1
|
Tkachenko A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review). Toxicol In Vitro 2024; 98:105814. [PMID: 38582230 DOI: 10.1016/j.tiv.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Hemocompatibility evaluation is an important step in nanotoxicological studies. It is generally accepted that nanomaterials promote lysis of erythrocytes, blood clotting, alter phagocytosis, and upregulate pro-inflammatory cytokines. However, there are no standardized guidelines for testing nanomaterials hemocompatibility despite the fact that nanomaterials enter the bloodstream and interact with blood cells. In this review, the current knowledge on the ability of nanomaterials to induce distinct cell death modalities of erythrocytes is highlighted primarily focusing on hemolysis and eryptosis. This review aims to summarize the molecular mechanisms underlying erythrotoxicity of nanomaterials and critically compare the sensitivity and efficiency of hemolysis or eryptosis assays for nanomaterials blood compatibility testing. The list of eryptosis-inducing nanomaterials is growing, but it is still difficult to generalize how physico-chemical properties of nanoparticles affect eryptosis degree and molecular mechanisms involved. Thus, another aim of this review is to raise the awareness of eryptosis as a nanotoxicological tool to encourage the corresponding studies. It is worthwhile to consider adding eryptosis to in vitro nanomaterials hemocompatibility testing protocols and guidelines.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic.
| |
Collapse
|
2
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
3
|
Shen J, Yang Z, Wu X, Yao G, Hou M. Baicalein facilitates gastric cancer cell apoptosis by triggering endoplasmic reticulum stress via repression of the PI3K/AKT pathway. APPLIED BIOLOGICAL CHEMISTRY 2023; 66:10. [PMID: 36815904 PMCID: PMC9924871 DOI: 10.1186/s13765-022-00759-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Gastric cancer (GC) remains a prevailing threat to life. Baicalein exhibits anti-cancer properties. This study estimated the mechanism of baicalein in GC cell apoptosis by mediating endoplasmic reticulum stress (ERS) through the PI3K/AKT pathway. METHODS After treatment with different concentrations of baicalein, GC cell (HGC-27 and AGS) viability was detected by MTT assay. AGS cells more sensitive to baicalein treatment were selected as study subjects. The IC50 of baicalein on AGS cells was determined. Colony formation, cell cycle, and apoptosis were detected using crystal violet staining and flow cytometry. Levels of ERS-related and BTG3/PI3K/AKT pathway-related proteins were determined by Western blot. Intracellular Ca2+ level was measured using Fluo-3 AM fluorescence working solution. GC mouse models were established by subcutaneously injecting AGS cells into the right rib and were intragastrically administrated with baicalein. Tumor volume and weight were recorded. Expression of Ki67 in tumor tissues and positive expression of apoptotic cells were detected by immunohistochemistry and TUNEL staining. RESULTS Baicalein inhibited cell proliferation and induced G0/G1 arrest and apoptosis by regulating the cell cycle, and triggered ERS in GC cells. Baicalein impeded the PI3K/AKT pathway by activating BTG3, thereby triggering ERS and inducing apoptosis. BTG3 inhibition reversed baicalein-induced apoptosis and ERS. Baicalein regulated GC cells in a concentration-dependent manner. Moreover, in xenograft mice, baicalein prevented tumor growth, decreased Ki67-positive cells, activated BTG3, and inhibited the PI3K/AKT pathway, thus activating ERS and increasing apoptotic cells. CONCLUSION Baicalein facilitates GC cell apoptosis by triggering ERS via repression of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Junjie Shen
- Nanjing University of Chinese Medicine, Nanjing, 210029 Jiangsu province China
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Zhiwen Yang
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Xinlin Wu
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Guodong Yao
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Mingxing Hou
- Nanjing University of Chinese Medicine, Nanjing, 210029 Jiangsu province China
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
- The Affiliated Hospital of Inner Mongolia Medical University, No. 1, Datong North Street, Huimin District, 010050 Hohhot, Inner Mongolia China
| |
Collapse
|
4
|
Tripathi SS, Kumar R, Bissoyi A, Rizvi SI. Baicalein may act as a caloric restriction mimetic candidate to improve the anti-oxidant profile in a natural rodent model of aging. Rejuvenation Res 2022; 25:70-78. [PMID: 35316094 DOI: 10.1089/rej.2021.0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Caloric restriction (CR) is the most effective intervention for extending the life span of vertebrate and invertebrate aging models.. CRMs, which are synthetic or natural chemicals that mimic the biochemical, hormonal, and physiological consequences of calorie restriction, are being researched for anti-aging benefits. Baicalein is a plant-derived polyphenol that has the potential of anti-oxidant, anti-inflammatory, and autophagy inducer. The objective of this study is to evaluate the anti-aging, anti-inflammatory, and antioxidant role of Baicalein in erythrocyte membrane and plasma, and evaluate the efficacy of Baicalein to act as a CRM candidate. MATERIALS AND METHODS The present study evaluates the effect of Baicalein on aging biomarkers in normal and aged rats. We study various pro- and anti-oxidant markers, erythrocyte membrane transporters, and eryptosis. RESULTS Baicalein supplementation in male Wistar rats significantly alleviated pro-oxidant markers and improved anti-oxidant profile. Improvement was also observed in age-induced alterations in membrane transporters, and eryptosis. CONCLUSION Based on the above observations we conclude that Baicalein has the potential to maintain extracellular ROS levels and redox homeostasis during the aging process, an effect which is similar to CR. Thus Baicalein may be a potent CRM candidate for anti-aging interventions.
Collapse
Affiliation(s)
- Shambhoo Sharan Tripathi
- University of Allahabad, Department of Biochemistry, Fauclty of Science, UNIVERSITY OF ALLAHABAD, PRYAGRAJ, Uttar Pradesh, India, 211002;
| | - Raushan Kumar
- University of Allahabad, Department of Biochemistry, Allahabad, Uttar Pradesh, India;
| | - Akalabya Bissoyi
- 2Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot-7610001, , Rehovot, Israel;
| | - Syed Ibrahim Rizvi
- University of Allahabad, Department of Biochemistry, faculty of Science, Allahabad, Uttar Pradesh, India, 211002.,India;
| |
Collapse
|
5
|
Jarosiewicz M, Michałowicz J, Bukowska B. In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants. CHEMOSPHERE 2019; 215:404-412. [PMID: 30336317 DOI: 10.1016/j.chemosphere.2018.09.161] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Brominated flame retardants (BFRs) such as tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) as well as bromophenols, i.e. 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) have raised wide concerns due to their widespread occurrence in the environment and adverse effects observed in living organisms including human. The effect of BFRs on apoptosis of human erythrocytes has not been examined, that is why we have decided to assess eryptotic potential of these substances by determining changes in phosphatidylserine (PS) translocation, alterations in intracellular ROS and calcium ion levels, as well as caspase-3 and calpain activation in this cell type. It has been found that all BFRs studied even in the concentration of 0.001 μg/mL induced ROS formation. The compounds examined caused apoptosis by PS externalization and caspase-3 activation in human red blood cells. It has also been shown that calcium ions and calpain did not play a significant role in eryptosis induction by BFRs studied in human erythrocytes.
Collapse
Affiliation(s)
- Monika Jarosiewicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-237 Łódź, Poland.
| | - Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-237 Łódź, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-237 Łódź, Poland
| |
Collapse
|
6
|
Michałowicz J, Włuka A, Cyrkler M, Maćczak A, Sicińska P, Mokra K. Phenol and chlorinated phenols exhibit different apoptotic potential in human red blood cells (in vitro study). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 61:95-101. [PMID: 29857326 DOI: 10.1016/j.etap.2018.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/20/2018] [Accepted: 05/21/2018] [Indexed: 05/23/2023]
Abstract
Phenol and chlorinated phenols are widely spread in the environment and human surrounding, which leads to a common environmental and occupational exposure of humans to these substances. The aim of this study was to assess eryptotic changes in human red blood cells treated with phenol, 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The erythrocytes were incubated with phenols studied in the concentrations ranging from 1 to 100 μg/mL for 24 h or 48 h. The results of the study revealed that all compounds studied caused phosphatidylserine translocation and increased cytosolic calcium ions level in human erythrocytes. It was also noticed that phenol and chlorophenols caused an increase in caspase-3 and calpain activation, which confirmed that they were capable of inducing suicidal death of erythrocytes. The results also revealed that PCP most strongly altered the parameters studied, while phenol exhibited the weakest eryptotic potential in the incubated cells.
Collapse
Affiliation(s)
- Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland.
| | - Anna Włuka
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Monika Cyrkler
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Aneta Maćczak
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Katarzyna Mokra
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| |
Collapse
|
7
|
Maćczak A, Cyrkler M, Bukowska B, Michałowicz J. Eryptosis-inducing activity of bisphenol A and its analogs in human red blood cells (in vitro study). JOURNAL OF HAZARDOUS MATERIALS 2016; 307:328-335. [PMID: 26799224 DOI: 10.1016/j.jhazmat.2015.12.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Bisphenols are important chemicals that are widely used in the manufacturing of polycarbonates, epoxy resin and thermal paper, and thus the exposure of humans to these substances has been noted. The purpose of this study was to assess eryptotic changes in human erythrocytes exposed (in vitro) to bisphenol A (BPA) and its selected analogs, i.e.,bisphenol F (BPF), bisphenol S (BPS) and bisphenol AF (BPAF). The erythrocytes were incubated with compounds studied at concentrations ranging from 1 to 250μg/mL for 4, 12 or 24h. The results showed that BPA and its analogs increased cytosolic calcium ions level with the strongest effect noted for BPAF. It has also been revealed that all bisphenols analyzed, and BPAF and BPF in particular increased phosphatidylserine translocation in red blood cells, which confirmed that they exhibited eryptotic potential in this cell type. Furthermore, it was shown that BPA and its analogs caused significant increase in calpain and caspase-3 activities, while the strongest effect was noted for BPAF. BPS, which is the main substituent of bisphenol A in polymers and thermal paper production exhibited similar eryptotic potential to BPA. Eryptotic changes in human erythrocytes were provoked by bisphenols at concentrations, which may influence the human body during occupational exposure or subacute poisoning with these compounds.
Collapse
Affiliation(s)
- Aneta Maćczak
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Monika Cyrkler
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Bożena Bukowska
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland
| | - Jaromir Michałowicz
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-001 Łódź, Poland.
| |
Collapse
|
8
|
Lang E, Bissinger R, Gulbins E, Lang F. Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis 2015; 20:758-67. [PMID: 25637185 DOI: 10.1007/s10495-015-1094-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Similar to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, a suicidal death characterized by cell shrinkage and phospholipid scrambling of the cell membrane leading to phosphatidylserine exposure at the cell surface. As eryptotic erythrocytes are rapidly cleared from circulating blood, excessive eryptosis may lead to anemia. Moreover, eryptotic erythrocytes may adhere to the vascular wall and thus impede microcirculation. Stimulators of eryptosis include osmotic shock, oxidative stress and energy depletion. Mechanisms involved in the stimulation eryptosis include ceramide formation which may result from phospholipase A2 dependent formation of platelet activating factor (PAF) with PAF dependent stimulation of sphingomyelinases. Enhanced erythrocytic ceramide formation is observed in fever, sepsis, HUS, uremia, hepatic failure, and Wilson's disease. Enhanced eryptosis is further observed in iron deficiency, phosphate depletion, dehydration, malignancy, malaria, sickle-cell anemia, beta-thalassemia and glucose-6-phosphate dehydrogenase-deficiency. Moreover, eryptosis is triggered by osmotic shock and a wide variety of xenobiotics, which are again partially effective by enhancing ceramide abundance. Ceramide formation is inhibited by high concentrations of urea. As shown in Wilson's disease, pharmacological interference with ceramide formation may be a therapeutic option in the treatment of eryptosis inducing clinical disorders.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, 72076, Tuebingen, Germany
| | | | | | | |
Collapse
|