1
|
Cordeiro-Araújo MK, Chia MA, Lorenzi AS, Bittencourt-Oliveira MDC. Assessing the response lettuce and arugula to MC-LR-contaminated water irrigation: photosynthetic changes and antioxidant defense. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56578-56592. [PMID: 39277832 DOI: 10.1007/s11356-024-34959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Irrigation of crops with cyanotoxin-contaminated water poses a significant risk to human health. The direct phytotoxic effects of microcystin-LR (MC-LR), one of the most toxic and prevalent microcystin variants in water bodies, can induce physiological stress and hinder crop development and production. This study investigated the impact of environmentally relevant concentrations of MC-LR (1 to 10 µg L-1) on photosynthetic parameters and antioxidant response of lettuce (Lactuca sativa L.) and arugula (Eruca sativa L.) following irrigation with contaminated water. During the 15-day experiment, lettuce and arugula were exposed to various concentrations of MC-LR, and their photosynthetic rates, stomatal conductance, leaf tissue transpiration, and intercellular CO2 concentrations were measured using an infrared gas analyzer. These results suggest that the influence of MC-LR on gas exchange in crops is concentration-dependent, with notable disruptions during exposure and recovery tendency during detoxification. Antioxidant response analysis revealed that glutathione S-transferase (GST) and superoxide dismutase (SOD) activities were upregulated during the exposure phase in the presence of MC-LR. However, GST activity decreased during the detoxification phase in both crops, although the effects of the toxin at 10 µg L-1 were still evident in arugula. The internal H2O2 concentration in the crops increased after exposure to MC-LR, showing a time- and concentration-dependent pattern, with an increase during the exposure phase (days 1-7) and a decrease during the detoxification phase (days 8-15). Irrigation of lettuce and arugula with MC-LR-contaminated water affected various aspects of the photosynthetic apparatus and antioxidant responses, which could influence the general health and productivity of exposed crops at environmentally relevant microcystin concentrations. Furthermore, investigation of additional vegetable species and long-term MC-LR exposure can be crucial for understanding the extent of contamination risk, detoxification mechanisms, and other parameters affecting these crops.
Collapse
Affiliation(s)
- Micheline Kézia Cordeiro-Araújo
- Department of Cell Biology, Postgraduate Program in Microbial Biology, University of Brasília - UnB, Brasília, DF, 70910-900, Brazil.
- Cyanobacteria Laboratory, Department of Biological Sciences, School of Agriculture (Escola Superior de Agricultura Luiz de Queiroz), University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil.
| | - Mathias Ahii Chia
- Cyanobacteria Laboratory, Department of Biological Sciences, School of Agriculture (Escola Superior de Agricultura Luiz de Queiroz), University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
- Department of Ecology, University of Brasilia - UnB, Brasília, DF, 70910-900, Brazil
- Department of Botany, Ahmadu Bello University, Zaria, 810001, Kaduna, Nigeria
| | - Adriana Sturion Lorenzi
- Cyanobacteria Laboratory, Department of Biological Sciences, School of Agriculture (Escola Superior de Agricultura Luiz de Queiroz), University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
| | - Maria do Carmo Bittencourt-Oliveira
- Cyanobacteria Laboratory, Department of Biological Sciences, School of Agriculture (Escola Superior de Agricultura Luiz de Queiroz), University of São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
2
|
Haida M, Khalloufi FE, Essadki Y, Alexandrino DAM, Mugani R, Hejjaj A, Campos A, Vasconcelos V, Carvalho MF, Díez-Quijada L, Cameán AM, Oudra B. Microcystin-degrading bacteria reduce bioaccumulation in Fragaria vulgaris and enhance fruit yield and quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54502-54524. [PMID: 39196325 DOI: 10.1007/s11356-024-34568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
In Morocco, red fruit production has thrived, primarily utilizing hydroponic methods to control crops, increase fruit yield and quality, and avoid soil-related problems. However, the irrigation of these expansive hydroponic farms relies heavily on water sourced from dams, many of which are contaminated with Microcystins (MCs). To address this contamination issue, ongoing research is focused on discovering effective and cost-efficient biological solutions for eliminating MCs. In this study, we isolate and identify bacterial strains capable of degrading MCs, evaluate the rate of degradation, and investigate how soil inoculated with these bacteria affects the accumulation of MCs in plant tissue. The partial 16S rRNA analyses of three bacterial sequences were conducted, identifying them through NCBI as follows: Ensifer sp. (B1) isolated from soil, Shinella sp. (B2) from a cyanobacterial bloom, and Stutzerimonas sp. (B3) from water. These bacteria exhibited the ability to degrade MCs, with approximately 34.75%, 73.75%, and 30.1% of the initial concentration (20 µg/L) being removed after a 6-day period for B1, B2, and B3, respectively. Moreover, strawberry plants were cultivated hydroponically in a greenhouse for a duration of 90 days. These plants were subjected to extracts of cyanobacteria containing 10 and 20 µg/L of Microcystins (MC), as well as water from an artificial lake contaminated with MC, both with and without the presence of isolated bacterial strains. Among these strains, Shinella sp. exhibited the highest efficacy in mitigating MC accumulation. Specifically, it resulted in a reduction of approximately 1.159 µg of MC per kilogram of root dry weight, leading to complete elimination in the leaves and fruits. The findings also indicated that the inoculation of perlite with the three MC-degrading bacterial strains significantly enhanced growth, photosynthetic pigments, yield, biochemical constituents, and quality attributes of strawberries (p ≤ 0.05). These promising outcomes suggest the potential of this approach for addressing the adverse impacts of crops irrigated with MC-contaminated water in future agricultural practices.
Collapse
Affiliation(s)
- Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P: 145, 25000, Khouribga, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Diogo A M Alexandrino
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
- Department of Environmental Health, School of Health, P. Porto, Porto, Portugal
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
- National Center for Studies and Research On Water and Energy, Cadi Ayyad University, P.O Box: 511, 40000, Marrakech, Morocco
| | - Abdessamad Hejjaj
- National Center for Studies and Research On Water and Energy, Cadi Ayyad University, P.O Box: 511, 40000, Marrakech, Morocco
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal.
- Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| | - Maria F Carvalho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor Gacia Gonzalez 2, 41012, Seville, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor Gacia Gonzalez 2, 41012, Seville, Spain
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
3
|
Haida M, El Khalloufi F, Mugani R, Essadki Y, Campos A, Vasconcelos V, Oudra B. Microcystin Contamination in Irrigation Water and Health Risk. Toxins (Basel) 2024; 16:196. [PMID: 38668621 PMCID: PMC11054416 DOI: 10.3390/toxins16040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
Microcystins (MCs), natural hepatotoxic compounds produced by cyanobacteria, pose significant risks to water quality, ecosystem stability, and the well-being of animals, plants, and humans when present in elevated concentrations. The escalating contamination of irrigation water with MCs presents a growing threat to terrestrial plants. The customary practice of irrigating crops from local water sources, including lakes and ponds hosting cyanobacterial blooms, serves as a primary conduit for transferring these toxins. Due to their high chemical stability and low molecular weight, MCs have the potential to accumulate in various parts of plants, thereby increasing health hazards for consumers of agricultural products, which serve as the foundation of the Earth's food chain. MCs can bioaccumulate, migrate, potentially biodegrade, and pose health hazards to humans within terrestrial food systems. This study highlights that MCs from irrigation water reservoirs can bioaccumulate and come into contact with plants, transferring into the food chain. Additionally, it investigates the natural mechanisms that organisms employ for conjugation and the microbial processes involved in MC degradation. To gain a comprehensive understanding of the role of MCs in the terrestrial food chain and to elucidate the specific health risks associated with consuming crops irrigated with water contaminated with these toxins, further research is necessary.
Collapse
Affiliation(s)
- Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (M.H.); (R.M.); (Y.E.); (B.O.)
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P, 45, Khouribga 25000, Morocco;
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (M.H.); (R.M.); (Y.E.); (B.O.)
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (M.H.); (R.M.); (Y.E.); (B.O.)
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (M.H.); (R.M.); (Y.E.); (B.O.)
| |
Collapse
|
4
|
Liang C, Zhu J. Role of root plasma membrane H +-ATPase in enhancing Cucumis sativus adaptation to microcystins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20133-20148. [PMID: 38372914 DOI: 10.1007/s11356-024-32371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Microcystins (MCs) are the most widespread and hazardous cyanotoxins posing a huge threat to agro-ecosystem by irrigation. Some adaptive metabolisms can be initiated at the cellular and molecular levels of plant to survive environmental change. To find ways to improve plant tolerance to MCs after recognizing adaptive mechanism in plant, we studied effects of MCs on root morphology, mineral element contents, root activity, H+-ATPase activity, and its gene expression level in cucumber during exposure and recovery (without MCs) periods. After being exposed to MCs (1, 10, 100 and 1000 μg L-1) for 7 days, we found 1 μg L-1 MCs did not affect growth and mineral elements in cucumber. MCs at 10 μg ·L-1 increased root activity and H+-ATPase activity partly from upregulation of genes (CsHA2, CsHA3, CsHA8, and CsHA9) expression, to promote nutrient uptake. Then, the increase in NO3-, Fe, Zn, and Mn contents could contribute to maintaining root growth and morphology. Higher concentration MCs (100 or 1000 µg L-1) inhibited root activity and H+-ATPase activity by downregulating expression of genes (CsHA2, CsHA3, CsHA4, CsHA8, CsHA9, and CsHA10), decreased contents of nutrient elements except Ca largely, and caused root growing worse. After a recovery, the absorption activity and H+-ATPase activity in cucumber treated with10 μg L-1 MCs were closed to the control whereas all parameters in cucumber treated 1000 μg L-1 MCs were even worse. All results indicate that the increase in H+-ATPase activity can enhance cucumber tolerance to MC stress by regulating nutrient uptake, especially when the MCs occur at low concentrations.
Collapse
Affiliation(s)
- Chanjuan Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Jiuzheng Zhu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Haida M, El Khalloufi F, Tamegart L, Mugani R, Essadki Y, Redouane EM, Azevedo J, Araújo MJ, Campos A, Vasconcelos V, Gamrani H, Oudra B. Tracing the fate of microcystins from irrigation water to food chains: Studies with Fragaria vulgaris and Meriones shawi. Toxicon 2023; 236:107345. [PMID: 37963511 DOI: 10.1016/j.toxicon.2023.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023]
Abstract
Microcystins (MCs) are cyanobacterial toxins that can negatively impact human and animal health. This study investigated the bioaccumulation, transfer, depuration, and health risks of MCs in strawberry plants (Fragaria vulgaris) and Meriones shawi animals. The plants were irrigated with 1, 5, 10, and 20 μg/L MCs for 60 days (bioaccumulation phase) and then with clean water for 30 days (depuration phase). The harvested plants (roots and leaves) were then prepared in an aliquot form and used as feed for Meriones shawi. Liquid chromatography-mass spectrometry (LC/MS/MS) was used to measure MC concentrations in plant and animal tissues. The bioaccumulation of MCs was found to be highest in the roots, followed by leaves, fruits, liver, stomach, and fecal matter. The bioaccumulation factor (BAF) was highest in perlite (8.48), followed by roots (5.01), leaves (1.55), stomach (0.87), and fecal matter (1.18), indicating that the parts with high bioaccumulation factor had high translocation of MCs. The transfer of MCs to animal organs was low, and the daily toxin intake of adult consumers of strawberry fruit irrigated with 1, 5, 10, and 20 μg/L MC did not exceed the WHO-recommended limit of 0.04 μg MC-LR/Kg of bw/day. However, fruits from plants irrigated with 10 and 20 μg/L may pose a moderate health risk to children (25 Kg bw), and Meriones' consumption of leaves may pose a significant health risk. After the depuration phase, MC concentration in perlite, roots, leaves, and fruits decreased, indicating that depuration reduced the danger of MC transmission and bioaccumulation. The study also found that glutathione reductase and glutathione S-transferase activity were essential in the depuration of MCs in the tested plants. The findings suggest that legislation regulating the quality of irrigation water in terms of MC concentrations is necessary to prevent detrimental consequences to crops and human exposure.
Collapse
Affiliation(s)
- Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P: 145, 25000, Khouribga, Morocco
| | - Lahcen Tamegart
- Department of Biology, Faculty of Science, AbdelmalekEssaadi University, Tetouan, Morocco; Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Mário Jorge Araújo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| |
Collapse
|
6
|
Momo J, Rawoof A, Kumar A, Islam K, Ahmad I, Ramchiary N. Proteomics of Reproductive Development, Fruit Ripening, and Stress Responses in Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:65-95. [PMID: 36584279 DOI: 10.1021/acs.jafc.2c06564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fruits of the tomato crop (Solanum lycopersicum L.) are increasingly consumed by humans worldwide. Due to their rich nutritional quality, pharmaceutical properties, and flavor, tomato crops have gained a salient role as standout crops among other plants. Traditional breeding and applied functional research have made progress in varying tomato germplasms to subdue biotic and abiotic stresses. Proteomic investigations within a span of few decades have assisted in consolidating the functional genomics and transcriptomic research. However, due to the volatility and dynamicity of proteins in the regulation of various biosynthetic pathways, there is a need for continuing research in the field of proteomics to establish a network that could enable a more comprehensive understanding of tomato growth and development. With this view, we provide a comprehensive review of proteomic studies conducted on the tomato plant in past years, which will be useful for future breeders and researchers working to improve the tomato crop.
Collapse
Affiliation(s)
- John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Ilyas Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| |
Collapse
|
7
|
Casas Rodríguez A, Diez-Quijada L, Prieto AI, Jos A, Cameán AM. Effect of cold food storage techniques on the contents of Microcystins and Cylindrospermopsin in leaves of spinach (Spinacia oleracea) and lettuce (Lactuca sativa). Food Chem Toxicol 2022; 170:113507. [PMID: 36334728 DOI: 10.1016/j.fct.2022.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
The presence of Cylindrospermopsin (CYN) and Microcystins (MCs) in vegetables is considered as a significant worldwide toxicological risk. Thus, this work aims to assess for the first time the impact of refrigeration (4 °C) and freezing (-20 °C) on the levels of CYN, MCs and their mixtures (CYN + MCs) in lettuce and spinach. Samples were spiked with 750 μg cyanotoxins/g dry weight (d.w.). Several storage conditions were studied: refrigeration after 24, 48 h and 7 days, and freezing for 7 days, 1 and 3 months. Cyanotoxin concentrations were determined by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). For CYN, refrigeration at 48 h and 7 days was effective to decrease its concentrations up to 26% and 32%, respectively, in spinach. For MCs, refrigeration was only effective in lettuce compared to spinach, showing an important decrease of 80.3% MC-LR and 85.1% MC-YR. In spinach, CYN was stable after 3 months freezing, whereas MC contents were still reduced up to 44%. Overall, cyanotoxins were less stable in the mixture compared to individual toxins for both processes, and the effect of these storage techniques were toxin and food-specific. Further studies of cyanotoxins in foods are required for evaluating the risk for humans.
Collapse
Affiliation(s)
- Antonio Casas Rodríguez
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| | - Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| |
Collapse
|
8
|
Towards a Better Quantification of Cyanotoxins in Fruits and Vegetables: Validation and Application of an UHPLC-MS/MS-Based Method on Belgian Products. SEPARATIONS 2022. [DOI: 10.3390/separations9100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vegetables and fruits can potentially accumulate cyanotoxins after water contaminated with cyanobacteria is used for irrigation. We developed and validated an analytical method to quantify eight microcystin congeners (MCs) and nodularin (NOD) using ultra high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) in three different matrices. Strawberries, carrots and lettuce are selected as model matrices to represent the fruits/berries, leafy and root vegetables, sequentially. The validation of a UHPLC-MS/MS method in the strawberry matrix is novel. Matrix effects are observed in all three matrices. Our methodology uses matrix-matched calibration curves to compensate for the matrix effect. The implementation of our method on 103 samples, containing nine different sorts of fruits and vegetables from the Belgian market, showed no presence of MCs or NOD. However, the recoveries of our quality controls showed the effectiveness of our method, illustrating that the use of this method in future research or monitoring as well as in official food controls in fruit and vegetable matrices is valid.
Collapse
|
9
|
Microcystin Contamination and Toxicity: Implications for Agriculture and Public Health. Toxins (Basel) 2022; 14:toxins14050350. [PMID: 35622596 PMCID: PMC9145844 DOI: 10.3390/toxins14050350] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 01/02/2023] Open
Abstract
Microcystins are natural hepatotoxic metabolites secreted by cyanobacteria in aquatic ecosystems. When present at elevated concentrations, microcystins can affect water quality aesthetics; contaminate drinking water reservoirs and recreational waters; disrupt normal ecosystem functioning; and cause health hazards to animals, plants, and humans. Animal and human exposures to microcystins generally result from ingesting contaminated drinking water or physically contacting tainted water. Much research has identified a multitude of liver problems from oral exposure to microcystins, varying from hepatocellular damage to primary liver cancer. Provisional guidelines for microcystins in drinking and recreational water have been established to prevent toxic exposures and protect public health. With increasing occurrences of eutrophication in freshwater systems, microcystin contamination in groundwater and surface waters is growing, posing threats to aquatic and terrestrial plants and agricultural soils used for crop production. These microcystins are often transferred to crops via irrigation with local sources of water, such as bloom-forming lakes and ponds. Microcystins can survive in high quantities in various parts of plants (roots, stems, and leaves) due to their high chemical stability and low molecular weight, increasing health risks for consumers of agricultural products. Studies have indicated potential health risks associated with contaminated fruits and vegetables sourced from irrigated water containing microcystins. This review considers the exposure risk to humans, plants, and the environment due to the presence of microcystins in local water reservoirs used for drinking and irrigation. Additional studies are needed to understand the specific health impacts associated with the consumption of microcystin-contaminated agricultural plants.
Collapse
|
10
|
Cyanotoxins uptake and accumulation in crops: Phytotoxicity and implications on human health. Toxicon 2022; 211:21-35. [DOI: 10.1016/j.toxicon.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
11
|
A Summer of Cyanobacterial Blooms in Belgian Waterbodies: Microcystin Quantification and Molecular Characterizations. Toxins (Basel) 2022; 14:toxins14010061. [PMID: 35051038 PMCID: PMC8780180 DOI: 10.3390/toxins14010061] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
In the context of increasing occurrences of toxic cyanobacterial blooms worldwide, their monitoring in Belgium is currently performed by regional environmental agencies (in two of three regions) using different protocols and is restricted to some selected recreational ponds and lakes. Therefore, a global assessment based on the comparison of existing datasets is not possible. For this study, 79 water samples from a monitoring of five lakes in Wallonia and occasional blooms in Flanders and Brussels, including a canal, were analyzed. A Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) method allowed to detect and quantify eight microcystin congeners. The mcyE gene was detected using PCR, while dominant cyanobacterial species were identified using 16S RNA amplification and direct sequencing. The cyanobacterial diversity for two water samples was characterized with amplicon sequencing. Microcystins were detected above limit of quantification (LOQ) in 68 water samples, and the World Health Organization (WHO) recommended guideline value for microcystins in recreational water (24 µg L−1) was surpassed in 18 samples. The microcystin concentrations ranged from 0.11 µg L−1 to 2798.81 µg L−1 total microcystin. For 45 samples, the dominance of the genera Microcystis sp., Dolichospermum sp., Aphanizomenon sp., Cyanobium/Synechococcus sp., Planktothrix sp., Romeria sp., Cyanodictyon sp., and Phormidium sp. was shown. Moreover, the mcyE gene was detected in 75.71% of all the water samples.
Collapse
|
12
|
Bouaïcha N, Metcalf JS, Porzani SJ, Konur O. Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health. PHYTOCHEMISTRY 2021; 192:112959. [PMID: 34649057 DOI: 10.1016/j.phytochem.2021.112959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
Plant-cyanobacteria interactions occur in different ways and at many different levels, both beneficial and harmful. Plant-cyanobacteria interactions, as a beneficial symbiosis, have long been demonstrated in rice-growing areas (Poaceae) where the most efficient nitrogen-fixing cyanobacteria are present in paddies. Moreover, cyanobacteria may in turn produce and/or secrete numerous bioactive compounds that have plant growth-promoting abilities or that may make the plant more resistant to abiotic or biotic stress. In recent years, there has been a growing worldwide interest in the use of cyanobacterial biomass as biofertilizers to replace chemical fertilizers, in part to overcome increasing organic-farming demands. However, the potential presence of harmful cyanotoxins has delayed the use of such cyanobacterial biomass, which can be found in large quantities in freshwater ecosystems around the world. In this review, we describe the existing evidence for the positive benefit of plant-cyanobacteria interactions and discuss the use of cyanobacterial biomass as biofertilizers and its growing worldwide interest. Although mass cyanobacterial blooms and scums are a current and emerging threat to the degradation of ecosystems and to animal and human health, they may serve as a source of numerous bioactive compounds with multiple positive effects that could be of use as an alternative to chemical fertilizers in the context of sustainable development.
Collapse
Affiliation(s)
- Noureddine Bouaïcha
- Laboratory Ecology, Systematic and Evolution, UMR 8079 Univ. Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91405, Orsay, France
| | | | - Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ozcan Konur
- Formerly, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
13
|
Tsoumalakou E, Papadimitriou T, Berillis P, Kormas KA, Levizou E. Spray irrigation with microcystins-rich water affects plant performance from the microscopic to the functional level and food safety of spinach (Spinacia oleracea L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147948. [PMID: 34051502 DOI: 10.1016/j.scitotenv.2021.147948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Irrigation water coming from freshwater bodies that suffer toxic cyanobacterial blooms causes adverse effects on crop productivity and quality and raises concerns regarding food contamination and human exposure to toxins. The common agricultural practice of spray irrigation is an important exposure route to cyanotoxins, yet its impact on crops has received little attention. In the present study we attempted an integrated approach at the macro- and microscopic level to investigate whether spray or drip irrigation with microcystins (MCs)-rich water differently affect spinach performance. Growth and functional features, structural characteristics of stomata, and toxin bioaccumulation were determined. Additionally, the impact of irrigation method and water type on the abundance of leaf-attached microorganisms was assessed. Drip irrigation with MCs-rich water had detrimental effects on growth and photosynthetic characteristics of spinach, while spray irrigation ameliorated to various extents the observed impairments. The stomatal characteristics were differently affected by the irrigation method. Drip-irrigated spinach leaves showed significantly lower stomatal density in the abaxial epidermis and smaller stomatal size in the adaxial side compared to spray-irrigation treatment. Nevertheless, the latter deteriorated traits related to fresh produce quality and safety for human consumption; both the abundance of leaf-attached microorganisms and the MCs bioaccumulation in edible tissues well exceeded the corresponding values of drip-irrigated spinach with MC-rich water. The results highlight the significance of both the use of MCs-contaminated water in vegetable production and the irrigation method in shaping plant responses as well as health risk due to human and livestock exposure to MCs.
Collapse
Affiliation(s)
- E Tsoumalakou
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - T Papadimitriou
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - P Berillis
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - K A Kormas
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - E Levizou
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Fytokou, 38446 Nea Ionia, Volos, Greece.
| |
Collapse
|
14
|
Subcellular Alterations Induced by Cyanotoxins in Vascular Plants-A Review. PLANTS 2021; 10:plants10050984. [PMID: 34069255 PMCID: PMC8157112 DOI: 10.3390/plants10050984] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 01/26/2023]
Abstract
Phytotoxicity of cyanobacterial toxins has been confirmed at the subcellular level with consequences on whole plant physiological parameters and thus growth and productivity. Most of the data are available for two groups of these toxins: microcystins (MCs) and cylindrospermopsins (CYNs). Thus, in this review we present a timely survey of subcellular cyanotoxin effects with the main focus on these two cyanotoxins. We provide comparative insights into how peculiar plant cellular structures are affected. We review structural changes and their physiological consequences induced in the plastid system, peculiar plant cytoskeletal organization and chromatin structure, the plant cell wall, the vacuolar system, and in general, endomembrane structures. The cyanotoxins have characteristic dose-and plant genotype-dependent effects on all these structures. Alterations in chloroplast structure will influence the efficiency of photosynthesis and thus plant productivity. Changing of cell wall composition, disruption of the vacuolar membrane (tonoplast) and cytoskeleton, and alterations of chromatin structure (including DNA strand breaks) can ultimately lead to cell death. Finally, we present an integrated view of subcellular alterations. Knowledge on these changes will certainly contribute to a better understanding of cyanotoxin–plant interactions.
Collapse
|
15
|
Review on Cyanobacterial Studies in Portugal: Current Impacts and Research Needs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cyanobacteria have long been associated with harmful effects on humans, animals and aquatic biota. Cyanotoxins are their most toxic metabolite. This review summarizes the current research, impacts and future needs in cyanobacterial studies undertaken in Portugal, the southernmost country of Europe, and with a recent multiplication of cyanotoxicity due to climate change events. Microcystins are still the most prevalent, studied and the only regulated cyanotoxins in Portuguese freshwater systems much like most European countries. With the development of some tools, particularly in molecular studies, the recent discovery of cylindrospermopsins, anatoxins and saxitoxins, both genes and toxins, in North and Center ecosystems of our country highlight current impacts that overall communities are facing with increased risks of exposure and uptake to cyanotoxins. Research needs encompass the expansion of studies at all aspects due to the uprising of these cyanotoxins and reinforces the urgent need of increasing the frequency of surveillance to achieve tangible effects of cyanotoxins in Portugal to ultimately implement regulations on cylindrospermopsins, anatoxins and saxitoxins worldwide.
Collapse
|
16
|
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins (Basel) 2021; 13:toxins13050322. [PMID: 33946968 PMCID: PMC8145420 DOI: 10.3390/toxins13050322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.
Collapse
|
17
|
Zhang Y, Whalen JK, Sauvé S. Phytotoxicity and bioconcentration of microcystins in agricultural plants: Meta-analysis and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115966. [PMID: 33168379 DOI: 10.1016/j.envpol.2020.115966] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Microcystins are cyanotoxins produced by many species of cyanobacteria. They are specific inhibitors of serine/threonine protein phosphatases and are phytotoxic to agricultural plants. This study used a formal meta-analysis to estimate the phytotoxicity and bioconcentration rates of agricultural plants exposed to microcystins, and the human health risk from consuming microcystin-contaminated plants. Among the 35 agricultural plants investigated, microcystins were most phytotoxic to durum wheat, corn, white mustard and garden cress. Leafy vegetables such as dill, parsley and cabbage could bioconcentrate ∼3 times more microcystins in their edible parts than other agricultural plants. Although the human health risk from ingesting microcystins could be greater for leafy vegetables than other agricultural plants, further work is needed to confirm bioconcentration of microcystins in realistic water-soil-plant environments. Still, we should avoid growing leafy vegetables, durum wheat and corn on agricultural land that is irrigated with microcystins-contaminated water and be attentive to the risk of microcystins contamination in the agricultural food supply.
Collapse
Affiliation(s)
- Yanyan Zhang
- McGill University, Department of Natural Resource Science, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-de Bellevue, Quebec, Canada, H9X 3V9
| | - Joann K Whalen
- McGill University, Department of Natural Resource Science, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-de Bellevue, Quebec, Canada, H9X 3V9.
| | - Sébastien Sauvé
- Université de Montréal, Department of Chemistry, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec, Canada H3C 3J7
| |
Collapse
|
18
|
Berthold DE, Lefler FW, Huang IS, Abdulla H, Zimba PV, Laughinghouse HD. Iningainema tapete sp. nov. (Scytonemataceae, Cyanobacteria) from greenhouses in central Florida (USA) produces two types of nodularin with biosynthetic potential for microcystin-LR and anabaenopeptin production. HARMFUL ALGAE 2021; 101:101969. [PMID: 33526185 DOI: 10.1016/j.hal.2020.101969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Iningainema is a recently described genus of heterocytous, false-branching cyanobacteria originally described from Australia. In this work, we present Iningainema tapete sp. nov., isolated from subaerial and terrestrial environments in central Florida (USA). In comparison to the sister species, our novel cyanobacterium produces nodularin-R (NOD-R) and a methylated isoform [MeAdda3] NOD previously not reported within this genus; in addition to possessing the biosynthetic gene clusters for microcystin and anabaenopeptins production. Nodularin accumulation by this cyanobacterium exceeded 500 µg g-1 dry weight in cultures grown in nitrogen-depleted media. Such elevated toxin concentrations are alarming as the cyanobacterium was isolated from a food production greenhouse and poses a potential risk for food products and for workforce exposure. Using morphology, 16S rRNA gene phylogeny, and 16S-23S rRNA internal transcribed spacer (ITS) secondary structure, coupled with toxin detection and toxin gene presence, we provide evidence for the establishment of a novel toxic species of cyanobacteria, Iningainema tapete.
Collapse
Affiliation(s)
- David E Berthold
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida / IFAS, Davie, FL 33314, United States
| | - Forrest W Lefler
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida / IFAS, Davie, FL 33314, United States
| | - I-Shuo Huang
- Department of Aquatic Health Sciences, Virginia Institute of Marine Science, Gloucester Point, VA 23062, United States
| | - Hussain Abdulla
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, United States
| | - Paul V Zimba
- Department of Life Sciences and Center for Coastal Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, United States
| | - H Dail Laughinghouse
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida / IFAS, Davie, FL 33314, United States.
| |
Collapse
|
19
|
Petrou M, Karas PA, Vasileiadis S, Zafiriadis I, Papadimitriou T, Levizou E, Kormas K, Karpouzas DG. Irrigation of radish (Raphanus sativus L.) with microcystin-enriched water holds low risk for plants and their associated rhizopheric and epiphytic microbiome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115208. [PMID: 32683235 DOI: 10.1016/j.envpol.2020.115208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Microcystins (MCs) are toxins produced during cyanobacterial blooms. They reach soil and translocated to plants through irrigation of agricultural land with water from MC-impacted freshwater systems. To date we have good understanding of MC effects on plants, but not for their effects on plant-associated microbiota. We tested the hypothesis that MC-LR, either alone or with other stressors present in the water of the Karla reservoir (a low ecological quality and MC-impacted freshwater system), would affect radish plants and their rhizospheric and phyllospheric microbiome. In this context a pot experiment was employed where radish plants were irrigated with tap water without MC-LR (control) or with 2 or 12 μg L-1 of pure MC-LR (MC2 and MC12), or water from the Karla reservoir amended (12 μg L-1) or not with MC-LR. We measured MC levels in plants and rhizospheric soil and we determined effects on (i) plant growth and physiology (ii) the nitrifying microorganisms via q-PCR, (ii) the diversity of bacterial and fungal rhizospheric and epiphytic communities via amplicon sequencing. MC-LR and/or Karla water treatments resulted in the accumulation of MC in taproot at levels (480-700 ng g-1) entailing possible health risks. MC did not affect plant growth or physiology and it did not impose a consistent inhibitory effect on soil nitrifiers. Karla water rather than MC-LR was the stronger determinant of the rhizospheric and epiphytic microbial communities, suggesting the presence of biotic or abiotic stressors, other than MC-LR, in the water of the Karla reservoir which affect microorganisms with a potential role (i.e. pathogens inhibition, methylotrophy) in the homeostasis of the plant-soil system. Overall, our findings suggest that MC-LR, when applied at environmentally relevant concentrations, is not expected to adversely affect the radish-microbiota system but might still pose risk for consumers' health.
Collapse
Affiliation(s)
- M Petrou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - P A Karas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - S Vasileiadis
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece
| | - I Zafiriadis
- University of Thessaly, Department of Agriculture, Crop Production and Agricultural Environment, Fytokou, 38446, Nea Ionia, Volos, Greece
| | - T Papadimitriou
- University of Thessaly, Department of Agriculture, Ichthyology & Aquatic Environment, Fytokou, 38446, Nea Ionia, Volos, Greece
| | - E Levizou
- University of Thessaly, Department of Agriculture, Crop Production and Agricultural Environment, Fytokou, 38446, Nea Ionia, Volos, Greece
| | - K Kormas
- University of Thessaly, Department of Agriculture, Ichthyology & Aquatic Environment, Fytokou, 38446, Nea Ionia, Volos, Greece
| | - D G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
20
|
Liang C, Liu H. Response of hormone in rice seedlings to irrigation contaminated with cyanobacterial extract containing microcystins. CHEMOSPHERE 2020; 256:127157. [PMID: 32470740 DOI: 10.1016/j.chemosphere.2020.127157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Microcystins released by cyanobacteria affect crop growth and productivity, and even food safety. Plant hormones play a vital role in regulating growth, development and stress response in plants. Therefore, we studied the response of hormones including abscisic acid (ABA), indole-3-acetic acid (IAA), Zeatin (ZT) and gibberellin (GA3) as well as hormone balances (IAA/ABA, ZT/ABA and GA/ABA) to cyanobacterial extract containing microcystins (1, 10, 100 and 1000 μg/L) during stress and recovery periods. Low concentration microcystins (1 μg/L) promoted growth of rice seedlings by increasing levels of IAA, ZT and GA3 and maintaining hormone balances. In addition, the up-regulation of OsYUCCA1 increased IAA level in rice roots by promoting IAA biosynthesis. High concentrations microcystins (10, 100 or1000 μg/L) inhibited growth of rice seedlings by reducing levels of IAA, ZT and GA3 and ratios of IAA/ABA, ZT/ABA and GA/ABA due to increased ABA level. The increase in ABA in rice seedlings induced by high concentrations MCs was resulted from up-regulation of OsNCED1, OsNCED3, OsNCED4 and OsZEP to enhance ABA biosynthesis, and was controlled by up-regulating expression levels of OsABAox1-3 for enhancing ABA catabolism as negative feedback. The highest concentration of MCs (1000 μg/L) caused irreversible damage to metabolisms of IAA and ABA, partly resulting in unrecoverable inhibition on rice growth. All results demonstrate that "low-concentration promotion and high-concentration inhibition" of microcystins was associated with changes in hormone levels and balances by affecting their metabolisms, and could be helpful for guiding agricultural irrigation with microcystin contaminated water.
Collapse
Affiliation(s)
- Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Jiangnan University, Wuxi, 214122, China.
| | - Hongyue Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
21
|
Ai Y, Lee S, Lee J. Drinking water treatment residuals from cyanobacteria bloom-affected areas: Investigation of potential impact on agricultural land application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135756. [PMID: 31940734 DOI: 10.1016/j.scitotenv.2019.135756] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 05/22/2023]
Abstract
In cyanobacteria bloom-affected areas, drinking water treatment processes are optimized to ensure the absence of cyanotoxins in their finished water. A concern about the sludge generated from water treatment has emerged because the removed cyanotoxins and cyanobacteria can get concentrated in the sludge, called water treatment residuals (WTR), and these WTR are often applied on land for beneficial purposes. However, the impact of WTR from bloom-affected areas on the agricultural application and public health is hardly reported. The objective of this study was to characterize bloom-affected WTR by focusing on cyanotoxins, toxin-producing cyanobacteria, microbiomes, and resistome profiles. In addition, the fate of WTR-originated microcystin in crops and soil was examined. WTR samples were obtained from a bloom-affected area in Ohio, USA in November 2017. Cyanotoxins and toxin-producing cyanobacteria were quantified with the enzyme-linked immunosorbent assay and droplet digital PCR, respectively. Microbiome and resistome were determined with Nanopore sequencing. Cyanotoxin concentrations were measured: microcystin (259 μg/kg), saxitoxin (0.16 μg/kg), anatoxin-a (not detected), and β-Methylamino-L-alanine (BMAA) (575 μg/kg). MC-producing cyanobacteria concentrations were determined: Planktothrix (5.3 × 107 gene copies/g) and Microcystis (3.3 × 103 gene copies/g). Proteobacteria was the most predominant and Planktothrix phage was a remarkably dominant virus in the WTR microbiome. Aminoglycoside resistance was the most abundant class, and antibiotic resistance was found in multiple pathogens (e.g. Mycobacterium). WTR land application was simulated by growing carrots with a mixture of WTR and soil in a greenhouse. At harvest, ~80% of WTR-originated microcystin was found in the soil (83-96 μg/kg) and 5% accumulated in carrots (19-28 μg/kg). This study provides the first insight into the cyanotoxin, microbiome, and resistome profile of bloom-affected WTR. Our finding suggests that careful WTR management is needed for the beneficial use of WTR for protecting agricultural environments, especially soil and groundwater, and food safety.
Collapse
Affiliation(s)
- Yuehan Ai
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Seungjun Lee
- College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Jiyoung Lee
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Assessment of Constructed Wetlands’ Potential for the Removal of Cyanobacteria and Microcystins (MC-LR). WATER 2019. [DOI: 10.3390/w12010010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microcystis blooms and the subsequent release of hepatotoxic microcystins (MCs) pose a serious threat to the safety of water for human and livestock consumption, agriculture irrigation, and aquaculture worldwide. Microcystin-LR (MC-LR), the most toxic variant of MCs, has been widely detected in a variety of environments such as water, sediments, plants, and many aquatic organisms. Conventional solutions of water treatment are costly, requiring specific infrastructure, as well as specialized personnel and equipment. Therefore, these solutions are not feasible in many rural areas or in the treatment of large reservoirs. In this regard, low-cost and low-technology solutions, such as constructed wetlands (CWs), are attractive solutions to treat surface waters contaminated with toxic cyanobacteria blooms from lakes, ponds, reservoirs, and irrigation systems. In line with this, the main aim of this work was to evaluate the potential of CWs for the treatment of water contaminated with MC-LR produced by Microcystis aeruginosa—LEGE 91094. For that, microcosms (0.4 × 0.3 × 0.3 m) simulating CWs were assembled with Phragmites australis to treat lake water contaminated with Microcystis aeruginosa cells and MCs. Results showed removal percentages of M. aeruginosa cells above 94% and about 99% removal of MC-LR during 1 week treatment cycles. CWs maintained their functions, regardless the presence of MC-LR in the system, and also showed significant removal of nutrients (ammonium ion removal up to 86%) and organic matter (removal reaching 98%). The present work indicates that CWs have the potential for removal of cyanobacterial cells and cyanotoxins, which can be useful for the treatment of eutrophic waters and provide water of sufficient quality to be used, for instance, in agriculture.
Collapse
|
23
|
Llana-Ruiz-Cabello M, Jos A, Cameán A, Oliveira F, Barreiro A, Machado J, Azevedo J, Pinto E, Almeida A, Campos A, Vasconcelos V, Freitas M. Analysis of the Use of Cylindrospermopsin and/or Microcystin-Contaminated Water in the Growth, Mineral Content, and Contamination of Spinacia oleracea and Lactuca sativa. Toxins (Basel) 2019; 11:E624. [PMID: 31661886 PMCID: PMC6891636 DOI: 10.3390/toxins11110624] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
Cyanobacteria and cyanotoxins constitute a serious environmental and human health problem. Moreover, concerns are raised with the use of contaminated water in agriculture and vegetable production as this can lead to food contamination and human exposure to toxins as well as impairment in crop development and productivity. The objective of this work was to assess the susceptibility of two green vegetables, spinach and lettuce, to the cyanotoxins microcystin (MC) and cylindrospermopsin (CYN), individually and in mixture. The study consisted of growing both vegetables in hydroponics, under controlled conditions, for 21 days in nutrient medium doped with MC or CYN at 10 μg/L and 50 μg/L, or CYN/MC mixture at 5 + 5 μg/L and 25 + 25 μg/L. Extracts from M. aeruginosa and C. ovalisporum were used as sources of toxins. The study revealed growth inhibition of the aerial part (Leaves) in both species when treated with 50µg/L of MC, CYN and CYN/MC mixture. MC showed to be more harmful to plant growth than CYN. Moreover spinach leaves growth was inhibited by both 5 + 5 and 25 + 25 µg/L CYN/MC mixtures, whereas lettuce leaves growth was inhibited only by 25 + 25 µg/L CYN/MC mixture. Overall, growth data evidence increased sensitivity of spinach to cyanotoxins in comparison to lettuce. On the other hand, plants exposed to CYN/MC mixture showed differential accumulation of CYN and MC. In addition, CYN, but not MC, was translocated from the roots to the leaves. CYN and MC affected the levels of minerals particularly in plant roots. The elements most affected were Ca, K and Mg. However, in leaves K was the mineral that was affected by exposure to cyanotoxins.
Collapse
Affiliation(s)
- Maria Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain.
| | - Ana Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain.
| | - Flavio Oliveira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Aldo Barreiro
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Joana Machado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Joana Azevedo
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Edgar Pinto
- LAQV/REQUIMTE, Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Polytechnic Institute of Porto, Department of Environmental Health, School of Health, CISA/Research Center in Environment and Health, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal.
| | - Agostinho Almeida
- LAQV/REQUIMTE, Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Alexandre Campos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Marisa Freitas
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
- Polytechnic Institute of Porto, Department of Environmental Health, School of Health, CISA/Research Center in Environment and Health, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal.
| |
Collapse
|
24
|
Redouane EM, El Amrani Zerrifi S, El Khalloufi F, Oufdou K, Oudra B, Lahrouni M, Campos A, Vasconcelos V. Mode of action and fate of microcystins in the complex soil-plant ecosystems. CHEMOSPHERE 2019; 225:270-281. [PMID: 30877921 DOI: 10.1016/j.chemosphere.2019.03.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/17/2019] [Accepted: 03/03/2019] [Indexed: 05/28/2023]
Abstract
Over the last decades, global warming has increasingly stimulated the expansion of cyanobacterial blooms in freshwater ecosystems worldwide, in which toxic cyanobacteria produce various congeners of cyanotoxins, mainly dominated by microcystins (MCs). MCs introduced into agricultural soils have deleterious effects on the germination, growth and development of plants and their associated microbiota, leading to remarkable yield losses. Phytotoxicity of MCs may refer to the inhibition of phosphatases activity, generating deleterious reactive oxygen species, altering gene functioning and phytohormones translocation within the plant. It is also known that MCs can pass through the root membrane barrier, translocate within plant tissues and accumulate into different organs, including edible ones. Also, MCs impact the microbial activity in soil via altering plant-bacterial symbioses and decreasing bacterial growth rate of rhizospheric microbiota. Moreover, MCs can persist in agricultural soils through adsorption to clay-humic acid particles and results in a long-term contact with the plant-microflora complex. However, their bioavailability to plants and half-life in soil seem to be influenced by biodegradation process and soil physicochemical properties. This review reports the latest and most relevant information regarding MCs-phytotoxicity and impact on soil microbiota, the persistence in soil, the degradation by native microflora and the bioaccumulation within plant tissues.
Collapse
Affiliation(s)
- El Mahdi Redouane
- Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech, 40000, Morocco
| | - Soukaina El Amrani Zerrifi
- Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech, 40000, Morocco
| | - Fatima El Khalloufi
- Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech, 40000, Morocco; Polydisciplinary Faculty of Khouribga (FPK), Sultan Moulay Slimane University, BP. 145 Khouribga, 25000, Morocco
| | - Khalid Oufdou
- Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech, 40000, Morocco
| | - Brahim Oudra
- Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech, 40000, Morocco
| | - Majida Lahrouni
- Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences Semlalia Marrakech, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech, 40000, Morocco; Department of Biology, Faculty of Science and Techniques, BP. 509, 52000, Boutalamine, Errachidia, Morocco
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/n, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
25
|
Ujvárosi AZ, Riba M, Garda T, Gyémánt G, Vereb G, M-Hamvas M, Vasas G, Máthé C. Attack of Microcystis aeruginosa bloom on a Ceratophyllum submersum field: Ecotoxicological measurements in real environment with real microcystin exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:735-745. [PMID: 30703731 DOI: 10.1016/j.scitotenv.2019.01.226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/20/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Overproduction of toxic cyanobacteria is a type of harmful algal blooms (HABs). The heptapeptide microcystins (MCs) are one of the most common cyanotoxins. There is increasing research concerning the effects of MCs on growth and physiology of vascular plants, however there is a lack of studies on their direct effects on aquatic macrophytes in the real environment. Here we report the occurrence of a MC producing HAB in Lake Bárdos, Hungary in 2012 with harmful effects on cytological, histological and biochemical parameters of Ceratophyllum submersum (soft hornwort) plants naturally growing at the blooming site. Blue-Green Sinapis Test (BGST) showed high toxicity of HAB samples. Cell-free water samples contained a significant amount of MCs (7.31 ± 0.17 μg L-1) while C. submersum plants contained 1.01 ± 0.21 μg g DW-1 MCs. Plants showed significant increases of protein content and decreases of anthocyanin content and carotenoid/chlorophyll ratio, indicating physiological stress- as compared to plants from the control (MC free) sampling site of the same water body. Histological and cytological studies showed (i) radial swelling and the abnormal formation of lateral buds at the shoot tip leading to abnormal development; (ii) the fragmentation of nuclei as well as accumulation of phenolics in the nucleus indicating that the HAB induced cell death and stress reactions at the nuclear level. The most relevant effect was the increase of histone H3 phosphorylation in metaphase chromosomes: since MCs are strong inhibitors of protein phosphatases, this alteration is related to the biochemical targets of these toxins. The HAB decreased peroxidase activity, but increased nuclease and protease activities, showing the decreased capacity of plants to face biotic stress and as the cytological changes, the induction of cell death. This study is one of the first to show the complex harmful changes in aquatic plants that co-exist with HABs.
Collapse
Affiliation(s)
- Andrea Zsuzsanna Ujvárosi
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary
| | - Milán Riba
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary
| | - Tamás Garda
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary
| | - Gyöngyi Gyémánt
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Chemistry, Department of Inorganic and Analytical Chemistry, Hungary
| | - György Vereb
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Medicine, Department of Biophysics and Cell Biology and Faculty of Pharmacy, Hungary
| | - Márta M-Hamvas
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary.
| | - Gábor Vasas
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary.
| | - Csaba Máthé
- University of Debrecen, Egyetem ter 1, H-4032 Debrecen, Hungary; Faculty of Science and Technology, Institute of Biology and Ecology, Department of Botany, Hungary.
| |
Collapse
|
26
|
Gutiérrez-Praena D, Guzmán-Guillén R, Pichardo S, Moreno FJ, Vasconcelos V, Jos Á, Cameán AM. Cytotoxic and morphological effects of microcystin-LR, cylindrospermopsin, and their combinations on the human hepatic cell line HepG2. ENVIRONMENTAL TOXICOLOGY 2019; 34:240-251. [PMID: 30461177 DOI: 10.1002/tox.22679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Cylindrospermopsin (CYN) and Microcystin-LR (MC-LR) are toxins produced by different cyanobacterial species, which are found mainly in freshwater reservoirs. Both of them can induce, separately, toxic effects in humans and wildlife. However, little is known about the toxic effects of the combined exposure, which could likely happen, taking into account the concomitant occurrence of the producers. As both cyanotoxins are well known to induce hepatic damage, the human hepatocellular HepG2 cell line was selected for the present study. Thus, the cytotoxicity of both pure cyanotoxins alone (0-5 μg/mL CYN and 0-120 μg/mL MC-LR) and in combination for 24 and 48 h was assayed, as long as the cytotoxicity of extracts from CYN-producing and nonproducing cyanobacterial species. The potential interaction of the combination was evaluated by the isobologram or Chou-Talalay's method, which provides a combination index as a quantitative measure of the two cyanotoxins interaction's degree. Moreover, a morphological study of the individual pure toxins and their combinations was also performed. Results showed that CYN was the most toxic pure cyanotoxin, being the mean effective concentrations obtained ≈4 and 90 μg/mL for CYN and MC-LR, respectively after 24 h. However, the simultaneous exposure showed an antagonistic effect. Morphologically, autophagy, at low concentrations, and apoptosis, at high concentrations were observed, with affectation of the rough endoplasmic reticulum and mitochondria. These effects were more pronounced with the combination. Therefore, it is important to assess the toxicological profile of cyanotoxins combinations in order to perform more realistic risk evaluations.
Collapse
Affiliation(s)
| | | | - Silvia Pichardo
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | - Vitor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ángeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Ana María Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
27
|
Wang N, Wang C. Effects of microcystin-LR on the tissue growth and physiological responses of the aquatic plant Iris pseudacorus L. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:197-205. [PMID: 29775927 DOI: 10.1016/j.aquatox.2018.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
The release of cyanobacterial toxins during algal bloom has adverse effects on aquatic plants and animals. This study aimed to understand the toxic effects and mechanism of microcystin-LR (MC-LR) on the seedling growth and physiological responses of Iris pseudacorus L. (calamus). After a one-month exposure experiment, the growth and development of the calamus leaves were significantly inhibited, and this inhibitory effect was verified to be concentration dependent. Furthermore, the cell membrane system was damaged, and the photosynthesis was also adversely affected by MC-LR. The relative conductivity of the leaves increased from 10.96% to 97.51%, and the total chlorophyll content decreased from 0.89 mg/g to 0.09 mg/g. Notably, the behavior of the roots in the presence of MC-LR was different from that of the leaves. The seedlings needed to absorb more nutrients to maintain the normal growth at low-toxin concentrations, but the high concentration of (over 250 μg/L) MC-LR exceeded the tolerance of plants and inhibited the growth of roots. In addition, MC-LR led to an excessive accumulation of H2O2, and the seedlings enhanced the activities of catalase, peroxidase, and superoxide dismutase to resist oxidative stress. The presence of MC-LR also affected the capacity of the plants to absorb nitrogen and phosphorus. The removal efficiency of NO3--N, the main source of nitrogen, was 63.53% in the presence of 100 μg/L MC-LR. As a result, the pH increased, and the growth of plants was indirectly inhibited. Therefore, the presence of MC-LR could affect the purification efficiency of calamus in eutrophic water. This study provides theoretical support for the selection of plants in the eutrophic water.
Collapse
Affiliation(s)
- Naiyu Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
28
|
Manubolu M, Lee J, Riedl KM, Kua ZX, Collart LP, Ludsin SA. Optimization of extraction methods for quantification of microcystin-LR and microcystin-RR in fish, vegetable, and soil matrices using UPLC-MS/MS. HARMFUL ALGAE 2018; 76:47-57. [PMID: 29887204 PMCID: PMC7282678 DOI: 10.1016/j.hal.2018.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/22/2018] [Accepted: 04/30/2018] [Indexed: 05/30/2023]
Abstract
Human-driven environmental change has increased the occurrence of harmful cyanobacteria blooms in aquatic ecosystems. Concomitantly, exposure to microcystin (MC), a cyanobacterial toxin that can accumulate in animals, edible plants, and agricultural soils, has become a growing public health concern. For accurate estimation of health risks and timely monitoring, availability of reliable detection methods is imperative. Nonetheless, quantitative analysis of MCs in many types of biological and environmental samples has proven challenging because matrix interferences can hinder sample preparation and extraction procedures, leading to poor MC recovery. Herein, controlled experiments were conducted to enhance the use of ultra-performance liquid-chromatography tandem-mass spectrometry (UPLC-MS/MS) to recover MC-LR and MC-RR at a range of concentrations in seafood (fish), vegetables (lettuce), and environmental (soil) matrices. Although these experiments offer insight into detailed technical aspects of the MC homogenization and extraction process (i.e., sonication duration and centrifugation speed during homogenization; elution solvent to use during the final extraction), they centered on identifying the best (1) solvent system to use during homogenization (2-3 tested per matrix) and (2) single-phase extraction (SPE) column type (3 tested) to use for the final extraction. The best procedure consisted of the following, regardless of sample type: centrifugation speed = 4200 × g; elution volume = 8 mL; elution solvent = 80% methanol; and SPE column type = hydrophilic-lipophilic balance (HLB), with carbon also being satisfactory for fish. For sonication, 2 min, 5 min, and 10 min were optimal for fish, lettuce, and soil matrices, respectively. Using the recommended HLB column, the solvent systems that led to the highest recovery of MCs were methanol:water:butanol for fish, methanol:water for lettuce, and EDTA-Na4P2O7 for soils. Given that the recommended procedures resulted in average MC-LR and MC-RR recoveries that ranged 93 to 98%, their adoption for the preparation of samples with complex matrices before UPLC-MS/MS analysis is encouraged.
Collapse
Affiliation(s)
- Manjunath Manubolu
- Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA.
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Kenneth M Riedl
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Zi Xun Kua
- Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Lindsay P Collart
- Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA; Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Stuart A Ludsin
- Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
29
|
Prieto AI, Guzmán-Guillén R, Díez-Quijada L, Campos A, Vasconcelos V, Jos Á, Cameán AM. Validation of a Method for Cylindrospermopsin Determination in Vegetables: Application to Real Samples Such as Lettuce (Lactuca sativa L.). Toxins (Basel) 2018; 10:E63. [PMID: 29389882 PMCID: PMC5848164 DOI: 10.3390/toxins10020063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 01/08/2023] Open
Abstract
Reports on the occurrence of the cyanobacterial toxin cylindrospermopsin (CYN) have increased worldwide because of CYN toxic effects in humans and animals. If contaminated waters are used for plant irrigation, these could represent a possible CYN exposure route for humans. For the first time, a method employing solid phase extraction and quantification by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) of CYN was optimized in vegetables matrices such as lettuce (Lactuca sativa). The validated method showed a linear range, from 5 to 500 ng CYN g-1 of fresh weight (f.w.), and detection and quantitation limits (LOD and LOQ) of 0.22 and 0.42 ng CYN g-1 f.w., respectively. The mean recoveries ranged between 85 and 104%, and the intermediate precision from 12.7 to 14.7%. The method showed to be robust for the three different variables tested. Moreover, it was successfully applied to quantify CYN in edible lettuce leaves exposed to CYN-contaminated water (10 µg L-1), showing that the tolerable daily intake (TDI) in the case of CYN could be exceeded in elderly high consumers. The validated method showed good results in terms of sensitivity, precision, accuracy, and robustness for CYN determination in leaf vegetables such as lettuce. More studies are needed in order to prevent the risks associated with the consumption of CYN-contaminated vegetables.
Collapse
Affiliation(s)
- Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research-CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research-CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal.
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| |
Collapse
|
30
|
Cao Q, Steinman AD, Su X, Xie L. Effects of microcystins contamination on soil enzyme activities and microbial community in two typical lakeside soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:134-142. [PMID: 28797902 DOI: 10.1016/j.envpol.2017.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
A 30-day indoor incubation experiment was conducted to investigate the effects of different concentrations of microcystin (1, 10, 100 and 1000 μg eq. MC-LR L-1) on soil enzyme activity, soil respiration, physiological profiles, potential nitrification, and microbial abundance (total bacteria, total fungi, ammonia-oxidizing bacteria and archaea) in two lakeside soils in China (Soil A from the lakeside of Lake Poyanghu at Jiujiang; Soil B from the lakeside of Lake Taihu at Suzhou). Of the enzymes tested, only phenol oxidase activity was negatively affected by microcystin application. In contrast, dehydrogenase activity was stimulated in the 1000 μg treatment, and a stimulatory effect also occurred with soil respiration in contaminated soil. The metabolic profiles of the microbial communities indicated that overall carbon metabolic activity in the soils treated with high microcystin concentrations was inhibited, and high concentrations of microcystin also led to different patterns of potential carbon utilization. High microcystin concentrations (100, 1000 μg eq. MC-LR L-1 in Soil A; 10, 100 1000 μg eq. MC-LR L-1 in Soil B) significantly decreased soil potential nitrification rate. Furthermore, the decrease in soil potential nitrification rate was positively correlated with the decrease of the amoA gene abundance, which corresponds to the ammonia-oxidizing bacterial community. We conclude that application of microcystin-enriched irrigation water can significantly impact soil microbial community structure and function.
Collapse
Affiliation(s)
- Qing Cao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441, USA
| | - Xiaomei Su
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
31
|
Geada P, Pereira RN, Vasconcelos V, Vicente AA, Fernandes BD. Assessment of synergistic interactions between environmental factors on Microcystis aeruginosa growth and microcystin production. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Menezes C, Churro C, Dias E. Risk Levels of Toxic Cyanobacteria in Portuguese Recreational Freshwaters. Toxins (Basel) 2017; 9:toxins9100327. [PMID: 29057822 PMCID: PMC5666374 DOI: 10.3390/toxins9100327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 11/16/2022] Open
Abstract
Portuguese freshwater reservoirs are important socio-economic resources, namely for recreational use. National legislation concerning bathing waters does not include mandatory levels or guidelines for cyanobacteria and cyanotoxins. This is an issue of concern since cyanotoxin-based evidence is insufficient to change the law, and the collection of scientific evidence has been hampered by the lack of regulatory levels for cyanotoxins in bathing waters. In this work, we evaluate the profile of cyanobacteria and microcystins (MC) in eight freshwater reservoirs from the center of Portugal, used for bathing/recreation, in order to determine the risk levels concerning toxic cyanobacteria occurrence. Three of the reservoirs did not pose a risk of MC contamination. However, two reservoirs presented a high risk in 7% of the samples according to the World Health Organization (WHO) guidelines for MC in bathing waters (above 20 µg/L). In the remaining three reservoirs, the risk concerning microcystins occurrence was low. However, they exhibited recurrent blooms and persistent contamination with MC up to 4 µg/L. Thus, the risk of exposure to MC and potential acute and/or chronic health outcomes should not be disregarded in these reservoirs. These results contribute to characterize the cyanobacterial blooms profile and to map the risk of toxic cyanobacteria and microcystins occurrence in Portuguese inland waters.
Collapse
Affiliation(s)
- Carina Menezes
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Catarina Churro
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Elsa Dias
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal.
| |
Collapse
|
33
|
Analysis of trace microcystins in vegetables using matrix solid-phase dispersion followed by high performance liquid chromatography triple-quadrupole mass spectrometry detection. Talanta 2017; 173:101-106. [DOI: 10.1016/j.talanta.2017.05.079] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/14/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022]
|
34
|
Lee S, Jiang X, Manubolu M, Riedl K, Ludsin SA, Martin JF, Lee J. Fresh produce and their soils accumulate cyanotoxins from irrigation water: Implications for public health and food security. Food Res Int 2017; 102:234-245. [PMID: 29195944 DOI: 10.1016/j.foodres.2017.09.079] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 01/18/2023]
Abstract
Microcystin (MC), a hepatotoxin that can adversely affect human health, has become more prevalent in freshwater ecosystems worldwide, owing to an increase in toxic cyanobacteria blooms. While consumption of water and fish are well-documented exposure pathways of MCs to humans, less is known about the potential transfer to humans through consumption of vegetables that have been irrigated with MC-contaminated water. Likewise, the impact of MC on the performance of food crops is understudied. To help fill these information gaps, we conducted a controlled laboratory experiment in which we exposed lettuce, carrots, and green beans to environmentally relevant concentrations of MC-LR (0, 1, 5, and 10μg/L) via two irrigation methods (drip and spray). We used ELISA and LC-MS/MS to quantify MC-LR concentrations and in different parts of the plant (edible vs. inedible fractions), measured plant performance (e.g., size, mass, edible leaves, color), and calculated human exposure risk based on accumulation patterns. MC-LR accumulation was positively dose-dependent, with it being greater in the plants (2.2-209.2μg/kg) than in soil (0-19.4μg/kg). MC-LR accumulation varied among vegetable types, between plant parts, and between irrigation methods. MC-LR accumulation led to reduced crop growth and quality, with MC-LR persisting in the soil after harvest. Observed toxin accumulation patterns in edible fractions of plants also led to estimates of daily MC-LR intake that exceeded both the chronic reference dose (0.003μg/kg of body weight) and total daily intake guidelines (0.04μg/kg of body weight). Because the use of MC-contaminated water is common in many parts of the world, our collective findings highlight the need for guidelines concerning the use of MC-contaminated water in irrigation, as well as consumption of these crops.
Collapse
Affiliation(s)
- Seungjun Lee
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Xuewen Jiang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Manjunath Manubolu
- Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA; College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Ken Riedl
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Stuart A Ludsin
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jay F Martin
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH 43210, USA; Ohio Sea Grant, Columbus, OH 43210, USA
| | - Jiyoung Lee
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; College of Public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
35
|
Levizou E, Statiris G, Papadimitriou T, Laspidou CS, Kormas KA. Lettuce facing microcystins-rich irrigation water at different developmental stages: Effects on plant performance and microcystins bioaccumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:193-200. [PMID: 28550806 DOI: 10.1016/j.ecoenv.2017.05.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/05/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the microcystins (MCs)-rich irrigation water effect on lettuce of different developmental stages, i.e. during a two months period, covering the whole period from seed germination to harvest at marketable size of the plant. We followed four lettuce plant groups receiving MCs-rich water (1.81μgl-1 of dissolved MCs), originating from the Karla Reservoir, central Greece: 1) from seeds, 2) the cotyledon, 3) two true leaves and 4) four true leaves stages, all of which were compared to control plants that received tap water. Lettuce growth, photosynthetic performance, biochemical and mineral characteristics, as well as MCs accumulation in leaves, roots and soil were measured. The overall performance of lettuce at various developmental stages pointed to increased tolerance since growth showed minor alterations and non-enzymatic antioxidants remained unaffected. Plants receiving MCs-rich water from the seed stage exhibited higher photosynthetic capacity, chlorophylls and leaf nitrogen content. Nevertheless, considerable MCs accumulation in various plant tissues occurred. The earlier in their development lettuce plants started receiving MCs-rich water, the more MCs they accumulated: roots and leaves of plants exposed to MCs-rich water from seeds and cotyledons stage exhibited doubled MCs concentrations compared to respective tissues of the 4 Leaves group. Furthermore, roots accumulated significantly higher MCs amounts than leaves of the same plant group. Concerning human health risk, the Estimated Daily Intake values (EDI) of Seed and Cotyledon groups leaves exceeded Tolerable Daily Intake (TDI) by a factor of 6, while 2 Leaves and 4 Leaves groups exceeded TDI by a factor of 4.4 and 2.4 respectively. Our results indicate that irrigation of lettuce with MCs-rich water may constitute a serious public health risk, especially when contaminated water is received from the very early developmental stages (seed and cotyledon). Finally, results obtained for the tolerant lettuce indicate that MCs bioaccumulation in edible tissues is not necessarily coupled with phytotoxic effects.
Collapse
Affiliation(s)
- Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 384 46 Volos, Greece.
| | - George Statiris
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 384 46 Volos, Greece
| | - Theodoti Papadimitriou
- Civil Engineering Department, University of Thessaly, Pedion Areos, 383 33 Volos, Greece
| | - Chrysi S Laspidou
- Civil Engineering Department, University of Thessaly, Pedion Areos, 383 33 Volos, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 384 46 Volos, Greece
| |
Collapse
|
36
|
Cordeiro-Araújo MK, Chia MA, Bittencourt-Oliveira MDC. Potential human health risk assessment of cylindrospermopsin accumulation and depuration in lettuce and arugula. HARMFUL ALGAE 2017; 68:217-223. [PMID: 28962982 DOI: 10.1016/j.hal.2017.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
The cyanobacterial toxin cylindrospermopsin (CYN) has become a globally important secondary metabolite due to the negative effect it has on human and animal health. As a means of evaluating the risk of human exposure to CYN, the bioaccumulation and depuration of the toxin in lettuce (Lactuca sativa L.) and arugula (Eruca sativa Mill.) were investigated, after irrigation with contaminated water. The vegetables were irrigated for 7days with CYN (3, 5 and 10μg/L) contaminated water (bioaccumulation phase), and subsequently, irrigated for 7days with uncontaminated distilled water (depuration phase). In general, the bioaccumulation of CYN in both vegetables decreased with increasing exposure concentration. Bioconcentration factor (BCF) of CYN increased with the progression of the experiment at 3.0μg/L CYN, while the reverse occurred at 5 and 10μg/L CYN. In arugula, BCF increased at all CYN exposure concentrations throughout the study. The depuration of CYN decreased with increasing exposure concentration but was highest in the plants of both species with the highest bioaccumulation of CYN. Specifically, in plants previously irrigated with water contaminated with 3, 5 and 10μg/L CYN, the depuration of the toxin was 60.68, 27.67 and 18.52% for lettuce, and 47, 46.21 and 27.67% for arugula, respectively. Human health risks assessment revealed that the consumption of approximately 10 to 40g of vegetables per meal will expose children and adults to 1.00-6.00ng CYN/kg body mass for lettuce and 2.22-7.70ng CYN/kg body mass for arugula. The irrigation of lettuce and arugula with contaminated water containing low CYN concentrations constitutes a potential human exposure route.
Collapse
Affiliation(s)
- Micheline Kézia Cordeiro-Araújo
- Botany Graduate Program, Rural and Federal University of Pernambuco, R. Dom Manoel de Medeiros, S/N, Dois Irmãos, CEP 52171-030 Recife, PE, Brazil; Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900 Piracicaba, SP, Brazil
| | - Mathias Ahii Chia
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900 Piracicaba, SP, Brazil; Department of Botany, Ahmadu Bello University, 810001, Zaria, Nigeria
| | - Maria do Carmo Bittencourt-Oliveira
- Botany Graduate Program, Rural and Federal University of Pernambuco, R. Dom Manoel de Medeiros, S/N, Dois Irmãos, CEP 52171-030 Recife, PE, Brazil; Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
37
|
Miller A, Russell C. Food crops irrigated with cyanobacteria-contaminated water: an emerging public health issue in Canada. ACTA ACUST UNITED AC 2017. [DOI: 10.5864/d2017-021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Aroha Miller
- British Columbia Centre for Disease Control/National Collaboration Centre for Environmental Health, Vancouver, BC
| | | |
Collapse
|
38
|
Changes on cylindrospermopsin concentration and characterization of decomposition products in fish muscle ( Oreochromis niloticus ) by boiling and steaming. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Machado J, Campos A, Vasconcelos V, Freitas M. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health. ENVIRONMENTAL RESEARCH 2017; 153:191-204. [PMID: 27702441 DOI: 10.1016/j.envres.2016.09.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Toxic cyanobacterial blooms are recognized as an emerging environmental threat worldwide. Although microcystin-LR is the most frequently documented cyanotoxin, studies on cylindrospermopsin have been increasing due to the invasive nature of cylindrospermopsin-producing cyanobacteria. The number of studies regarding the effects of cyanotoxins on agricultural plants has increased in recent years, and it has been suggested that the presence of microcystin-LR and cylindrospermopsin in irrigation water may cause toxic effects in edible plants. The uptake of these cyanotoxins by agricultural plants has been shown to induce morphological and physiological changes that lead to a potential loss of productivity. There is also evidence that edible terrestrial plants can bioaccumulate cyanotoxins in their tissues in a concentration dependent-manner. Moreover, the number of consecutive cycles of watering and planting in addition to the potential persistence of microcystin-LR and cylindrospermopsin in the environment are likely to result in groundwater contamination. The use of cyanotoxin-contaminated water for agricultural purposes may therefore represent a threat to both food security and food safety. However, the deleterious effects of cyanotoxins on agricultural plants and public health seem to be dependent on the concentrations studied, which in most cases are non-environmentally relevant. Interestingly, at ecologically relevant concentrations, the productivity and nutritional quality of some agricultural plants seem not to be impaired and may even be enhanced. However, studies assessing if the potential tolerance of agricultural plants to these concentrations can result in cyanotoxin and allergen accumulation in the edible tissues are lacking. This review combines the most current information available regarding this topic with a realistic assessment of the impact of cyanobacterial toxins on agricultural plants, groundwater quality and public health.
Collapse
Affiliation(s)
- J Machado
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal
| | - A Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal
| | - V Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal
| | - M Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Polytechnic Institute of Porto, Department of Environmental Health, School of Allied Health Technologies, CISA/Research Center in Environment and Health, Rua de Valente Perfeito, 322, P 440-330 Gaia, Portugal.
| |
Collapse
|
40
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
41
|
Guzmán-Guillén R, Campos A, Machado J, Freitas M, Azevedo J, Pinto E, Almeida A, Cameán AM, Vasconcelos V. Effects of Chrysosporum (Aphanizomenon) ovalisporum extracts containing cylindrospermopsin on growth, photosynthetic capacity, and mineral content of carrots (Daucus carota). ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:22-31. [PMID: 27770233 DOI: 10.1007/s10646-016-1737-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Natural toxins produced by freshwater cyanobacteria, such as cylindrospermopsin, have been regarded as an emergent environmental threat. Despite the risks for food safety, the impact of these water contaminants in agriculture is not yet fully understood. Carrots (Daucus carota) are root vegetables, extensively consumed worldwide with great importance for human nourishment and economy. It is, therefore, important to evaluate the possible effects of using water contaminated with cyanotoxins on carrot cultivation. The aim of this work was to investigate cylindrospermopsin effects on D. carota grown in soil and irrigated for 30 days, with a Chrysosporum ovalisporum extract containing environmentally relevant concentrations of cylindrospermopsin (10 and 50 μg/L). The parameters evaluated were plant growth, photosynthetic capacity, and nutritional value (mineral content) in roots of carrots, as these are the edible parts of this plant crop. The results show that, exposure to cylindrospermopsin did not have a clear negative effect on growth or photosynthesis of D. carota, even leading to an increase of both parameters. However, alterations in mineral contents were detected after exposure to crude extracts of C. ovalisporum containing cylindrospermopsin. A general decline was observed for most minerals (Ca, Mg, Na, Fe, Mn, Zn, Mo, and P), although an increase was shown in the case of K and Cu, pointing to a possible interference of the cyanobacterial extract in mineral uptake. This study is the first to evaluate the effects of C. ovalisporum extracts on a root vegetable, however, more research is necessary to understand the effects of this toxin in environmentally relevant scenarios.
Collapse
Affiliation(s)
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal.
| | - Joana Machado
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal
| | - Marisa Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal
- Department of Environmental Health, Escola Superior de Tecnologia da Saúde do Porto, Polytechnic Institute of Porto, CISA/Research Center in Environment and Health, Rua de Valente Perfeito, 322, Gaia, 4400-330, Portugal
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal
| | - Edgar Pinto
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Department of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
- Department of Environmental Health, Escola Superior de Tecnologia da Saúde do Porto, Polytechnic Institute of Porto, CISA/Research Center in Environment and Health, Rua de Valente Perfeito, 322, Gaia, 4400-330, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Department of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana M Cameán
- Area of Toxicology, Department of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal
- Department of Biology, Department of Sciences of the University of Porto, Porto, 4169-007, Portugal
| |
Collapse
|
42
|
Cordeiro-Araújo MK, Chia MA, Arruda-Neto JDDT, Tornisielo VL, Vilca FZ, Bittencourt-Oliveira MDC. Microcystin-LR bioaccumulation and depuration kinetics in lettuce and arugula: Human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1379-1386. [PMID: 27267723 DOI: 10.1016/j.scitotenv.2016.05.204] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/23/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Microcystin-LR (MC-LR) is one of the most toxic and common microcystins (MCs) variant found in aquatic ecosystems. Little is known about the possibility of recovering microcystins contaminated agricultural crops. The objectives of this study were to determine the bioaccumulation and depuration kinetics of MC-LR in leaf tissues of lettuce and arugula, and estimate the total daily intake (ToDI) of MC-LR via contaminated vegetables by humans. Arugula and lettuce were irrigated with contaminated water having 5 and 10μgL(-1) of MC-LR for 7days (bioaccumulation), and subsequently, with uncontaminated water for 7days (depuration). Quantification of MC-LR was performed by LC-MS/MS. The one-compartment biokinetic model was employed for MC-LR bioaccumulation and depuration data analysis. MC-LR was only accumulated in lettuce. After 7days of irrigation with uncontaminated water, over 25% of accumulated MC-LR was still retained in leaf tissues of plants treated with 10μgL(-1) MC-LR. Total daily toxin intake by adult consumers (60kg-bw) exceeded the 0.04μgMC-LRkg(-1) limit recommended by WHO. Bioaccumulation was found to be linearly proportional to the exposure concentration of the toxin, increasing over time; and estimated to become saturated after 30days of uninterrupted exposure. On the other hand, MC-LR depuration was less efficient at higher exposure concentrations. This is because biokinetic half-life calculations gave 2.9 and 3.7days for 5 and 10μgL(-1) MC-LR treatments, which means 29-37days are required to eliminate the toxin. For the first time, our results demonstrated the possibility of MC-LR decontamination of lettuce plants.
Collapse
Affiliation(s)
- Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900 Piracicaba, SP, Brazil; Botany Graduate Program, Rural and Federal University of Pernambuco, R. Dom Manoel de Medeiros, S/N, Dois Irmãos, CEP 52171-030 Recife, PE, Brazil
| | - Mathias Ahii Chia
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900 Piracicaba, SP, Brazil
| | - João Dias de Toledo Arruda-Neto
- Institute of Physics, University of São Paulo, Rua do Matão Travessa R Nr.187, CEP 05508-090, Cidade Universitária, SP, Brazil; FESP - São Paulo Engineering College, Av. Nove de Julho, 5520, CEP 01406-200 São Paulo, SP, Brazil
| | | | - Franz Zirena Vilca
- CENA, University of São Paulo, Av. Centenário, 303, CEP 13400-970 Piracicaba, SP, Brazil
| | - Maria do Carmo Bittencourt-Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900 Piracicaba, SP, Brazil; Botany Graduate Program, Rural and Federal University of Pernambuco, R. Dom Manoel de Medeiros, S/N, Dois Irmãos, CEP 52171-030 Recife, PE, Brazil.
| |
Collapse
|
43
|
Bittencourt-Oliveira MDC, Cordeiro-Araújo MK, Chia MA, Arruda-Neto JDDT, de Oliveira ÊT, dos Santos F. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:83-90. [PMID: 26896895 DOI: 10.1016/j.ecoenv.2016.02.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/01/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
The use of microcystins (MCs) contaminated water to irrigate crop plants represents a human health risk due to their bioaccumulation potential. In addition, MCs cause oxidative stress and negatively influence photosynthetic activities in plants. The present study was aimed at investigating the effect of MCs on photosynthetic parameters and antioxidative response of lettuce. Furthermore, the bioaccumulation factor (BAF) of total MCs, MC-LR and MC-RR in the vegetable after irrigation with contaminated water was determined. Lettuce crops were irrigated for 15 days with water containing cyanobacterial crude extracts (Microcystis aeruginosa) with MC-LR (0.0, 0.5, 2.0, 5.0 and 10.0 µg L(-1)), MC-RR (0.0, 0.15, 0.5, 1.5 and 3.0 µg L(-1)) and total MCs (0.0, 0.65, 2.5, 6.5 and 13.0 µg L(-1)). Increased net photosynthetic rate, stomatal conductance, leaf tissue transpiration and intercellular CO2 concentration were recorded in lettuce exposed to different MCs concentrations. Antioxidant response showed that glutathione S-transferase activity was down-regulated in the presence of MCs. On the other hand, superoxide dismutase, catalase and peroxidase activities were upregulated with increasing MCs concentrations. The bioaccumulation factor (BAF) of total MCs and MC-LR was highest at 6.50 and 5.00 µg L(-1), respectively, while for MC-RR, the highest BAF was recorded at 1.50 µg L(-1) concentration. The amount of total MCs, MC-LR and MC-RR bioacumulated in lettuce was highest at the highest exposure concentrations. However, at the lowest exposure concentration, there were no detectable levels of MC-LR, MC-RR and total MCs in lettuce. Thus, the bioaccumulation of MCs in lettuce varies according to the exposure concentration. In addition, the extent of physiological response of lettuce to the toxins relies on exposure concentrations.
Collapse
Affiliation(s)
- Maria do Carmo Bittencourt-Oliveira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, CEP 13418-900 SP, Brazil; Programa de Pós-Graduação em Botânica, Universidade Federal Rural de Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, CEP 52171-030 PE, Brazil.
| | - Micheline Kézia Cordeiro-Araújo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, CEP 13418-900 SP, Brazil; Programa de Pós-Graduação em Botânica, Universidade Federal Rural de Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, CEP 52171-030 PE, Brazil
| | - Mathias Ahii Chia
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, CEP 13418-900 SP, Brazil
| | - João Dias de Toledo Arruda-Neto
- Instituto de Física, Universidade de São Paulo, Rua do Matão Travessa R Nr.187, Cidade Universitária, CEP 05508-090 SP, Brazil; FESP - São Paulo Engineering College, Av. 9 de Julho, 5520 - Jardim Europa, São Paulo, CEP 01406-200 SP, Brazil
| | - Ênio Tiago de Oliveira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, CEP 13418-900 SP, Brazil
| | - Flávio dos Santos
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, São Dimas, Piracicaba, CEP 13418-900 SP, Brazil
| |
Collapse
|
44
|
Corbel S, Mougin C, Nélieu S, Delarue G, Bouaïcha N. Evaluation of the transfer and the accumulation of microcystins in tomato (Solanum lycopersicum cultivar MicroTom) tissues using a cyanobacterial extract containing microcystins and the radiolabeled microcystin-LR ((14)C-MC-LR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1052-1058. [PMID: 26473707 DOI: 10.1016/j.scitotenv.2015.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/01/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Microcystins are the most common cyanotoxins and may be expected wherever blooms of cyanobacteria occur in surface waters. Their persistence both in the irrigation water and in the soil can lead to their transfer and bioaccumulation into agricultural plants. The aim of this work was to investigate microcystin accumulation in Solanum lycopersicum cultivar MicroTom. The plant was exposed to either Microcystis aeruginosa crude extracts containing up to 100 μg eq.MC-LRL(-1) in a soil-plant system for 90 days or pure radiolabeled (14)C-MC-LR in a hydroponic condition for 48 h. Toxin bioaccumulation in the soil and different plant tissues was assessed both by the PP2A inhibition assay and by liquid chromatography-mass spectrometry (LC/MS/MS). After 90 days of exposure, microcystins persisted in the soil and their free extractable concentrations accumulated were very low varying between 1.6 and 3.9 μg eq.MC-LR kg(-1) DW. Free MC-LR was detected only in roots and leaves with concentrations varying between 4.5 and 8.1 μg kg(-1) DW and between 0.29 and 0.55 μg kg(-1) DW, respectively. By using radioactivity ((14)C-MC-LR), the results have reported a growing accumulation of toxins within the organs roots>leaves>stems and allowed them to confirm the absence of MC-LR in fruits after 48 h of exposure. The bioconcentration factor (BCF) was 13.6 in roots, 4.5 in leaves, and 1.4 in stems. On the other hand, the results highlight the presence of two radioactive fractions in different plant tissues. The non-extractable fraction of radioactivity, corresponding to the covalently bound MC-LR, was higher than that of the extractable fraction only in roots and leaves reaching 56% and 71% of the total accumulated toxin, respectively. Therefore, results raise that monitoring programs must monitor the presence of MCs in the irrigation water to avoid the transfer and accumulation of these toxins in crops.
Collapse
Affiliation(s)
- Sylvain Corbel
- INRA, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France; AgroParisTech, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France; Laboratoire Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud/CNRS/AgroParisTech, Université Paris-Sud, F-91405 Orsay, France
| | - Christian Mougin
- INRA, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France; AgroParisTech, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France
| | - Sylvie Nélieu
- INRA, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France; AgroParisTech, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France
| | - Ghislaine Delarue
- INRA, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France; AgroParisTech, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France
| | - Noureddine Bouaïcha
- Laboratoire Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud/CNRS/AgroParisTech, Université Paris-Sud, F-91405 Orsay, France.
| |
Collapse
|