1
|
Ráduly Z, Szabó A, Mézes M, Balatoni I, Price RG, Dockrell ME, Pócsi I, Csernoch L. New perspectives in application of kidney biomarkers in mycotoxin induced nephrotoxicity, with a particular focus on domestic pigs. Front Microbiol 2023; 14:1085818. [PMID: 37125184 PMCID: PMC10140568 DOI: 10.3389/fmicb.2023.1085818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The gradual spread of Aspergilli worldwide is adding to the global shortage of food and is affecting its safe consumption. Aspergillus-derived mycotoxins, including aflatoxins and ochratoxin A, and fumonisins (members of the fusariotoxin group) can cause pathological damage to vital organs, including the kidney or liver. Although the kidney functions as the major excretory system in mammals, monitoring and screening for mycotoxin induced nephrotoxicity is only now a developmental area in the field of livestock feed toxicology. Currently the assessment of individual exposure to mycotoxins in man and animals is usually based on the analysis of toxin and/or metabolite contamination in the blood or urine. However, this requires selective and sensitive analytical methods (e.g., HPLC-MS/MS), which are time consuming and expensive. The toxicokinetic of mycotoxin metabolites is becoming better understood. Several kidney biomarkers are used successfully in drug development, however cost-efficient, and reliable kidney biomarkers are urgently needed for monitoring farm animals for early signs of kidney disease. β2-microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are the dominant biomarkers employed routinely in environmental toxicology research, while kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as effective markers to identify mycotoxin induced nephropathy. Pigs are exposed to mycotoxins due to their cereal-based diet and are particularly susceptible to Aspergillus mycotoxins. In addition to commonly used diagnostic markers for nephrotoxicity including plasma creatinine, NAG, KIM-1 and NGAL can be used in pigs. In this review, the currently available techniques are summarized, which are used for screening mycotoxin induced nephrotoxicity in farm animals. Possible approaches are considered, which could be used to detect mycotoxin induced nephropathy.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Zsolt Ráduly,
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
| | - Miklós Mézes
- ELKH-MATE Mycotoxins in the Food Chain Research Group, Kaposvár, Hungary
- Department of Food Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Robert G. Price
- Department of Nutrition, Franklin-Wilkins Building, King’s College London, London, United Kingdom
| | - Mark E. Dockrell
- SWT Institute of Renal Research, London, United Kingdom
- Department of Molecular and Clinical Sciences, St. George’s University, London, United Kingdom
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Komatsuya K, Sakura T, Shiomi K, Ōmura S, Hikosaka K, Nozaki T, Kita K, Inaoka DK. Siccanin Is a Dual-Target Inhibitor of Plasmodium falciparum Mitochondrial Complex II and Complex III. Pharmaceuticals (Basel) 2022; 15:ph15070903. [PMID: 35890202 PMCID: PMC9319939 DOI: 10.3390/ph15070903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Plasmodium falciparum contains several mitochondrial electron transport chain (ETC) dehydrogenases shuttling electrons from the respective substrates to the ubiquinone pool, from which electrons are consecutively transferred to complex III, complex IV, and finally to the molecular oxygen. The antimalarial drug atovaquone inhibits complex III and validates this parasite’s ETC as an attractive target for chemotherapy. Among the ETC dehydrogenases from P. falciparum, dihydroorotate dehydrogenase, an essential enzyme used in de novo pyrimidine biosynthesis, and complex III are the two enzymes that have been characterized and validated as drug targets in the blood-stage parasite, while complex II has been shown to be essential for parasite survival in the mosquito stage; therefore, these enzymes and complex II are considered candidate drug targets for blocking parasite transmission. In this study, we identified siccanin as the first (to our knowledge) nanomolar inhibitor of the P. falciparum complex II. Moreover, we demonstrated that siccanin also inhibits complex III in the low-micromolar range. Siccanin did not inhibit the corresponding complexes from mammalian mitochondria even at high concentrations. Siccanin inhibited the growth of P. falciparum with IC50 of 8.4 μM. However, the growth inhibition of the P. falciparum blood stage did not correlate with ETC inhibition, as demonstrated by lack of resistance to siccanin in the yDHODH-3D7 (EC50 = 10.26 μM) and Dd2-ELQ300 strains (EC50 = 18.70 μM), suggesting a third mechanism of action that is unrelated to mitochondrial ETC inhibition. Hence, siccanin has at least a dual mechanism of action, being the first potent and selective inhibitor of P. falciparum complexes II and III over mammalian enzymes and so is a potential candidate for the development of a new class of antimalarial drugs.
Collapse
Affiliation(s)
- Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan;
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo 108-8641, Japan;
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (K.K.); (D.K.I.); Tel.: +81-95-819-7575 (K.K.); +81-95-819-7230 (D.K.I.)
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Correspondence: (K.K.); (D.K.I.); Tel.: +81-95-819-7575 (K.K.); +81-95-819-7230 (D.K.I.)
| |
Collapse
|
3
|
Bisceglie F, Degola F, Rogolino D, Giannelli G, Orsoni N, Spadola G, Pioli M, Restivo FM, Carcelli M, Pelosi G. Sisters in structure but different in character, some benzaldehyde and cinnamaldehyde derivatives differentially tune Aspergillus flavus secondary metabolism. Sci Rep 2020; 10:17686. [PMID: 33077881 PMCID: PMC7572373 DOI: 10.1038/s41598-020-74574-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
Great are the expectations for a new generation of antimicrobials, and strenuous are the research efforts towards the exploration of diverse molecular scaffolds-possibly of natural origin - aimed at the synthesis of new compounds against the spread of hazardous fungi. Also high but winding are the paths leading to the definition of biological targets specifically fitting the drug's structural characteristics. The present study is addressed to inspect differential biological behaviours of cinnamaldehyde and benzaldehyde thiosemicarbazone scaffolds, exploiting the secondary metabolism of the mycotoxigenic phytopathogen Aspergillus flavus. Interestingly, owing to modifications on the parent chemical scaffold, some thiosemicarbazones displayed an increased specificity against one or more developmental processes (conidia germination, aflatoxin biosynthesis, sclerotia production) of A. flavus biology. Through the comparative analysis of results, the ligand-based screening strategy here described has allowed us to delineate which modifications are more promising for distinct purposes: from the control of mycotoxins contamination in food and feed commodities, to the environmental management of microbial pathogens, to the investigation of specific structure-activity features for new generation drug discovery.
Collapse
Affiliation(s)
- Franco Bisceglie
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesca Degola
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Dominga Rogolino
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Gianluigi Giannelli
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Nicolò Orsoni
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Spadola
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Marianna Pioli
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Francesco M. Restivo
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Mauro Carcelli
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Pelosi
- grid.10383.390000 0004 1758 0937Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
4
|
Furukawa T, Katayama H, Oikawa A, Negishi L, Ichikawa T, Suzuki M, Murase K, Takayama S, Sakuda S. Dioctatin Activates ClpP to Degrade Mitochondrial Components and Inhibits Aflatoxin Production. Cell Chem Biol 2020; 27:1396-1409.e10. [PMID: 32888498 DOI: 10.1016/j.chembiol.2020.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Aflatoxin contamination of crops is a serious problem worldwide. Utilization of aflatoxin production inhibitors is attractive, as the elucidation of their modes of action contributes to clarifying the mechanism of aflatoxin production. Here, we identified mitochondrial protease ClpP as the target of dioctatin, an inhibitor of aflatoxin production of Aspergillus flavus. Dioctatin conferred uncontrolled caseinolytic capacity on ClpP of A. flavus and Escherichia coli. Dioctatin-bound ClpP selectively degraded mitochondrial energy-related proteins in vitro, including a subunit of respiratory chain complex V, which was also reduced by dioctatin in a ClpP-dependent manner in vivo. Dioctatin enhanced glycolysis and alcohol fermentation while reducing tricarboxylic acid cycle metabolites. These disturbances were accompanied by reduced histone acetylation and reduced expression of aflatoxin biosynthetic genes. Our results suggest that dioctatin inhibits aflatoxin production by inducing ClpP-mediated degradation of mitochondrial energy-related components, and that mitochondrial energy metabolism functions as a key determinant of aflatoxin production.
Collapse
Affiliation(s)
- Tomohiro Furukawa
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-shi, Tochigi 320-0003, Japan
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Akira Oikawa
- Department of Food, Life, and Environmental Sciences, Faculty of Agriculture, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata-shi, Yamagata 990-8560, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-chou, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuma Ichikawa
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kohji Murase
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seiji Takayama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shohei Sakuda
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-shi, Tochigi 320-0003, Japan.
| |
Collapse
|
5
|
Dallabona C, Pioli M, Spadola G, Orsoni N, Bisceglie F, Lodi T, Pelosi G, Restivo FM, Degola F. Sabotage at the Powerhouse? Unraveling the Molecular Target of 2-Isopropylbenzaldehyde Thiosemicarbazone, a Specific Inhibitor of Aflatoxin Biosynthesis and Sclerotia Development in Aspergillus flavus, Using Yeast as a Model System. Molecules 2019; 24:molecules24162971. [PMID: 31426298 PMCID: PMC6719062 DOI: 10.3390/molecules24162971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022] Open
Abstract
Amongst the various approaches to contain aflatoxin contamination of feed and food commodities, the use of inhibitors of fungal growth and/or toxin biosynthesis is showing great promise for the implementation or the replacement of conventional pesticide-based strategies. Several inhibition mechanisms were found taking place at different levels in the biology of the aflatoxin-producing fungal species such as Aspergillus flavus: compounds that influence aflatoxin production may block the biosynthetic pathway through the direct control of genes belonging to the aflatoxin gene cluster, or interfere with one or more of the several steps involved in the aflatoxin metabolism upstream. Recent findings pointed to mitochondrial functionality as one of the potential targets of some aflatoxin inhibitors. Additionally, we have recently reported that the effect of a compound belonging to the class of thiosemicarbazones might be related to the energy generation/carbon flow and redox homeostasis control by the fungal cell. Here, we report our investigation about a putative molecular target of the 3-isopropylbenzaldehyde thiosemicarbazone (mHtcum), using the yeast Saccharomyces cerevisiae as model system, to demonstrate how the compound can actually interfere with the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Marianna Pioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Giorgio Spadola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Nicolò Orsoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Tiziana Lodi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Francesco Maria Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43123 Parma, Italy.
| |
Collapse
|
6
|
Inhibition of Aflatoxin Production by Paraquat and External Superoxide Dismutase in Aspergillus flavus. Toxins (Basel) 2019; 11:toxins11020107. [PMID: 30759855 PMCID: PMC6409742 DOI: 10.3390/toxins11020107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 01/01/2023] Open
Abstract
Aflatoxin contamination of crops is a worldwide problem, and elucidation of the regulatory mechanism of aflatoxin production, for example relative to the oxidative–antioxidative system, is needed. Studies have shown that oxidative stress induced by reactive oxygen species promotes aflatoxin production. However, superoxide has been suggested to have the opposite effect. Here, we investigated the effects of the superoxide generator, paraquat, and externally added superoxide dismutase (SOD) on aflatoxin production in Aspergillus flavus. Paraquat with an IC50 value of 54.9 µM inhibited aflatoxin production without affecting fungal growth. It increased cytosolic and mitochondrial superoxide levels and downregulated the transcription of aflatoxin biosynthetic cluster genes, including aflR, a key regulatory protein. The addition of bovine Cu/ZnSOD to the culture medium suppressed the paraquat-induced increase in superoxide levels, but it did not fully restore paraquat-inhibited aflatoxin production because bovine Cu/ZnSOD with an IC50 value of 17.9 µg/mL itself inhibited aflatoxin production. Externally added bovine Cu/ZnSOD increased the SOD activity in fungal cell extracts and upregulated the transcription of genes encoding Cu/ZnSOD and alcohol dehydrogenase. These results suggest that intracellular accumulation of superoxide impairs aflatoxin production by downregulating aflR expression, and that externally added Cu/ZnSOD also suppresses aflatoxin production by a mechanism other than canonical superoxide elimination activity.
Collapse
|
7
|
Iimura K, Furukawa T, Yamamoto T, Negishi L, Suzuki M, Sakuda S. The Mode of Action of Cyclo(l-Ala-l-Pro) in Inhibiting Aflatoxin Production of Aspergillus flavus. Toxins (Basel) 2017; 9:toxins9070219. [PMID: 28704973 PMCID: PMC5535166 DOI: 10.3390/toxins9070219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/11/2017] [Indexed: 01/03/2023] Open
Abstract
Cyclo(l-Ala-l-Pro) inhibits aflatoxin production in aflatoxigenic fungi without affecting fungal growth. The mode of action of cyclo(l-Ala-l-Pro) in inhibiting aflatoxin production of Aspergillus flavus was investigated. A glutathione S-transferase (GST) of the fungus, designated AfGST, was identified as a binding protein of cyclo(l-Ala-l-Pro) in an experiment performed using cyclo(l-Ala-l-Pro)-immobilized Sepharose beads. Cyclo(l-Ala-l-Pro) specifically bound to recombinant AfGST and inhibited its GST activity. Ethacrynic acid, a known GST inhibitor, inhibited the GST activity of recombinant AfGST and aflatoxin production of the fungus. Ethacrynic acid reduced the expression level of AflR, a key regulatory protein for aflatoxin production, similar to cyclo(l-Ala-l-Pro). These results suggest that cyclo(l-Ala-l-Pro) inhibits aflatoxin production by affecting GST function in A. flavus, and that AfGST inhibitors are possible candidates as selective aflatoxin production inhibitors.
Collapse
Affiliation(s)
- Kurin Iimura
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Tomohiro Furukawa
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Toshiyoshi Yamamoto
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Lumi Negishi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Michio Suzuki
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Shohei Sakuda
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
8
|
Effect of Various Compounds Blocking the Colony Pigmentation on the Aflatoxin B1 Production by Aspergillus flavus. Toxins (Basel) 2016; 8:toxins8110313. [PMID: 27801823 PMCID: PMC5127110 DOI: 10.3390/toxins8110313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins and melanins are the products of a polyketide biosynthesis. In this study, the search of potential inhibitors of the aflatoxin B1 (AFB1) biosynthesis was performed among compounds blocking the pigmentation in fungi. Four compounds—three natural (thymol, 3-hydroxybenzaldehyde, compactin) and one synthetic (fluconazole)—were examined for their ability to block the pigmentation and AFB1 production in Aspergillus flavus. All compounds inhibited the mycelium pigmentation of a fungus growing on solid medium. At the same time, thymol, fluconazole, and 3-hydroxybenzaldehyde stimulated AFB1 accumulation in culture broth of A. flavus under submerged fermentation, whereas the addition of 2.5 μg/mL of compactin resulted in a 50× reduction in AFB1 production. Moreover, compactin also suppressed the sporulation of A. flavus on solid medium. In vivo treatment of corn and wheat grain with compactin (50 μg/g of grain) reduced the level of AFB1 accumulation 14 and 15 times, respectively. Further prospects of the compactin study as potential AFB1 inhibitor are discussed.
Collapse
|
9
|
Furukawa T, Iimura K, Kimura T, Yamamoto T, Sakuda S. Inhibitory Activities of Alkyl Syringates and Related Compounds on Aflatoxin Production. Toxins (Basel) 2016; 8:toxins8060177. [PMID: 27338472 PMCID: PMC4926143 DOI: 10.3390/toxins8060177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 11/16/2022] Open
Abstract
Inhibitors of aflatoxin production of aflatoxigenic fungi are useful for preventing aflatoxin contamination in crops. As methyl syringate weakly inhibits aflatoxin production, aflatoxin production inhibitory activities of additional alkyl syringates with alkyl chains from ethyl to octyl were examined. Inhibitory activity toward aflatoxin production of Aspergillus flavus became stronger as the length of the alkyl chains on the esters became longer. Pentyl, hexyl, heptyl, and octyl syringates showed strong activity at 0.05 mM. Heptyl and octyl parabens, and octyl gallate also inhibited aflatoxin production as strongly as octyl syringate. Alkyl parabens and alkyl gallates inhibit the complex II activity of the mitochondrial respiration chain; thus, whether alkyl syringates inhibit complex II activity was examined. Inhibitory activities of alkyl syringates toward complex II also became stronger as the length of the alkyl chains increased. The complex II inhibitory activity of octyl syringate was comparable to that of octyl paraben and octyl gallate. These results suggest that alkyl syringates, alkyl parabens, and alkyl gallates, including commonly used food additives, are useful for aflatoxin control.
Collapse
Affiliation(s)
- Tomohiro Furukawa
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Kurin Iimura
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Taichi Kimura
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Toshiyoshi Yamamoto
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Shohei Sakuda
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
10
|
Sakuda S, Yoshinari T, Furukawa T, Jermnak U, Takagi K, Iimura K, Yamamoto T, Suzuki M, Nagasawa H. Search for aflatoxin and trichothecene production inhibitors and analysis of their modes of action. Biosci Biotechnol Biochem 2016; 80:43-54. [DOI: 10.1080/09168451.2015.1086261] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Mycotoxin contamination of crops is a serious problem throughout the world because of its impact on human and animal health as well as economy. Inhibitors of mycotoxin production are useful not only for developing effective methods to prevent mycotoxin contamination, but also for investigating the molecular mechanisms of secondary metabolite production by fungi. We have been searching for mycotoxin production inhibitors among natural products and investigating their modes of action. In this article, we review aflatoxin and trichothecene production inhibitors, including our works on blasticidin S, methyl syringate, cyclo(l-Ala-l-Pro), respiration inhibitors, and precocene II.
Collapse
Affiliation(s)
- Shohei Sakuda
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, Tokyo, Japan
| | - Tomohiro Furukawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Usuma Jermnak
- Faculty of Veterinary Medicine, Department of Pharmacology, Kasetsart University, Bangkok, Thailand
| | - Keiko Takagi
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Kurin Iimura
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Toshiyoshi Yamamoto
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Regueiro J, Olguín N, Simal-Gándara J, Suñol C. Toxicity evaluation of new agricultural fungicides in primary cultured cortical neurons. ENVIRONMENTAL RESEARCH 2015; 140:37-44. [PMID: 25825129 DOI: 10.1016/j.envres.2015.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 05/07/2023]
Abstract
Fungicides are crucial for food protection as well as for the production of crops of suitable quality and quantity to provide a viable economic return. Like other pesticides, fungicides are widely sprayed on agricultural land, especially in wine-growing areas, from where they can move-off after application. Furthermore, residues of these agrochemicals can remain on crops after harvest and even after some food processing operations, being a major exposure pathway. Although a relatively low toxicity has been claimed for this kind of compounds, information about their neurotoxicity is still scarce. In the present study, nine fungicides recently approved for agricultural uses in the EU - ametoctradin, boscalid, cyazofamid, dimethomorph, fenhexamid, kresoxim-methyl, mepanipyrim, metrafenone and pyraclostrobin - have been evaluated for their toxicity in primary cultured mouse cortical neurons. Exposure to 0.1-100µM for 7 days in vitro resulted in a dose-dependent toxicity in the MTT cell viability assay. Strobilurin fungicides kresoxim-methyl (KR) and pyraclostrobin (PY) were the most neurotoxic compounds (lethal concentration 50 were in the low micromolar and nanomolar levels, respectively) causing a rapid raise in intracellular calcium [Ca(2+)]i and strong depolarization of mitochondrial membrane potential. KR- and PY-induced cell death was reversed by the calcium channels blockers MK-801 and verapamil, suggesting that calcium entry through NMDA receptors and voltage-operated calcium channels are involved in KR- and PY-induced neurotoxicity. These results highlight the need for further evaluation of their neurotoxic effects in vivo.
Collapse
Affiliation(s)
- Jorge Regueiro
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, CIBERESP, Barcelona, Spain; Department of Analytical Chemistry and Food Science, Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense, Spain
| | - Nair Olguín
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, CIBERESP, Barcelona, Spain
| | - Jesús Simal-Gándara
- Department of Analytical Chemistry and Food Science, Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense, Spain
| | - Cristina Suñol
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, CIBERESP, Barcelona, Spain.
| |
Collapse
|