMID: 39446283 DOI: 10.1007/s12550-024-00568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Deoxynivalenol ( DON) is one of the most harmful mycotoxins in food or feed or Traditional Chinese Medicine. An efficient and applicable method for the detoxification of DON is urgently developed. 1152 strains were isolated from the intestinal contents of crucian. Morganella morganii YC12-C3 and Enterococcus faecalis YC12-C10 were screened with the highest degradation rate of DON via HPLC methods. The optimal degradation condition of YC12-C3 and YC12-C10 is co-cultured 24 h and 36 h at 28 ℃ in LB medium with pH 7 and 1.0% inoculation dosage, respectively. LC-MS/MS and 1H NMR results show that YC12-C10 and YC12-C3 can transform DON to 3-deoxy-6-demethanol-DON, a new metabolite biotransformed from DON, by deoxidization at C3 hydroxy and de-methanal reaction at methanol moiety of C6. In addition, the DON-degradation in agricultural material assay showed that YC12-C10 and YC12-C3 can degrade 150 μg·kg-1 DON in Coix lacryma-jobi, with a degradation rate of 68.89% and 59.94%, respectively. This result shows that YC12-C10 and YC12-C3 have a sound efficiency in removing DON ability in Coix lacryma-jobi, providing a new strain resource and application technique for biological detoxification of DON in food or feed or TCM industry.
Collapse
Affiliation(s)
- Jiuchun An
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yefei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Shihua Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanping Gao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Changgui Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaohong Ou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanhong Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Weike Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qing-Song Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
- National Resource Center for Chinese Meteria Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Beijing, 100700, China.
| |
Collapse
|
3
|
Xu W, Yao J, Ma J, Lu C, Wang C, Sun Y, Guang C, Mu W. Characterization of deoxynivalenol dehydrogenase from Pelagibacterium sp. SCN 63-126 and its application. Arch Microbiol 2024; 207:9. [PMID: 39636447 DOI: 10.1007/s00203-024-04208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Deoxynivalenol (DON), a type-B trichothecene mycotoxin, is primarily produced by Fusarium species and widely pollutes wheat and other grains. Enzymatic treatment of DON has been widely studied in recent years. Here, we present the biochemical identification of the DON dehydrogenase from Pelagibacterium sp. SCN 63-126 (Pe DDH). After removing the signal peptide, Pe DDH is effectively expressed in its soluble form. Biochemical identification indicates that the optimal temperature and pH of Pe DDH against DON is 35 ℃ and pH 8.5. Furthermore, Pe DDH is activated significantly in the presence of Ca2+, Mg2+, and Cu2+, and alternatively activated by pyrroloquinoline quinone (PQQ), phenazine methosulfate (PMS), and 2, 6-dichlorophenolindophenol (DCPIP). When PQQ, PMS, and DCPIP are combined, Pe DDH (60 µg/mL) effectively degrads DON (150 µM) in just 5 min, suggesting a synergistic effect of three cofactors on DON degradation. All these results suggest a great potential of Pe DDH in the control of DON contamination.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Jiayi Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Jingbo Ma
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chen Lu
- Jiangsu Aomai Bio-Technology Co., Ltd, Nanjing, Jiangsu, 211225, China
| | - Chenfei Wang
- Jiangsu Aomai Bio-Technology Co., Ltd, Nanjing, Jiangsu, 211225, China
| | - Yurong Sun
- Jiangsu Aomai Bio-Technology Co., Ltd, Nanjing, Jiangsu, 211225, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
4
|
Nguyen T, Chen X, Ma L, Feng Y. Mycotoxin Biodegradation by Bacillus Bacteria-A Review. Toxins (Basel) 2024; 16:478. [PMID: 39591233 PMCID: PMC11598562 DOI: 10.3390/toxins16110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by various types of fungi that are known to contaminate various food products; their presence in the food chain poses significant risks to human and animal health and leads to enormous economic losses in the food and feed industry worldwide. Ensuring food safety and quality by detoxifying mycotoxin is therefore of paramount importance. Several procedures to control fungal toxins have been extensively investigated, such as preventive measures, physical and chemical methods, and biological strategies. In recent years, microbial degradation of mycotoxins has attracted much attention due to its reliability, efficiency, and cost-effectiveness. Notably, bacterial species from the Bacillus genus have emerged as promising candidates for mycotoxin decontamination owing to their diverse metabolic capabilities and resilience in harsh environmental conditions. This review manuscript aims to provide a summary of recent studies on the biodegradation of fungal toxins by Bacillus bacteria, thereby illustrating their potential applications in the development of mycotoxin-degrading products.
Collapse
Affiliation(s)
- Thanh Nguyen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
| | - Xiaojing Chen
- Bioproton Pty Ltd., Acacia Ridge, Brisbane, QLD 4110, Australia;
| | - Linlin Ma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
5
|
Yao F, Du Y, Tian S, Chang G, Zhang Y, Zhu R, Cai C, Shao S, Zhou T. Identification and characterization of Achromobacter spanius P-9 and elucidation of its deoxynivalenol-degrading potential. Arch Microbiol 2024; 206:178. [PMID: 38498224 DOI: 10.1007/s00203-024-03864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/20/2024]
Abstract
Deoxynivalenol (DON) poses significant challenges due to its frequent contamination of grains and associated products. Microbial strategies for mitigating DON toxicity showed application potential. Eight bacterial isolates with DON degradation activity over 5% were obtained from various samples of organic fertilizer in this study. One of the isolates emerged as a standout, demonstrating a substantial degradation capability, achieving a 99.21% reduction in DON levels. This isolate, underwent thorough morphological, biochemical, and molecular characterization to confirm its identity, and was identified as a new strain of Achromobacter spanius P-9. Subsequent evaluations revealed that the strain P-9 retains its degradation activity after a 24-h incubation, reaching optimal performance at 35 °C with a pH of 8.0. Further studies indicated that Ca2+ ions enhance the degradation process, whereas Zn2+ ions exert an inhibitory effect. This is the pioneering report of DON degradation by Achromobacter spanius, illuminating its prospective utility in addressing DON contamination challenges.
Collapse
Affiliation(s)
- Feng Yao
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yaowen Du
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Siyi Tian
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Guoli Chang
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yanping Zhang
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ruiyu Zhu
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Chenggang Cai
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| |
Collapse
|
6
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Wang Y, Zhao D, Zhang W, Wang S, Huang K, Guo B. Biotransformation of Deoxynivalenol by a Dual-Member Bacterial Consortium Isolated from Tenebrio molitor Larval Feces. Toxins (Basel) 2023; 15:492. [PMID: 37624249 PMCID: PMC10467086 DOI: 10.3390/toxins15080492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, a dual-member bacterial consortium with the ability to oxidize deoxynivalenol (DON) to 3-keto-DON, designated SD, was first screened from the feces of Tenebrio molitor larvae. This consortium consisted of Pseudomonas sp. SD17-1 and Devosia sp. SD17-2, as determined by 16S rRNA-based phylogenetic analysis. A temperature of 30 °C, a pH of 8.0-9.0, and an initial inoculum concentration ratio of Devosia to Pseudomonas of 0.1 were optimal single-factor parameters for the DON oxidation activity of the bacterial consortium SD. Genome-based bioinformatics analysis revealed the presence of an intact PQQ biosynthesis operon (pqqFABCDEG) and four putative pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) genes in the genomes of Pseudomonas strain SD17-1 and Devosia strain SD17-2, respectively. Biochemical analyses further confirmed the PQQ-producing phenotype of Pseudomonas and the DON-oxidizing enzymatic activities of two of four PQQ-dependent ADHs in Devosia. The addition of PQQ-containing a cell-free fermentation supernatant from Pseudomonas activated DON-oxidizing activity of Devosia. In summary, as members of the bacterial consortium SD, Pseudomonas and Devosia play indispensable and complementary roles in SD's oxidation of DON. Specifically, Pseudomonas is responsible for producing the necessary PQQ cofactor, whereas Devosia expresses the PQQ-dependent DON dehydrogenase, together facilitating the oxidation of DON.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (Y.W.)
| | - Donglei Zhao
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (Y.W.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Zhang
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (Y.W.)
| | - Songxue Wang
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (Y.W.)
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baoyuan Guo
- Institute of Grain and Oil Quality and Safety, Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China; (Y.W.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
8
|
Wang Y, Zhao D, Zhang W, Wang S, Wu Y, Wang S, Yang Y, Guo B. Four PQQ-Dependent Alcohol Dehydrogenases Responsible for the Oxidative Detoxification of Deoxynivalenol in a Novel Bacterium Ketogulonicigenium vulgare D3_3 Originated from the Feces of Tenebrio molitor Larvae. Toxins (Basel) 2023; 15:367. [PMID: 37368668 PMCID: PMC10301637 DOI: 10.3390/toxins15060367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Deoxynivalenol (DON) is frequently detected in cereals and cereal-based products and has a negative impact on human and animal health. In this study, an unprecedented DON-degrading bacterial isolate D3_3 was isolated from a sample of Tenebrio molitor larva feces. A 16S rRNA-based phylogenetic analysis and genome-based average nucleotide identity comparison clearly revealed that strain D3_3 belonged to the species Ketogulonicigenium vulgare. This isolate D3_3 could efficiently degrade 50 mg/L of DON under a broad range of conditions, such as pHs of 7.0-9.0 and temperatures of 18-30 °C, as well as during aerobic or anaerobic cultivation. 3-keto-DON was identified as the sole and finished DON metabolite using mass spectrometry. In vitro toxicity tests revealed that 3-keto-DON had lower cytotoxicity to human gastric epithelial cells and higher phytotoxicity to Lemna minor than its parent mycotoxin DON. Additionally, four genes encoding pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases in the genome of isolate D3_3 were identified as being responsible for the DON oxidation reaction. Overall, as a highly potent DON-degrading microbe, a member of the genus Ketogulonicigenium is reported for the first time in this study. The discovery of this DON-degrading isolate D3_3 and its four dehydrogenases will allow microbial strains and enzyme resources to become available for the future development of DON-detoxifying agents for food and animal feed.
Collapse
Affiliation(s)
- Yang Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Donglei Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Songshan Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Yu Wu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Yongtan Yang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Baoyuan Guo
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| |
Collapse
|
9
|
Efremenko E, Senko O, Maslova O, Lyagin I, Aslanli A, Stepanov N. Destruction of Mycotoxins in Poultry Waste under Anaerobic Conditions within Methanogenesis Catalyzed by Artificial Microbial Consortia. Toxins (Basel) 2023; 15:205. [PMID: 36977096 PMCID: PMC10058804 DOI: 10.3390/toxins15030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|