1
|
Gonya S, Kallmerten P, Dinapoli P. Are Infants and Children at Risk of Adverse Health Effects from Dietary Deoxynivalenol Exposure? An Integrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:808. [PMID: 38929054 PMCID: PMC11204095 DOI: 10.3390/ijerph21060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Deoxynivalenol (DON) is a foodborne mycotoxin produced by Fusarium molds that commonly infect cereal grains. It is a potent protein synthesis inhibitor that can significantly impact humans' gastrointestinal, immune, and nervous systems and can alter the microbiome landscape. Low-dose, chronic exposure to DON has been found to stimulate the immune system, inhibit protein synthesis, and cause appetite suppression, potentially leading to growth failure in children. At higher doses, DON has been shown to cause immune suppression, nausea, vomiting, abdominal pain, headache, diarrhea, gastroenteritis, the malabsorption of nutrients, intestinal hemorrhaging, dizziness, and fever. A provisional maximum tolerable daily intake (PMTDI) limit of 1 µg/kg/body weight has been established to protect humans, underscoring the potential health risks associated with DON intake. While the adverse effects of dietary DON exposure have been established, healthcare communities have not adequately investigated or addressed this threat to child health, possibly due to the assumption that current regulatory exposure limits protect the public appropriately. This integrative review investigated whether current dietary DON exposure rates in infants and children regularly exceed PMTDI limits, placing them at risk of negative health effects. On a global scale, the routine contamination of cereal grains, bakery products, pasta, and human milk with DON could lead to intake levels above PMTDI limits. Furthermore, evidence suggests that other food commodities, such as soy, coffee, tea, dried spices, nuts, certain seed oils, animal milk, and various water reservoirs, can be intermittently contaminated, further amplifying the scope of the issue. Better mitigation strategies and global measures are needed to safeguard vulnerable youth from this harmful toxicant.
Collapse
Affiliation(s)
- Susan Gonya
- Department of Nursing, College of Health and Human Services, University of New Hampshire, Durham, NH 03824, USA
| | | | - Pamela Dinapoli
- Department of Nursing, College of Health and Human Services, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
2
|
Cighir A, Mare AD, Vultur F, Cighir T, Pop SD, Horvath K, Man A. Fusarium spp. in Human Disease: Exploring the Boundaries between Commensalism and Pathogenesis. Life (Basel) 2023; 13:1440. [PMID: 37511815 PMCID: PMC10381950 DOI: 10.3390/life13071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Fusarium is a large fungal genus that is widely distributed in the environment, mostly known for its plant pathogenicity. Rarely, it is involved in human pathology, where the type of infection caused is highly dependent upon the portal of entry and the immune status of the host. The study at hand aims to summarize routine methods used in diagnosing such infections as well as more advanced molecular diagnostic methods, techniques that can play a huge role in differentiating between colonization and infection when trying to decide the therapeutic outcome. Consequently, to further support our findings, two different strains (one isolated from corneal scrapings and one isolated from purulent discharge) were analyzed in a clinical context and thoroughly tested using classical and modern diagnostic methods: identification by macroscopical and microscopical examinations of the culture and mass spectrometry, completed by molecular methods such as PCR for trichothecene and ERIC-PCR for genetic fingerprinting. Isolation of a clinically relevant Fusarium spp. from a sample still remains a diagnostic challenge for both the clinician and the microbiologist, because differentiating between colonization and infection is very strenuous, but can make a difference in the treatment that is administered to the patient.
Collapse
Affiliation(s)
- Anca Cighir
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Department of Medical Laboratory, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Anca Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Department of Medical Laboratory, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Florina Vultur
- Department of Ophthalmology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Ophthalmology Clinic, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Teodora Cighir
- Department of Medical Laboratory, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Suzana Doina Pop
- Department of Ophthalmology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Ophthalmology Clinic, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Karin Horvath
- Department of Ophthalmology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Ophthalmology Clinic, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Department of Medical Laboratory, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| |
Collapse
|
3
|
Bastos-Amador P, Duarte EL, Torres J, Caldeira AT, Silva I, Salvador C, Assunção R, Alvito P, Ferreira M. Maternal dietary exposure to mycotoxin aflatoxin B 1 promotes intestinal immune alterations and microbiota modifications increasing infection susceptibility in mouse offspring. Food Chem Toxicol 2023; 173:113596. [PMID: 36603704 DOI: 10.1016/j.fct.2022.113596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mycotoxins are secondary metabolites produced by fungi occurring in food that are toxic to animals and humans. Early-life mycotoxins exposure has been linked to diverse pathologies. However, how maternal exposure to mycotoxins impacts on the intestinal barrier function of progeny has not been explored. Here, exposure of pregnant and lactating C57Bl/6J female mice to aflatoxin B1 (AFB1; 400 μg/kg body weight/day; 3 times a week) in gelatine pellets, from embryonic day (E)11.5 until weaning (postnatal day 21), led to gut immunological changes in progeny. The results showed an overall increase of lymphocyte number in intestine, a reduction of expression of epithelial genes related to microbial defence, as well as a decrease in cytokine production by intestinal type 2 innate lymphoid cells (ILC2). While susceptibility to chemically induced colitis was not worsened, immune alterations were associated with changes in gut microbiota and with a higher vulnerability to infection by the protozoan Eimeria vermiformis at early-life. Together these results show that maternal dietary exposure to AFB1 can dampen intestinal barrier homeostasis in offspring decreasing their capability to tackle intestinal pathogens. These data provide insights to understand AFB1 potential harmfulness in early-life health in the context of intestinal infections.
Collapse
Affiliation(s)
- Patricia Bastos-Amador
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; Champalimaud Foundation, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Elsa Leclerc Duarte
- University of Évora, School of Science and Technology, 7000-671, Évora, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, 7006-554, Évora, Portugal
| | - Júlio Torres
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal
| | | | - Inês Silva
- University of Évora, School of Science and Technology, 7000-671, Évora, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development, 7006-554, Évora, Portugal; HERCULES Laboratory, Universidade de Évora, 7000-809, Évora, Portugal
| | - Cátia Salvador
- HERCULES Laboratory, Universidade de Évora, 7000-809, Évora, Portugal
| | - Ricardo Assunção
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829 - 511, Caparica, Portugal; University of Aveiro, CESAM - Centre for Environmental and Marine Studies, 3810-193, Aveiro, Portugal
| | - Paula Alvito
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal; University of Aveiro, CESAM - Centre for Environmental and Marine Studies, 3810-193, Aveiro, Portugal
| | - Manuela Ferreira
- Champalimaud Foundation, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal.
| |
Collapse
|
4
|
Prathap-Kumar K, Balakrishna-Nair MN, Punniyamurthy N. Inhalation toxicity of mycotoxins in farm animals. IRANIAN JOURNAL OF VETERINARY RESEARCH 2023; 24:94-95. [PMID: 37790111 PMCID: PMC10542869 DOI: 10.22099/ijvr.2023.47378.6833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 10/05/2023]
Affiliation(s)
- K. Prathap-Kumar
- Division of Ethno-Veterinary Science and Practice, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, India
| | | | | |
Collapse
|
5
|
The effect of lichen secondary metabolites on Aspergillus fungi. Arch Microbiol 2021; 204:100. [PMID: 34964912 PMCID: PMC8716355 DOI: 10.1007/s00203-021-02649-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 01/16/2023]
Abstract
A systematic review of literature data on the antifungal potential of extracted lichen compounds and individual secondary metabolites against mold species of the genus Aspergillus is provided. Crude extracts from 49 epiphytic, 16 epigeic and 22 epilithic species of lichens and 44 secondary metabolites against 10 species, Aspergillus candidus, A. flavus, A. fumigatus, A. nidulans, A. niger, A. ochraceus, A. parasiticus, A. restrictus, A. stellatus and A. ustus, were analysed. Several measuring techniques were employed for such analyses. Lichen substances were extracted with alcoholic and other organic solvents mainly using the Soxhlet apparatus. Among the three most-studied mold species, the results showed that the crude extracts from the thalli of the lichens Cladonia foliacea, Hypotrachyna cirrhata, Leucodermia leucomelos, Platismatia glauca and Pseudevernia furfuracea against Aspergillus flavus, from C. foliacea, Nephroma arcticum and Parmelia sulcata against A. fumigatus and from Evernia prunastri, Hypogymnia physodes, Umbilicaria cylindrica and Variospora dolomiticola against A. niger have the greatest antifungal potential. The lichen secondary metabolites showed a higher inhibitory potential, e.g. protolichesterinic acid against A. flavus, lecanoric acid against A. fumigatus and orsellinic acid against A. niger; the other seven species of Aspergillus have been poorly studied and require further investigation. A comparison of the inhibitory potential of the tested mixtures of lichen substances and their secondary metabolites shows that they can compete with commonly used antifungal substances, such as ketoconazole and clotrimazole against A. flavus, A. nidulans, A. niger and A. parasiticus and fluconazole in the case of A. fumigatus.
Collapse
|
6
|
Li T, Su X, Qu H, Duan X, Jiang Y. Biosynthesis, regulation, and biological significance of fumonisins in fungi: current status and prospects. Crit Rev Microbiol 2021; 48:450-462. [PMID: 34550845 DOI: 10.1080/1040841x.2021.1979465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fumonisins are one of the most important mycotoxin classes due to their widespread occurrence and potential health threat to humans and animals. Currently, most of the research focuses on the control of fumonisin contamination in the food supply chain. In recent years, significant progress in biochemistry, enzymology, and genetic regulation of fumonisin biosynthesis has been achieved using molecular technology. Furthermore, new insights into the roles of fumonisins in the interaction between fungi and plant hosts have been reported. This review provides an overview of the current understanding of the biosynthesis and regulation of fumonisins. The ecological significance of fumonisins to Fusarium species that produce the toxins is discussed, and the complex regulatory networks of fumonisin synthesis is proposed.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xinguo Su
- Tropical Agriculture and Forestry Department, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Hongxia Qu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
7
|
Boguś MI, Wrońska AK, Kaczmarek A, Boguś-Sobocińska M. In vitro screening of 65 mycotoxins for insecticidal potential. PLoS One 2021; 16:e0248772. [PMID: 33735295 PMCID: PMC7971479 DOI: 10.1371/journal.pone.0248772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
The economic losses and threats to human and animal health caused by insects and the pathogens transmitted by them require effective and environmentally-friendly methods of controlling them. One such group of natural biocontrol agents which may be used as biopesticides is that of the entomopathogenic fungi and their toxic secondary metabolites (mycotoxins). The present in vitro work examined the insecticidal potential of 65 commercially-available mycotoxins against the insect Sf-9 cell line. Mammalian Caco-2 and THP-1 cell lines served as reference controls to select insecticidal mycotoxins harmless to mammalian cells. All tested mycotoxins significantly reduced the in vitro proliferation of the Sf-9 cells and evoked morphological changes. Ten of the mycotoxins found to strongly inhibit Sf-9 proliferation also had moderate or no effect on Caco-2 cells. The THP-1 cells were highly resistant to the tested mycotoxins: doses 103 times higher were needed to affect viability and morphology (1 μg/ml for THP-1 versus 1 ng/ml for Sf-9 and Caco-2). Nine mycotoxins significantly decreased Sf-9 cell proliferation with minor effects on mammalian cells: cyclosporins B and D, cytochalasin E, gliotoxin, HC toxin, paxilline, penitrem A, stachybotrylactam and verruculogen. These may be good candidates for future biopesticide formulations.
Collapse
Affiliation(s)
- Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
- Biomibo ul, Warszawa, Poland
- * E-mail:
| | - Anna Katarzyna Wrońska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | | |
Collapse
|
8
|
Dey DK, Chang SN, Kang SC. The inflammation response and risk associated with aflatoxin B1 contamination was minimized by insect peptide CopA3 treatment and act towards the beneficial health outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115713. [PMID: 33038573 DOI: 10.1016/j.envpol.2020.115713] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
This study focused on the possible chemo-preventive effects of insect peptide CopA3 on normal human colon cells against the inflammation induced by the toxic environmental pollutant aflatoxin B1 (AFB1). In the study, we used CCD 841 CoN normal human colon cells to investigate the cytotoxic effect induced by AFB1 and elucidated the negative impact of AFB1 exposure on the cell cycle progression. Further, we also carried out the in-vivo experiment, where male BALB/c mice were administrated with AFB1 to induce inflammation associated cancer like phenotype and the dietary effect of CopA3 was evaluated on the early stages of AFB1-induced hepatotoxicity and inflammation in colon tissues. At the initiation stage, CopA3 was given along with water, which significantly decreased the inflammation in the liver and colon of AFB1 exposed mice model. Mice that received CopA3 alone showed enhanced activity of several antioxidant enzymes. In the post treatment stage, the CopA3 dosage remarkably increased the Ki-67 protein expression, indicating the enhancement in cell proliferation event and increased the number of apoptotic cells in colonic crypts, suggesting the capability of CopA3 treatment towards the epithelial cell turnover. Thus, CopA3 treatment shows its potential to inhibit the development of the early stages of AFB1-induced colon inflammation and hepatotoxicity in mice by inhibiting the DNA synthesis of the damaged and inflammatory cell and induced apoptosis for the clearance of damaged cells. Collectively, the results of this study suggest that CopA3 treatment may play a protective role against the mycotoxin induced inflammation.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Jillyang, Naeri-riGyeongsan, Gyeongbuk, 38453, Republic of Korea.
| | - Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Jillyang, Naeri-riGyeongsan, Gyeongbuk, 38453, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Jillyang, Naeri-riGyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
9
|
Guerre P. Mycotoxin and Gut Microbiota Interactions. Toxins (Basel) 2020; 12:E769. [PMID: 33291716 PMCID: PMC7761905 DOI: 10.3390/toxins12120769] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interactions between mycotoxins and gut microbiota were discovered early in animals and explained part of the differences in susceptibility to mycotoxins among species. Isolation of microbes present in the gut responsible for biotransformation of mycotoxins into less toxic metabolites and for binding mycotoxins led to the development of probiotics, enzymes, and cell extracts that are used to prevent mycotoxin toxicity in animals. More recently, bioactivation of mycotoxins into toxic compounds, notably through the hydrolysis of masked mycotoxins, revealed that the health benefits of the effect of the gut microbiota on mycotoxins can vary strongly depending on the mycotoxin and the microbe concerned. Interactions between mycotoxins and gut microbiota can also be observed through the effect of mycotoxins on the gut microbiota. Changes of gut microbiota secondary to mycotoxin exposure may be the consequence of the antimicrobial properties of mycotoxins or the toxic effect of mycotoxins on epithelial and immune cells in the gut, and liberation of antimicrobial peptides by these cells. Whatever the mechanism involved, exposure to mycotoxins leads to changes in the gut microbiota composition at the phylum, genus, and species level. These changes can lead to disruption of the gut barrier function and bacterial translocation. Changes in the gut microbiota composition can also modulate the toxicity of toxic compounds, such as bacterial toxins and of mycotoxins themselves. A last consequence for health of the change in the gut microbiota secondary to exposure to mycotoxins is suspected through variations observed in the amount and composition of the volatile fatty acids and sphingolipids that are normally present in the digesta, and that can contribute to the occurrence of chronic diseases in human. The purpose of this work is to review what is known about mycotoxin and gut microbiota interactions, the mechanisms involved in these interactions, and their practical application, and to identify knowledge gaps and future research needs.
Collapse
Affiliation(s)
- Philippe Guerre
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, F-31076 Toulouse, France
| |
Collapse
|
10
|
Pang VF, Chiang CF, Chang CC. The in vitro effects of aflatoxin B 1 on physiological functions of swine alveolar macrophages. Vet Med Sci 2020; 6:919-925. [PMID: 32594663 PMCID: PMC7738744 DOI: 10.1002/vms3.313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
The toxic effects of aflatoxin B1 (AFB1 ) on the physiological functions of swine alveolar macrophages (SAM) were investigated. Freshly isolated SAM were incubated with various AFB1 concentrations (1.6 × 10-1 - 1.6 × 105 nmol/L) and time periods, and their phagocytic ability, synthesis of DNA, RNA and protein, and cell activation by lipopolysaccharide (LPS), were analysed. Results demonstrated that a significant (p < .05) reduction (60%) in Staphylococcus aureus uptaken by SAM appeared 3 hr after AFB1 (>16 nmol/L) treatment. The synthesis of DNA, RNA and protein were markedly reduced, among which DNA and protein synthesis were affected more noticeably. The activation of SAM by LPS was significantly (p < .05) suppressed when the concentration of AFB1 reached 1.6 × 103 nmol/L. In general, most of the analysed effects were more prominent as AFB1 concentration or incubation period increased. Taken together, AFB 1 could elicit significant adverse effects on the physiological functions of SAM. Exposure of pigs to aflatoxin-contaminated feed may increase their susceptibility to various secondary infections.
Collapse
Affiliation(s)
- Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Chih-Cheng Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
11
|
Tadee A, Mahakunakorn P, Porasuphatana S. Oxidative stress and genotoxicity of co-exposure to chlorpyrifos and aflatoxin B 1 in HepG2 cells. Toxicol Ind Health 2020; 36:336-345. [PMID: 32495693 DOI: 10.1177/0748233720928169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chlorpyrifos (CPF) and aflatoxin B1 (AFB1) are each known to adversely affect hepatic tissue individually, but their combined hepatic effects have never been previously investigated. HepG2 cell viability, oxidative status, and genetic impairment were examined after exposing HepG2 cells to: (1) CPF alone, (2) AFB1 alone, and (3) CPF and AFB1 combined (20:1). CPF exposure decreased cell viability, reduced glutathione (GSH) content, and superoxide dismutase (SOD) activity but increased both glutathione peroxidase (GPx) and paraoxonase 1 activity. AFB1 exposure decreased cell viability and GSH content but increased reactive oxygen species (ROS) production. CPF and AFB1 combined exposure decreased GSH content (p < 0.05) further over individual CPF and AFB1 exposures. Induction of micronucleus formation was detected in AFB1-treated cells but undetected in both CPF and combination-treated cells. In conclusion, cytotoxic effects caused by combined exposure were antagonistic, as shown by a combination index value of 1.67. Although no change in ROS production was observed in CPF groups, the overall results confirmed the occurrence of oxidative stress through the alterations of GSH content, GPx, and SOD activity. Only intracellular GSH was evidently changed upon exposure to CPF and AFB1 combined. Thus, this study suggested cellular GSH as a potential indicator for detecting the combined effects of CPF and AFB1 in HepG2 cells, the detection of which could be adapted to estimate the potential toxicity of additional multiple toxicant exposures.
Collapse
Affiliation(s)
- Anupon Tadee
- Graduate Program in Toxicology, Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Pramote Mahakunakorn
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Supatra Porasuphatana
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
12
|
Contaminated feed-borne Bacillus cereus aggravates respiratory distress post avian influenza virus H9N2 infection by inducing pneumonia. Sci Rep 2019; 9:7231. [PMID: 31076729 PMCID: PMC6510747 DOI: 10.1038/s41598-019-43660-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Avian influenza virus subtype H9N2 is identified in chickens with respiratory disease while Bacillus cereus (B. cereus) has been frequently isolated from chicken feed in China. However, the roles of co-infection with these two pathogens remain unclear. In the present study, SPF chicks were intragastrically administered with 108 CFU/mL of B. cereus for 7 days and then inoculated intranasally with 100 EID50 of H9N2 three days later. Alternatively, chickens were initially inoculated with H9N2 and then with B. cereus for one week. Post administration, typical respiratory distress persisted for 5 days in both co-infection groups. Gizzard erosions developed in the groups B. cereus/H9N2 and B. cereus group on 7th day while in group H9N2/B. cereus on 14th day. More importantly, both air-sac lesions and lung damage increased significantly in the co-infection group. Significant inflammatory changes were observed in the B. cereus group from day 7 to day 21. Moreover, higher loads of H9N2 virus were found in the co-infected groups than in the H9N2 group. Newcastle Disease Virus (NDV) specific antibodies were decreased significantly in the H9N2/B. cereus group compared to the B. cereus and the B. cereus/H9N2 groups. Nonspecific IgA titers were reduced significantly in the B. cereus group and the H9N2/B. cereus group compared to the control group. In addition to this, lower lymphocyte proliferation was found in the con-infection groups and the H9N2 group. Hence, feed-borne B. cereus contamination potentially exacerbates gizzard ulceration and aggravates H9N2-induced respiratory distress by inhibiting antibody-mediated immunity and pathogen clearance. Thus controlling the B. cereus contamination in poultry feed is immediately needed.
Collapse
|
13
|
Akyol I. Development and application of RTi-PCR method for common food pathogen presence and quantity in beef, sheep and chicken meat. Meat Sci 2018; 137:9-15. [DOI: 10.1016/j.meatsci.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
14
|
Du Z, Kim KH, Kim J, Moon Y. Fungal Deoxynivalenol-Induced Enterocyte Distress Is Attenuated by Adulterated Adlay: In Vitro Evidences for Mucoactive Counteraction. Front Immunol 2018. [PMID: 29527203 PMCID: PMC5829524 DOI: 10.3389/fimmu.2018.00186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adlay is a cereal crop that has long been used as traditional herbal medicine and as a highly nourishing food. However, deoxynivalenol (DON), the most prevalent trichothecene mycotoxin worldwide, frequently spoils grains, including adlay, via fungal infection. On the basis of an assumption that the actions of DON in the gut could be modified by adlay consumption, we simulated the impacts of co-exposure in enterocytes and investigated the effectiveness of treatment with adlay for reducing the risk of DON-induced inflammation and epithelia barrier injury. In particular, adlay suppressed DON-induced pro-inflammatory signals such as mitogen-activated kinase transduction and the epidermal growth factor receptor-linked pathway. In addition to regulation of pro-inflammatory responses, adlay treatment interfered with DON-induced disruption of the epithelial barrier. Mechanistically, adlay could boost the activation of protein kinase C (PKC) and cytosolic translocation of human antigen R (HuR) protein, which played critical roles in the epithelial restitution, resulting in protection against disruption of enterocyte barrier integrity. Notably, DON abrogated the Ras homolog gene family member A GTPase-mediated actin cytoskeletal network, which was diminished by adlay treatment in PKC and HuR-dependent ways. Taken together, this study provides evidences for adlay-based attenuation of trichothecene-induced gut distress, implicating potential use of a new gut protector against enteropathogenic insults in diets.
Collapse
Affiliation(s)
- Zhimin Du
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, South Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Pusan, South Korea
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan, South Korea.,Program of Intelligent Food Health Sciences and Institute of Marine Biotechnology, Pusan National University, Busan, South Korea
| |
Collapse
|
15
|
Manafi M. Toxicity of aflatoxin B1 on laying Japanese quails (Coturnix coturnix japonica). JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1436550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Milad Manafi
- Department of Animal Science, Faculty of Agricultural Science, Malayer University, Malayer, Iran
| |
Collapse
|