1
|
Zhang M, Zhu G, Ahmed W, Hussain M, Qin D, Chen G, Ding Y, Wu Z, Xu D, Wu G, Gao X. Functional analysis of serine protease EfSP1 in Eocanthecona furcellata Wolff (Hemiptera: Pentatomidae). PEST MANAGEMENT SCIENCE 2025. [PMID: 40207507 DOI: 10.1002/ps.8809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/11/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Serine protease is an important digestive enzyme involved in many physiological and biochemical reactions, including digestion of insect food protein, blood coagulation, signal transduction, immune response, and hormone activation. The physiological functionality of salivary gland serine protease EfSP1 in the predatory natural enemy Eocanthecona furcellata is unknown. As a salivary gland protein, EfSP1 may have insecticidal activity against the prey Spodoptera frugiperda. RESULTS The expression of the EfSP1 gene was interfered with microinjection. After RNAi, the molting of the 5th instar nymphs of E. furcellata was blocked, and the survival rate and daily predation of male and female adults were reduced. The prokaryotic expression of EfSP1 protein was injected into the 4th instar larvae of S. frugiperda, causing difficulty in molting to death of the 4th instar larvae, and the dead larvae showed melanization, softening, and liquefaction. The development duration of the 4th instar larvae was prolonged, the survival rate was decreased, the pupal weight was decreased, the pupal period was prolonged, and the pupal eclosion rate was decreased. This inhibited the chitin and trehalose metabolism of S. frugiperda larvae, hemolymph melanization, and phenoloxidase activity, affecting the transcription of antimicrobial peptide genes. CONCLUSION These findings indicate that EfSP1 is involved in the growth, development, and predation of E. furcellata. As a salivary gland protein, EfSP1 also has insecticidal activity, affecting the growth and development, chitin metabolism, trehalose metabolism, and humoral immunity of S. frugiperda. These findings reveal the physiological function of EfSP1. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Man Zhang
- Yunnan Agricultural University, Kunming, China
| | - Guoyuan Zhu
- Yunnan Agricultural University, Kunming, China
- Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Waqar Ahmed
- Yunnan Agricultural University, Kunming, China
| | | | - Deqiang Qin
- Yunnan Agricultural University, Kunming, China
| | - Gang Chen
- Yunnan Tobacco Company Chuxiong Prefecture Company, Chuxiong, China
| | - Yishu Ding
- Yunnan Tobacco Company Chuxiong Prefecture Company, Chuxiong, China
| | - Ziyun Wu
- Yunnan Tobacco Company Chuxiong Prefecture Company, Chuxiong, China
| | - Dayong Xu
- Yunnan Tobacco Company Chuxiong Prefecture Company, Chuxiong, China
| | - Guoxing Wu
- Yunnan Agricultural University, Kunming, China
| | - Xi Gao
- Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Liang W, Li M, Chen F, Wang Y, Wang K, Wu C, Zhu J. A venom serpin from the assassin bug Sycanus croceovittatus exhibiting inhibitory effects on melanization, development, and insecticidal activity towards its prey. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106322. [PMID: 40082049 DOI: 10.1016/j.pestbp.2025.106322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 03/16/2025]
Abstract
Serine protease inhibitors (SPIs) have been identified as main common components in the venom of the predatory bugs, while their functional roles remain unexplored. In this study, we identified 35 SPI genes belonging to three subfamilies of serpin, canonical SPI, and A2M in genome of the assassin bug, Sycanus croceovittatus. The amino acid sequences of these SPI genes reveal conserved functional regions, albeit with mutations or deletions at certain active site residues. Transcriptomic and qPCR analyses of gene expression patterns in various tissues across developmental stages indicate that most SPI genes exhibit high expression levels in venom apparatus, suggesting their role as venom proteins. Notably, the ScSPI5 gene from the serpin class was found to be most abundantly expressed in all three distinct venom glands, indicating its significant role as a venomous protein. Functional characterization demonstrated that this venom serpin effectively inhibits trypsin activity in vitro and suppresses phenoloxidase activity, thereby blocking hemolymph melanization in preys, including Spodoptera frugiperda, Achelura yunnanensis, and Tenebrio molitor. When ingested, it reduces the larval and pupal weight of the fall armyworm by impeding trypsin activity in the midgut. Upon injection, ScSPI5 exhibits a dose-dependent insecticidal effect against T. molitor, with an LD50 of 5.6 ± 1.1 μg/g. These findings elucidate the specific functions of SPIs in the venom of predatory bugs, enhancing our understanding of their predation efficiency, and highlighting the potential application of venomous SPIs as protease inhibitors in pest management strategies.
Collapse
Affiliation(s)
- Wenkai Liang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Meijiao Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Fenlian Chen
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yuqin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Kui Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Chaoyan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
3
|
Fischer-Carvalho A, Taveira-Barbosa TC, Verjovski-Almeida S, Haeberlein S, Sena Amaral M. Antischistosomal Potential of Animal-Derived Natural Products and Compounds. Microorganisms 2025; 13:397. [PMID: 40005763 PMCID: PMC11858059 DOI: 10.3390/microorganisms13020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects over 240 million people worldwide. Currently, praziquantel is the only drug recommended by the World Health Organization for treatment. However, cases of drug resistance have been reported, which indicates an urgent need for new therapeutics. In this context, natural compounds represent valuable sources of pharmacological substances. Plant-derived natural products have been greatly explored for their potential antischistosomal activity, while animal-derived compounds have received little attention. Recent advances in the biotechnology field allow the wide exploration of animal-derived compounds in drug discovery, which may represent a cost-effective option to find bioactive molecules also against Schistosoma mansoni and other parasites. This review highlights the research into animal-derived products and compounds that have already been tested against schistosomes. Phenotypic effects on schistosomes have been observed upon incubation with some of these substances, which may, therefore, represent possible candidates to be used in the development of new drugs. Overall, these studies advance the discovery of antischistosomal compounds by exploring a yet understudied natural resource. The present review also discusses the challenges of testing animal-derived products and provides examples of the experimental in vitro testing of different selected animal natural products against S. mansoni.
Collapse
Affiliation(s)
- Agatha Fischer-Carvalho
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (A.F.-C.)
| | | | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (A.F.-C.)
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Simone Haeberlein
- Biomedizinisches Forschungszentrum Seltersberg, Institute of Parasitology, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany
| | - Murilo Sena Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (A.F.-C.)
| |
Collapse
|
4
|
Wang X, Li W, Yang X, Yang M, Gu Y, Du Z, Yang J, Wen M, Park Y, Huang C, He Y. Insecticidal activities of three recombinant venom proteins of the predatory stink bug, Arma custos. PEST MANAGEMENT SCIENCE 2024; 80:6473-6482. [PMID: 39166741 DOI: 10.1002/ps.8382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Widespread resistance of insect pests to insecticides and transgenic crops in the field is a significant challenge for sustainable agriculture, and calls for the development of novel alternative strategies to control insect pests. One potential resource for the discovery of novel insecticidal molecules is natural toxins, particularly those derived from the venoms of insect predators. RESULTS In this study, we identified three insecticidal proteinaceous toxins from the venom glands (VGs) of the predatory stink bug, Arma custos (Hemiptera: Asopinae). Transcriptomic analysis of A. custos VGs revealed 151 potentially secreted VG-rich venom proteins. Three VG-rich venom proteins (designated AcVP1 ~ 3) were produced by overexpression in Escherichia coli. Injection of the recombinant proteins into tobacco cutworm (Spodoptera litura) larvae showed that all of the three recombinant proteins caused paralysis, liquefaction and death. Injection of recombinant proteins into rice brown planthopper (Nilaparvata lugens) nymphs showed higher insecticidal activities, among which a trypsin (AcVP2) caused 100% mortality postinjection at 1.27 pmol mg-1 body weight. CONCLUSION A natural toolkit for the discovery of insecticidal toxins from predatory insects has been revealed by the present study. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xiang Yang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yucheng Gu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhao Du
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingyi Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingxia Wen
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Li J, Tian X, Hsiang T, Yang Y, Shi C, Wang H, Li W. Microbial Community Structure and Metabolic Function in the Venom Glands of the Predatory Stink Bug, Picromerus lewisi (Hemiptera: Pentatomidae). INSECTS 2024; 15:727. [PMID: 39336695 PMCID: PMC11432061 DOI: 10.3390/insects15090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
The predatory stink bug, Picromerus lewisi (Hemiptera: Pentatomidae), is an important and valuable natural enemy of insect pests in their ecosystems. While insects are known to harbor symbiotic microorganisms, and these microbial symbionts play a crucial role in various aspects of the host's biology, there is a paucity of knowledge regarding the microbiota present in the venom glands of P. lewisi. This study investigated the venom glands of adult bugs using both traditional in vitro isolation and cultural methods, as well as Illumina high-throughput sequencing technology. Additionally, the carbon metabolism of the venom gland's microorganisms was analyzed using Biolog ECO metabolic phenotyping technology. The results showed 10 different culturable bacteria where the dominant ones were Enterococcus spp. and Lactococcus lactis. With high-throughput sequencing, the main bacterial phyla in the microbial community of the venom glands of P. lewisi were Proteobacteria (78.1%) and Firmicutes (20.3%), with the dominant bacterial genera being Wolbachia, Enterococcus, Serratia, and Lactococcus. At the fungal community level, Ascomycota accounted for the largest proportion (64.1%), followed by Basidiomycota (27.6%), with Vishniacozyma, Cladosporium, Papiliotrema, Penicillium, Fusarium, and Aspergillus as the most highly represented fungal genera. The bacterial and fungal community structure of the venom glands of P. lewisi exhibited high species richness and diversity, along with a strong metabolism of 22 carbon sources. Functional prediction indicated that the primary dominant function of P. lewisi venom-gland bacteria was metabolism. The dominant eco-functional groups of the fungal community included undefined saprotroph, fungal parasite-undefined saprotroph, unassigned, endophyte-plant pathogen, plant pathogen-soil saprotroph-wood saprotroph, animal pathogen-endophyte-plant pathogen-wood saprotroph, plant pathogen, and animal pathogen-endophyte-epiphyte-plant pathogen-undefined saprotroph. These results provide a comprehensive characterization of the venom-gland microbiota of P. lewisi and demonstrate the stability (over one week) of the microbial community within the venom glands. This study represents the first report on the characterization of microbial composition from the venom glands of captive-reared P. lewisi individuals. The insights gained from this study are invaluable for future investigations into P. lewisi's development and the possible interactions between P. lewisi's microbiota and some Lepidopteran pests.
Collapse
Affiliation(s)
- Jinmeng Li
- College of Agriculture, Yangtze University, Jingzhou 434025, China
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xu Tian
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Yuting Yang
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Caihua Shi
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Hancheng Wang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| |
Collapse
|
6
|
Zdenek CN, Cardoso FC, Robinson SD, Mercedes RS, Raidjõe ER, Hernandez-Vargas MJ, Jin J, Corzo G, Vetter I, King GF, Fry BG, Walker AA. Venom exaptation and adaptation during the trophic switch to blood-feeding by kissing bugs. iScience 2024; 27:110723. [PMID: 39280617 PMCID: PMC11402303 DOI: 10.1016/j.isci.2024.110723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Kissing bugs are known to produce anticoagulant venom that facilitates blood-feeding. However, it is unknown how this saliva evolved and if the venom produced by the entomophagous ancestors of kissing bugs would have helped or hindered the trophic shift. In this study, we show that venoms produced by extant predatory assassin bugs have strong anticoagulant properties mediated chiefly by proteolytic degradation of fibrinogen, and additionally contain anticoagulant disulfide-rich peptides. However, venom produced by predatory species also has pain-inducing and membrane-permeabilizing activities that would be maladaptive for blood-feeding, and which venom of the blood-feeding species lack. This study demonstrates that venom produced by the predatory ancestors of kissing bugs was exapted for the trophic switch to blood-feeding by virtue of its anticoagulant properties. Further adaptation to blood-feeding occurred by downregulation of venom toxins with proteolytic, cytolytic, and pain-inducing activities, and upregulation and neofunctionalization of toxins with anticoagulant activity independent of proteolysis.
Collapse
Affiliation(s)
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Raine S Mercedes
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - María José Hernandez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
| | - Jiayi Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of the Environment, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
7
|
Schendel V, Müller CHG, Kenning M, Maxwell M, Jenner RA, Undheim EAB, Sombke A. The venom and telopodal defence systems of the centipede Lithobius forficatus are functionally convergent serial homologues. BMC Biol 2024; 22:135. [PMID: 38867210 PMCID: PMC11170834 DOI: 10.1186/s12915-024-01925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes. RESULTS Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty. CONCLUSIONS The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Carsten H G Müller
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, Greifswald, 17489, Germany
| | - Matthes Kenning
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, Greifswald, 17489, Germany
| | - Michael Maxwell
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia.
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, 0316, Norway.
| | - Andy Sombke
- Centre for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria.
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Austria.
| |
Collapse
|
8
|
Da Lage JL, Fontenelle A, Filée J, Merle M, Béranger JM, Almeida CE, Folly Ramos E, Harry M. Evidence that hematophagous triatomine bugs may eat plants in the wild. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104059. [PMID: 38101706 DOI: 10.1016/j.ibmb.2023.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Blood feeding is a secondary adaptation in hematophagous bugs. Many proteins are secreted in the saliva that are devoted to coping with the host's defense and to process the blood meal. Digestive enzymes that are no longer required for a blood meal would be expected to be eventually lost. Yet, in many strictly hematophagous arthropods, α-amylase genes, which encode the enzymes that digest starch from plants, are still present and transcribed, including in the kissing bug Rhodnius prolixus (Hemiptera, Reduviidae) and its related species, which transmit the Chagas disease. We hypothesized that retaining α-amylase could be advantageous if the bugs occasionally consume plant tissues. We first checked that the α-amylase protein of Rhodnius robustus retains normal amylolytic activity. Then we surveyed hundreds of gut DNA extracts from the sylvatic R. robustus to detect traces of plants. We found plant DNA in 8% of the samples, mainly identified as Attalea palm trees, where R. robustus are usually found. We suggest that although of secondary importance in the blood-sucking bugs, α-amylase may be needed during occasional plant feeding and thus has been retained.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.
| | - Alice Fontenelle
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jonathan Filée
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Marie Merle
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jean-Michel Béranger
- Département Systématique and Evolution, Muséum National d'Histoire Naturelle, Paris, France; IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Carlos Eduardo Almeida
- Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde, Instituto de Biologia, Departamento de Zoologia, Rio de Janeiro, Brazil
| | - Elaine Folly Ramos
- Departamento de Engenharia e Meio Ambiente - DEMA, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Myriam Harry
- Université Paris-Saclay, CNRS, IRD, UMR 9191 Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Finelli F, Catalano A, De Lisa M, Ferraro GA, Genovese S, Giuzio F, Salvia R, Scieuzo C, Sinicropi MS, Svolacchia F, Vassallo A, Santarsiere A, Saturnino C. CGRP Antagonism and Ketogenic Diet in the Treatment of Migraine. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:163. [PMID: 38256423 PMCID: PMC10820088 DOI: 10.3390/medicina60010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The study of migraine is based on the complexity of the pathology, both at the pathophysiological and epidemiological levels. Although it affects more than a billion people worldwide, it is often underestimated and underreported by patients. Migraine must not be confused with a simple headache; it is a serious and disabling disease that causes considerable limitations in the daily life of afflicted people, including social, work, and emotional effects. Therefore, it causes a daily state of suffering and discomfort. It is important to point out that this pathology not only has a decisive impact on the quality of life of those who suffer from it but also on their families and, more generally, on society as a whole. The clinical picture of migraine is complex, with debilitating unilateral or bilateral head pain, and is often associated with characteristic symptoms such as nausea, vomiting, photophobia, and phonophobia. Hormonal, environmental, psychological, dietary, or other factors can trigger it. The present review focuses on the analysis of the physiopathological and pharmacological aspects of migraine, up to the correct dietary approach, with specific nutritional interventions aimed at modulating the symptoms. Based on the symptoms that the patient experiences, targeted and specific therapy is chosen to reduce the frequency and severity of migraine attacks. Specifically, the role of calcitonin gene-related peptide (CGRP) in the pathogenesis of migraine is analyzed, along with the drugs that effectively target the corresponding receptor. Particularly, CGRP receptor antagonists (gepants) are very effective drugs in the treatment of migraine, given their high diffusion in the brain. Moreover, following a ketogenic diet for only one or two months has been demonstrated to reduce migraine attacks. In this review, we highlight the diverse facets of migraine, from its physiopathological and pharmacological aspects to prevention and therapy.
Collapse
Affiliation(s)
- Francesca Finelli
- U.O.C. Pediatrics -S. Giuseppe Moscati Hospital, 83100 Avellino, Italy;
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Michele De Lisa
- U.O.C. Hygiene, Epidemiology and Public Health Department ASP, 85100 Potenza, Italy;
| | - Giuseppe Andrea Ferraro
- Plastic and Reconstructive Surgery Unit, Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Sabino Genovese
- Department of Agriculture, Faculty of Viticulture and Oenology, Federico II University, 83100 Avellino, Italy;
| | - Federica Giuzio
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (R.S.); (C.S.); (A.V.); (A.S.); (C.S.)
- U.O.C. Primary Care and Territorial Health, Social and Health Department, State Hospital, 47893 San Marino, San Marino
- Spinoff TNCKILLERS s.r.l., University of Basilicata, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (R.S.); (C.S.); (A.V.); (A.S.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (R.S.); (C.S.); (A.V.); (A.S.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy;
| | | | - Antonio Vassallo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (R.S.); (C.S.); (A.V.); (A.S.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, 85100 Potenza, Italy
| | - Alessandro Santarsiere
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (R.S.); (C.S.); (A.V.); (A.S.); (C.S.)
| | - Carmela Saturnino
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (R.S.); (C.S.); (A.V.); (A.S.); (C.S.)
| |
Collapse
|
10
|
Wu C, Li L, Wang Y, Wei S, Zhu J. Morphological, functional, compositional and transcriptional constraints shape the distinct venom profiles of the assassin bug Sycanus croceovittatus. Int J Biol Macromol 2023; 250:126162. [PMID: 37558034 DOI: 10.1016/j.ijbiomac.2023.126162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Predatory bugs employ a salivary venom apparatus to generate complex venoms for capturing and digesting prey. The venom apparatus consists of different glands for the production of distinct venom sets, but the underlying mechanisms behind this process remain poorly understood. Here we present a comprehensive analysis of the morphological, functional, compositional and transcriptional characteristics of venoms derived from posterior main gland (PMG), anterior main gland (AMG), and accessory gland (AG) of the assassin bug Sycanus croceovittatus. Structural observations revealed the intricate constructions of the venom apparatus, enabling the production and storage of three distinct venom sets in anatomically varied glands and allowing them to be modulated in a context-dependent manner upon utilization. There were remarkable differences in the biological activities exhibited by PMG, AMG, and AG venoms. Proteotranscriptomic analysis demonstrated that these venoms displayed compositional heterogeneity at both the quantity and variety levels of proteins. Transcriptional profiles of the identified venom proteins revealed gland-specific or biased expression patterns. These findings indicate that the divergence in venom profiles among different glands arises from morphological, functional, compositional and transcriptional constraints on the venom apparatus, reflecting remarkable morphogenesis and regulatory gene networks responsible for the compartmentalized production of venom proteins in different glands.
Collapse
Affiliation(s)
- Chaoyan Wu
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lu Li
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Yuqin Wang
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Shujun Wei
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiaying Zhu
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China.
| |
Collapse
|
11
|
Li W, Li Z, Yang X, Wang X, Yang M, Huang C, He Y. Transcriptome analysis reveals salivary gland-specific neuropeptide signaling genes in the predatory stink bug, Picromerus lewisi. Front Physiol 2023; 14:1270751. [PMID: 37841314 PMCID: PMC10570428 DOI: 10.3389/fphys.2023.1270751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Predatory stink bugs derive from phytophagous stink bugs and evolved enhanced predation skills. Neuropeptides are a diverse class of ancient signaling molecules that regulate physiological processes and behavior in animals, including stink bugs. Neuropeptide evolution might be important for the development of predation because neuropeptides can be converted to venoms that impact prey. However, information on neuropeptide signaling genes in predatory stink bugs is lacking. In the present study, neuropeptide signaling genes of Picromerus lewisi, an important predatory stink bug and an effective biological agent, were comprehensively identified by transcriptome analysis, with a total of 59 neuropeptide precursor genes and 58 potential neuropeptide receptor genes found. In addition, several neuropeptides and their receptors enriched in salivary glands of P. lewisi were identified. The present study and subsequent functional research contribute to an in-depth understanding of the biology and behavior of the predatory bugs and can provide basic information for the development of better pest management strategies, possibly including neuropeptide receptors as insecticide targets and salivary gland derived venom toxins as novel killing moleculars.
Collapse
Affiliation(s)
- Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhimo Li
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiang Yang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Mnisi LN, Zondi N, Pikirayi I. Consumptive and Non-Consumptive Uses of Water Beetles ( Aquatic coleopterans) in Sub-Saharan Traditional Rituals. INSECTS 2023; 14:795. [PMID: 37887807 PMCID: PMC10607599 DOI: 10.3390/insects14100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023]
Abstract
The use of wild animals in customary rituals and as a sustenance resource is a longstanding tradition within sub-Saharan Africa. The emergence of commercial trade, has, however, created unattainable demands and has led to the overexploitation of animals. These demands are threatening the conservation of animal species exploited in this trade. Comparatively little research effort has been dedicated to invertebrate species, and, specifically, their non-commercial uses. We explored the uses of water beetles in traditional rituals. We investigate the extent to which each of the non-commercial uses of water beetles exhibits consumptive and non-consumptive use features. The concepts are contested as their application for describing human-animal interactions has been challenged because of insufficient physiological and conservation data on the implications for animals of such interactions. The inadequacy of the available data pertaining to the use of animal resources was particularly pronounced. Most research efforts are skewed towards vertebrates at the expense of invertebrates. Regardless, the study shows that most non-commercial exploitation and uses of water beetles were mainly non-destructive and, if consumptive, the uses could be described as mainly non-lethal consumptive or sub-lethal consumptive. Rituals that could be described as lethal-consumptive comprised a smaller fraction of the uses of water beetles.
Collapse
Affiliation(s)
- Lucky Nhlanhla Mnisi
- Department of African Languages, University of Pretoria, Hatfield 0028, South Africa;
| | - Nompumelelo Zondi
- Department of African Languages, University of Pretoria, Hatfield 0028, South Africa;
| | - Innocent Pikirayi
- Department of Anthropology, Archaeology and Development Studies, University of Pretoria, Hatfield 0028, South Africa;
| |
Collapse
|
13
|
Yao A, Ma Y, Sun R, Zou W, Chen X, Zhou M, Ma C, Chen T, Shaw C, Wang L. A Designed Analog of an Antimicrobial Peptide, Crabrolin, Exhibits Enhanced Anti-Proliferative and In Vivo Antimicrobial Activity. Int J Mol Sci 2023; 24:14472. [PMID: 37833918 PMCID: PMC10572522 DOI: 10.3390/ijms241914472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Antimicrobial peptides have gradually attracted interest as promising alternatives to conventional agents to control the worldwide health threats posed by antibiotic resistance and cancer. Crabrolin is a tridecapeptide extracted from the venom of the European hornet (Vespa crabro). Its antibacterial and anticancer potentials have been underrated compared to other peptides discovered from natural resources. Herein, a series of analogs were designed based on the template sequence of crabrolin to study its structure-activity relationship and enhance the drug's potential by changing the number, type, and distribution of charged residues. The cationicity-enhanced derivatives were shown to have improved antibacterial and anticancer activities with a lower toxicity. Notably, the double-arginine-modified product, crabrolin-TR, possessed a potent capacity against Pseudomonas aeruginosa (minimum inhibitory concentration (MIC) = 4 μM), which was around thirty times stronger than the parent peptide (MIC = 128 μM). Furthermore, crabrolin-TR showed an in vivo treatment efficacy in a Klebsiella-pneumoniae-infected waxworm model and was non-toxic under its maximum MBC value (MIC = 8 μM), indicating its therapeutic potency and better selectivity. Overall, we rationally designed functional peptides by progressively increasing the number and distribution of charged residues, demonstrating new insights for developing therapeutic molecules from natural resources with enhanced properties, and proposed crabrolin-TR as an appealing antibacterial and anticancer agent candidate for development.
Collapse
Affiliation(s)
- Aifang Yao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Yingxue Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Ruize Sun
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Wanchen Zou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| |
Collapse
|
14
|
Zhang M, Dai Z, Chen X, Qin D, Zhu G, Zhu T, Chen G, Ding Y, Wu G, Gao X. Identification and functional analysis of serine protease inhibitor gene family of Eocanthecona furcellata (Wolff). Front Physiol 2023; 14:1248354. [PMID: 37795265 PMCID: PMC10545863 DOI: 10.3389/fphys.2023.1248354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
The predatory natural enemy Eocanthecona furcellata plays a crucial role in agricultural ecosystems due to its effective pest control measures and defensive venom. Predator venom contains serine protease inhibitors (SPIs), which are the primary regulators of serine protease activity and play key roles in digestion, development, innate immunity, and other physiological regulatory processes. However, the regulation mechanism of SPIs in the salivary glands of predatory natural enemies is still unknown. In this study, we sequenced the transcriptome of E. furcellata salivary gland and identified 38 SPIs genes named EfSPI1∼EfSPI38. Through gene structure, multiple sequence alignment and phylogenetic tree analysis, real-time quantitative PCR (RT-PCR) expression profiles of different developmental stages and different tissues were analyzed. RNAi technology was used to explore the gene function of EFSPI20. The results showed that these 38 EfSPIs genes contained 8 SPI domains, which were serpin, TIL, Kunitz, Kazal, Antistasin, Pacifastin, WAP and A2M. The expression profile results showed that the expression of different types of EfSPIs genes was different at different developmental stages and different tissues. Most of the EfSPIs genes were highly expressed in the egg stage. The EfSPI20, EfSPI21, EfSPI22, and EfSPI24 genes of the Pacifastin subfamily and the EfSPI35 gene of the A2M subfamily were highly expressed in the nymphal and adult stages, which was consistent with the RT-qPCR verification results. These five genes are positively correlated with each other and have a synergistic effect on E. furcellata, and they were highly expressed in salivary glands. After interfering with the expression of the EfSPI20 gene, the survival rate and predatory amount of male and female adults were significantly decreased. Taken together, we speculated some EfSPIs may inhibit trypsin, chymotrypsin, and elastase, and some EfSPIs may be involved in autoimmune responses. EfSPI20 was essential for the predation and digestion of E. furcellata, and the functions of other EfSPIs were discussed. Our findings provide valuable insights into the diversity of EfSPIs in E. furcellata and the potential functions of regulating their predation, digestion and innate immunity, which may be of great significance for developing new pest control strategies.
Collapse
Affiliation(s)
- Man Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhenlin Dai
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiao Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Deqiang Qin
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guoyuan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tao Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gang Chen
- Yunan Tobacco Company Chuxiong Prefecture Company, Chuxiong, China
| | - Yishu Ding
- Yunan Tobacco Company Chuxiong Prefecture Company, Chuxiong, China
| | - Guoxing Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xi Gao
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
15
|
Sugiura S, Hayashi M. Bombardiers and assassins: mimetic interactions between unequally defended insects. PeerJ 2023; 11:e15380. [PMID: 37304866 PMCID: PMC10252827 DOI: 10.7717/peerj.15380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
In defensive mimicry, resemblance between unequally defended species can be parasitic; this phenomenon has been termed quasi-Batesian mimicry. Few studies have used real co-mimics and their predators to test whether the mimetic interactions were parasitic. Here, we investigated the mimetic interaction between two well-defended insect species, the bombardier beetle Pheropsophus occipitalis jessoensis (Coleoptera: Carabidae) and the assassin bug Sirthenea flavipes (Hemiptera: Reduviidae), using their potential predator, the pond frog Pelophylax nigromaculatus (Anura: Ranidae), which coexists with these insect species in the same habitat in Japan. We observed behavioural responses of this frog species (adults and juveniles) to adult Ph. occipitalis jessoensis and adult S. flavipes under laboratory conditions. Among the frogs, 100% and 75% rejected Ph. occipitalis jessoensis and S. flavipes, respectively, suggesting that, compared with the assassin bug S. flavipes, the bombardier beetle Ph. occipitalis jessoensis is more well-defended against frogs. An assassin bug or a bombardier beetle was provided to a frog that had encountered the other insect species. Frogs with a history of assassin bug encounter demonstrated a lower rate of attack toward bombardier beetles. Similarly, frogs with a history of bombardier beetle encounter demonstrated a lower rate of attack toward assassin bugs. Therefore, both the bombardier beetle Ph. occipitalis jessoensis and the assassin bug S. flavipes benefit from the mimetic interaction.
Collapse
Affiliation(s)
- Shinji Sugiura
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | | |
Collapse
|
16
|
Qu Y, Walker AA, Meng L, Herzig V, Li B. The Predatory Stink Bug Arma custos (Hemiptera: Pentatomidae) Produces a Complex Proteinaceous Venom to Overcome Caterpillar Prey. BIOLOGY 2023; 12:biology12050691. [PMID: 37237505 DOI: 10.3390/biology12050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
Predatory stink bugs capture prey by injecting salivary venom from their venom glands using specialized stylets. Understanding venom function has been impeded by a scarcity of knowledge of their venom composition. We therefore examined the proteinaceous components of the salivary venom of the predatory stink bug Arma custos (Fabricius, 1794) (Hemiptera: Pentatomidae). We used gland extracts and venoms from fifth-instar nymphs or adult females to perform shotgun proteomics combined with venom gland transcriptomics. We found that the venom of A. custos comprised a complex suite of over a hundred individual proteins, including oxidoreductases, transferases, hydrolases, ligases, protease inhibitors, and recognition, transport and binding proteins. Besides the uncharacterized proteins, hydrolases such as venom serine proteases, cathepsins, phospholipase A2, phosphatases, nucleases, alpha-amylases, and chitinases constitute the most abundant protein families. However, salivary proteins shared by and unique to other predatory heteropterans were not detected in the A. custos venom. Injection of the proteinaceous (>3 kDa) venom fraction of A. custos gland extracts or venom into its prey, the larvae of the oriental armyworm Mythimna separata (Walker, 1865), revealed insecticidal activity against lepidopterans. Our data expand the knowledge of heteropteran salivary proteins and suggest predatory asopine bugs as a novel source for bioinsecticides.
Collapse
Affiliation(s)
- Yuli Qu
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Brisbane, QLD 4072, Australia
| | - Ling Meng
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Baoping Li
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Fischer ML, Fabian B, Pauchet Y, Wielsch N, Sachse S, Vilcinskas A, Vogel H. An Assassin's Secret: Multifunctional Cytotoxic Compounds in the Predation Venom of the Assassin Bug Psytalla horrida (Reduviidae, Hemiptera). Toxins (Basel) 2023; 15:toxins15040302. [PMID: 37104240 PMCID: PMC10144120 DOI: 10.3390/toxins15040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Predatory assassin bugs produce venomous saliva that enables them to overwhelm, kill, and pre-digest large prey animals. Venom from the posterior main gland (PMG) of the African assassin bug Psytalla horrida has strong cytotoxic effects, but the responsible compounds are yet unknown. Using cation-exchange chromatography, we fractionated PMG extracts from P. horrida and screened the fractions for toxicity. Two venom fractions strongly affected insect cell viability, bacterial growth, erythrocyte integrity, and intracellular calcium levels in Drosophila melanogaster olfactory sensory neurons. LC-MS/MS analysis revealed that both fractions contained gelsolin, redulysins, S1 family peptidases, and proteins from the uncharacterized venom protein family 2. Synthetic peptides representing the putative lytic domain of redulysins had strong antimicrobial activity against Escherichia coli and/or Bacillus subtilis but only weak toxicity towards insect or mammalian cells, indicating a primary role in preventing the intake of microbial pathogens. In contrast, a recombinant venom protein family 2 protein significantly reduced insect cell viability but exhibited no antibacterial or hemolytic activity, suggesting that it plays a role in prey overwhelming and killing. The results of our study show that P. horrida secretes multiple cytotoxic compounds targeting different organisms to facilitate predation and antimicrobial defense.
Collapse
Affiliation(s)
- Maike Laura Fischer
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Benjamin Fabian
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, 35392 Giessen, Germany
- Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Giessen, Germany
| | - Heiko Vogel
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
18
|
Trabuco Amaral D, Mitani Y, Aparecida Silva Bonatelli I, Cerri R, Ohmiya Y, Viviani V. Genome analysis of Phrixothrix hirtus (Phengodidae) railroad worm shows the expansion of odorant-binding gene families and positive selection on morphogenesis and sex determination genes. Gene X 2022; 850:146917. [PMID: 36174905 DOI: 10.1016/j.gene.2022.146917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022] Open
Abstract
Among bioluminescent beetles of the Elateroidea superfamily, Phengodidae is the third largest family, with 244 bioluminescent species distributed only in the Americas, but is still the least studied from the phylogenetic and evolutionary points of view. The railroad worm Phrixothrix hirtus is an essential biological model and symbolic species due to its bicolor bioluminescence, being the only organism that produces true red light among bioluminescent terrestrial species. Here, we performed partial genome assembly of P. hirtus, combining short and long reads generated with Illumina sequencing, providing the first source of genomic information and a framework for comparative analyses of the bioluminescent system in Elateroidea. This is the largest genome described in the Elateroidea superfamily, with an estimated size of ∼3.4 Gb, displaying 32 % GC content, and 67 % transposable elements. Comparative genomic analyses showed a positive selection of genes and gene family expansion events of growths and morphogenesis gene products, which could be associated with the atypical anatomical development and morphogenesis found in paedomorphic females and underdeveloped males. We also observed gene family expansion among distinct odorant-binding receptors, which could be associated with the pheromone communication system typical of these beetles, and retrotransposable elements. Common genes putatively regulating bioluminescence production and control, including two luciferase genes corresponding to lateral lanterns green-emitting and head lanterns red-emitting luciferases with 7 exons and 6 introns, and genes potentially involved in luciferin biosynthesis were found, indicating that there are no clear differences about the presence or absence of gene families associated with bioluminescence in Elateroidea.
Collapse
Affiliation(s)
- Danilo Trabuco Amaral
- Programa de Pós-Graduação em Biotecnociência, Centro de Ciências Naturais e Humanas. Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | | | - Ricardo Cerri
- Department of Computational Science, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, AIST, Ikeda-Osaka, Japan; Osaka Institute of Technology, OIT, Osaka, Japan
| | - Vadim Viviani
- Graduate Program of Evolutive Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Graduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Sorocaba, Brazil.
| |
Collapse
|
19
|
Skowron Volponi M. Hidden jewels of Malaysia: two new genera and species of remarkable clearwing moths (Lepidoptera: Sesiidae: Osminiini). THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2061613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Marta Skowron Volponi
- Deparment of Zoology and Genetics, Laboratory of Evolutionary Biology and Insect Ecology, Faculty of Biology, University of Bialystok, Białystok, Poland
- ClearWing Foundation for Biodiversity, Gdańsk, Poland
| |
Collapse
|
20
|
Yoon KA, Kim WJ, Lee S, Yang HS, Lee BH, Lee SH. Comparative analyses of the venom components in the salivary gland transcriptomes and saliva proteomes of some heteropteran insects. INSECT SCIENCE 2022; 29:411-429. [PMID: 34296820 DOI: 10.1111/1744-7917.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Salivary gland-specific transcriptomes of nine heteropteran insects with distinct feeding strategies (predaceous, hematophagous, and phytophagous) were analyzed and annotated to compare and identify the venom components as well as their expression profiles. The transcriptional abundance of venom genes was verified via quantitative real-time PCR. Hierarchical clustering of 30 representative differentially expressed venom genes from the nine heteropteran species revealed unique groups of salivary gland-specific genes depending on their feeding strategy. The commonly transcribed genes included a paralytic neurotoxin (arginine kinase), digestive enzymes (cathepsin and serine protease), an anti-inflammatory protein (cystatin), hexamerin, and an odorant binding protein. Both predaceous and hematophagous (bed bug) heteropteran species showed relatively higher transcription levels of genes encoding proteins involved in proteolysis and cytolysis, whereas phytophagous heteropterans exhibited little or no expression of these genes, but had a high expression of vitellogenin, a multifunctional allergen. Saliva proteomes from four representative species were also analyzed. All venom proteins identified via saliva proteome analysis were annotated using salivary gland transcriptome data. The proteomic expression profiles of venom proteins were in good agreement with the salivary gland-specific transcriptomic profiles. Our results indicate that profiling of the salivary gland transcriptome provides important information on the composition and evolutionary features of venoms depending on their feeding strategy.
Collapse
Affiliation(s)
- Kyungjae Andrew Yoon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | - Seungki Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Hee-Sun Yang
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Department of Agricultural Biology, Seoul National University, Seoul, Korea
| |
Collapse
|
21
|
Non-proteinaceous salivary compounds of a predatory bug cause histopathological and cytotoxic effects in prey. Toxicon 2022; 213:76-82. [DOI: 10.1016/j.toxicon.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
|
22
|
Gao F, Tian L, Li X, Zhang Y, Wang T, Ma L, Song F, Cai W, Li H. Proteotranscriptomic Analysis and Toxicity Assay Suggest the Functional Distinction between Venom Gland Chambers in Twin-Spotted Assassin Bug, Platymeris biguttatus. BIOLOGY 2022; 11:biology11030464. [PMID: 35336837 PMCID: PMC8945326 DOI: 10.3390/biology11030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Assassin bugs use their salivary venoms for various purposes, including defense, prey paralyzation, and extra-oral digestion, but the mechanisms underlying the functional complexity of the venom remain largely unclear. Since venom glands are composed of several chambers, it is suggested that individual chambers may be specialized to produce chemically distinct venoms to exert different functions. The current study assesses this hypothesis by performing toxicity assays and transcriptomic and proteomic analysis on components from three major venom gland chambers including the anterior main gland (AMG), the posterior main gland (PMG), and the accessory gland (AG) of the assassin bug Platymeris biguttatus. Proteotranscriptomic analysis reveals that AMG and PMG extracts are rich in hemolytic proteins and serine proteases, respectively, whereas transferrin and apolipophorin are dominant in the AG. Toxicity assays reveal that secretions from different gland chambers have distinct effects on the prey, with that from AG compromising prey mobility, that from PMG causing prey death and liquifying the corpse, and that from AMG showing no significant physiological effects. Our study reveals a functional cooperation among venom gland chambers of assassin bugs and provides new insights into physiological adaptations to venom-based predation and defense in venomous predatory bugs.
Collapse
Affiliation(s)
- Fanding Gao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Xinyu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Yinqiao Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia;
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
- Correspondence:
| |
Collapse
|
23
|
Arroyave-Muñoz A, Meijden AVD, Estrada-Gómez S, García LF. Linking toxicity and predation in a venomous arthropod: the case of Tityus fuhrmanni (Scorpiones: Buthidae), a generalist predator scorpion. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210036. [PMID: 35082841 PMCID: PMC8747031 DOI: 10.1590/1678-9199-jvatitd-2021-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Scorpions are arachnids that have a generalist diet, which use venom to
subdue their prey. The study of their trophic ecology and capture behavior
is still limited compared to other organisms, and aspects such as trophic
specialization in this group have been little explored. Methods: In order to determine the relationship between feeding behavior and venom
toxicity in the scorpion species Tityus fuhrmanni, 33
specimens were offered prey with different morphologies and defense
mechanisms: spiders, cockroaches and crickets. In each of the experiments we
recorded the following aspects: acceptance rate, immobilization time and the
number of capture attempts. The median lethal dose of T.
fuhrmanni venom against the three different types of prey was
also evaluated. Results: We found that this species does not have a marked difference in acceptance
for any of the evaluated prey, but the number of capture attempts of spiders
is higher when compared to the other types of prey. The immobilization time
is shorter in spiders compared to other prey and the LD50 was
higher for cockroaches. Conclusions: These results indicate that T. fuhrmanni is a scorpion with
a generalist diet, has a venom with a different potency among prey and is
capable of discriminating between prey types and employing distinct
strategies to subdue them.
Collapse
|
24
|
Arbuckle K, Harris RJ. Radiating pain: venom has contributed to the diversification of the largest radiations of vertebrate and invertebrate animals. BMC Ecol Evol 2021; 21:150. [PMID: 34344322 PMCID: PMC8336261 DOI: 10.1186/s12862-021-01880-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 07/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background Understanding drivers of animal biodiversity has been a longstanding aim in evolutionary biology. Insects and fishes represent the largest lineages of invertebrates and vertebrates respectively, and consequently many ideas have been proposed to explain this diversity. Natural enemy interactions are often important in diversification dynamics, and key traits that mediate such interactions may therefore have an important role in explaining organismal diversity. Venom is one such trait which is intricately bound in antagonistic coevolution and has recently been shown to be associated with increased diversification rates in tetrapods. Despite ~ 10% of fish families and ~ 16% of insect families containing venomous species, the role that venom may play in these two superradiations remains unknown. Results In this paper we take a broad family-level phylogenetic perspective and show that variation in diversification rates are the main cause of variations in species richness in both insects and fishes, and that venomous families have diversification rates twice as high as non-venomous families. Furthermore, we estimate that venom was present in ~ 10% and ~ 14% of the evolutionary history of fishes and insects respectively. Conclusions Consequently, we provide evidence that venom has played a role in generating the remarkable diversity in the largest vertebrate and invertebrate radiations. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01880-z.
Collapse
Affiliation(s)
- Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK.
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
25
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
26
|
The evolutionary dynamics of venom toxins made by insects and other animals. Biochem Soc Trans 2021; 48:1353-1365. [PMID: 32756910 DOI: 10.1042/bst20190820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Animal venoms are recognised as unique biological systems in which to study molecular evolution. Venom use has evolved numerous times among the insects, and insects today use venom to capture prey, defend themselves from predators, or to subdue and modulate host responses during parasitism. However, little is known about most insect venom toxins or the mode and tempo by which they evolve. Here, I review the evolutionary dynamics of insect venom toxins, and argue that insects offer many opportunities to examine novel aspects of toxin evolution. The key questions addressed are: How do venomous animals evolve from non-venomous animals, and how does this path effect the composition and pharmacology of the venom? What genetic processes (gene duplication, co-option, neofunctionalisation) are most important in toxin evolution? What kinds of selection pressures are acting on toxin-encoding genes and their cognate targets in envenomated animals? The emerging evidence highlights that venom composition and pharmacology adapts quickly in response to changing selection pressures resulting from new ecological interactions, and that such evolution occurs through a stunning variety of genetic mechanisms. Insects offer many opportunities to investigate the evolutionary dynamics of venom toxins due to their evolutionary history rich in venom-related adaptations, and their quick generation time and suitability for culture in the laboratory.
Collapse
|
27
|
Carvalho PEGR, Martínez LC, Cossolin JFS, Plata-Rueda A, Viteri Jumbo LO, Fiaz M, Carvalho AG, Zanuncio JC, Serrão JE. The salivary glands of Brontocoris tabidus (Heteroptera: Pentatomidae): Morphology and secretory cycle. Tissue Cell 2021; 70:101498. [PMID: 33545532 DOI: 10.1016/j.tice.2021.101498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/16/2022]
Abstract
Brontocoris tabidus (Signoret) (Heteroptera: Pentatomidae) is a zoophytophagous insect used for biological control in agriculture and forest systems because its nymphs and adults feed on insects and plants. The predatory Pentatomidae insert the mouthparts into the prey, releasing saliva to paralysis and kills the insect, as well as digest body parts to be sucked in a preliminary extra-oral digestion. In a short period of time, this insect shows the ability to feed again, suggesting the existence of a constant and abundant secretory cycle in the salivary glands. This study evaluated the morphological, histochemical and ultrastructural changes of the salivary glands of B. tabidus in fed and starved insects. The salivary complex of this predatory bug has a pair of bilobed salivary glands and a pair of tubular accessory salivary glands. The accessory glands have the lumen lined by a thick non-cuticular layer rich in glycoproteins. The secretory cells of the B. tabidus principal salivary glands have constant secretory activity, with each lobe producing different substances. The physiological processes that occur in the salivary gland of B. tabidus indicate that the insect needs to feed constantly, corroborating the potential of this insect to be used in biological control programs.
Collapse
Affiliation(s)
| | - Luis Carlos Martínez
- Department of General Biology, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil.
| | | | - Angelica Plata-Rueda
- Department of Entomology, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil.
| | | | - Muhammad Fiaz
- Department of Entomology, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Acácio Geraldo Carvalho
- Department of Forest Products, Federal Rural University of Rio de Janeiro, 23851-970 Seropedica, RJ, Brazil.
| | - José Cola Zanuncio
- Department of Entomology, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
28
|
Orientation of Belminus triatomines to cockroaches and cockroaches’ fecal volatiles: an ethological approach. Acta Ethol 2021. [DOI: 10.1007/s10211-021-00361-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Campos JM, Martínez LC, Plata-Rueda A, Weigand W, Zanuncio JC, Serrão JE. Insecticide potential of two saliva components of the predatory bug Podisus nigrispinus (Heteroptera: Pentatomidae) against Spodoptera frugiperda (Lepidoptera: Noctuidae) caterpillars. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1868008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Angelica Plata-Rueda
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wolfgang Weigand
- Friedrich-Schiller-Universitaet Jena Institut fuer Anorganische und Analytische Chemie, Jena, Germany
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
30
|
Abdel-Gaber R, Alajmi R, Haddadi R, El-Ashram S. The phylogenetic position of Arhaphe deviatica within Hemipteran insects: A potential model species for eco-devo studies of symbiosis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:73-78. [PMID: 33351288 DOI: 10.1002/jez.b.23019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/06/2022]
Abstract
Insecta is known to be the most diverse group of species, exhibiting numerous forms of endosymbiotic associations. Molecular techniques have provided significant indicators for insect-microbe interactions. The present study aimed to register one of the true bugs of pentatomomorpha and clarify its taxonomic position through phylogenetic analysis of the partial 16S rRNA gene region. A maximum likelihood analysis retrieved a generally well-supported phylogeny based on Tamura 3-parameter model. Based on the partial mitochondrial 16S rRNA gene sequences, a phylogenetic study of suborder Heteroptera relationships within Hemipteras' order was constructed. Sequences of 221 bases of the 3' end of the gene from 28 species within 16 families were analyzed. This analysis and bootstrap confidence revealed two major clades comprising four suborders within Hemiptera, with a close relationship between Heteroptera + (Sternorrhyncha + (Auchenorrhycha + Coleorrhyncha)). Infraorder Pentatomomorpha is forming a sister group with a substantial bootstrap value to Cimicomorpha. Pyrrhocoroidea forms a sister relationship with Lygaeoidea + Coreoidea. There is a close relationship between Largidae and Pyrrhocoridae within Pyrrhocoroidea. The results show that the present species is firmly embedded in the genus Arhaphe with 94.35% sequence resemblance to its congeners. Besides, the recovered hemipteran species considered a potential model group for studying different symbionts. We propose both phylogenetic and ecological evolutionary developmental biology viewpoints for a more synthetic understanding of insect populations' molecular evolution.
Collapse
Affiliation(s)
- Rewaida Abdel-Gaber
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Reem Alajmi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rania Haddadi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China.,Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
31
|
Crouching Tiger, Hidden Protein: Searching for Insecticidal Toxins in Venom of the Red Tiger Assassin Bug ( Havinthus rufovarius). Toxins (Basel) 2020; 13:toxins13010003. [PMID: 33375154 PMCID: PMC7822193 DOI: 10.3390/toxins13010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Assassin bugs are venomous insects that prey on other arthropods. Their venom has lethal, paralytic, and liquifying effects when injected into prey, but the toxins responsible for these effects are unknown. To identify bioactive assassin bug toxins, venom was harvested from the red tiger assassin bug (Havinthus rufovarius), an Australian species whose venom has not previously been characterised. The venom was fractionated using reversed-phase high-performance liquid chromatography, and four fractions were found to cause paralysis and death when injected into sheep blowflies (Lucilia cuprina). The amino acid sequences of the major proteins in two of these fractions were elucidated by comparing liquid chromatography/tandem mass spectrometry data with a translated venom-gland transcriptome. The most abundant components were identified as a solitary 12.8 kDa CUB (complement C1r/C1s, Uegf, Bmp1) domain protein and a 9.5 kDa cystatin. CUB domains are present in multidomain proteins with diverse functions, including insect proteases. Although solitary CUB domain proteins have been reported to exist in other heteropteran venoms, such as that of the bee killer assassin bug Pristhesancus plagipennis, their function is unknown, and they have not previously been reported as lethal or paralysis-inducing. Cystatins occur in the venoms of spiders and snakes, but again with an unknown function. Reduction and alkylation experiments revealed that the H. rufovarius venom cystatin featured five cysteine residues, one of which featured a free sulfhydryl group. These data suggest that solitary CUB domain proteins and/or cystatins may contribute to the insecticidal activity of assassin bug venom.
Collapse
|
32
|
Wang Y, Brożek J, Dai W. Comparative Morphology of the Mouthparts in Three Predatory Stink Bugs (Heteroptera: Asopinae) Reveals Feeding Specialization of Stylets and Sensilla. INSECTS 2020; 11:E762. [PMID: 33167448 PMCID: PMC7694485 DOI: 10.3390/insects11110762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 11/26/2022]
Abstract
Mouthpart structures were observed in three species of Asopinae using scanning electron microscopy to investigate their morphological disparity. The examined species attack mainly slow-moving, soft-bodied insects, primarily larval forms of the Lepidoptera, and are the natural enemies of many pests. This is the first detailed description of their external mouthparts. The triangular and elongated labrum and four-segmented tube-like labium are longer in Picromerus species (Picromerus bidens (Linnaeus, 1758) and Picromerus lewisi Scott, 1874 than in Cazira bhoutanica Schouteden, 1907. The labrum of P. lewisi and C. bhoutanica appear to be equipped with olfactory sensilla basiconica Sb3, a special type of sensilla with nanopores. The labium surface in all studied species bears 14 types of sensilla (St1-St4, Sb1-7, Sst, Sca1-2). A new characteristic of sensilla trichodea is represented in sensillum St1; in both Picromerus species, it is classified as an olfactory sensillum with nanopores. The tripartite apex of the labium consists of two lateral lobes and a central membranous lobe having microtrichial extensions. Each lobe has one sensory field, including sensilla basiconica (Sb7), sensilla styloconica (Sst), and sensilla trichodea (St4). In the three studied predatory stink bugs, each mandibular stylet tip has five irregular teeth and three long, pointed hooks. The two opposing maxillae, which are held together by a tongue-and-groove system, form a food canal and a salivary canal. The apices of the right maxilla have small teeth and few short barbs along the edge of the food canal. In P. bidens and P. lewisi, there are 5 teeth, while in C. bhoutanica there are 2. Based on structural differences, we inferred that the hook-shaped mandibular teeth, right maxilla with small teeth, and few short barbs along edge of the food canal are more adapted for a predatory lifestyle. Predatory stink bugs use sharp recurved hooks and irregular teeth penetrating, tearing, or filing devices that aid in the mechanical disruption of host tissue. Stiff bristles in the food canal may indicate their possible adaptation to feeding on insect larvae. The evolution of mouthpart morphology and the putative functional significance of sensilla are discussed, providing insight into the sensory mechanism.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Jolanta Brożek
- Faculty of Natural Science, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland;
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
33
|
Anthelminthic Activity of Assassin Bug Venom against the Blood Fluke Schistosoma mansoni. Antibiotics (Basel) 2020; 9:antibiotics9100664. [PMID: 33019687 PMCID: PMC7599792 DOI: 10.3390/antibiotics9100664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Helminths such as the blood fluke Schistosoma mansoni represent a major global health challenge due to limited availability of drugs. Most anthelminthic drug candidates are derived from plants, whereas insect-derived compounds have received little attention. This includes venom from assassin bugs, which contains numerous bioactive compounds. Here, we investigated whether venom from the European predatory assassin bug Rhynocoris iracundus has antischistosomal activity. Venom concentrations of 10–50 µg/mL inhibited the motility and pairing of S. mansoni adult worms in vitro and their capacity to produce eggs. We used EdU-proliferation assays to measure the effect of venom against parasite stem cells, which are essential for survival and reproduction. We found that venom depleted proliferating stem cells in different tissues of the male parasite, including neoblasts in the parenchyma and gonadal stem cells. Certain insect venoms are known to lyse eukaryotic cells, thus limiting their therapeutic potential. We therefore carried out hemolytic activity assays using porcine red blood cells, revealing that the venom had no significant effect at a concentration of 43 µg/mL. The observed anthelminthic activity and absence of hemolytic side effects suggest that the components of R. iracundus venom should be investigated in more detail as potential antischistosomal leads.
Collapse
|
34
|
Fischer ML, Wielsch N, Heckel DG, Vilcinskas A, Vogel H. Context-dependent venom deployment and protein composition in two assassin bugs. Ecol Evol 2020; 10:9932-9947. [PMID: 33005355 PMCID: PMC7520181 DOI: 10.1002/ece3.6652] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
The Heteroptera are a diverse suborder of phytophagous, hematophagous, and zoophagous insects. The shift to zoophagy can be traced back to the transformation of salivary glands into venom glands, but the venom is used not only to kill and digest invertebrate prey but also as a defense strategy, mainly against vertebrates. In this study, we used an integrated transcriptomics and proteomics approach to compare the composition of venoms from the anterior main gland (AMG) and posterior main gland (PMG) of the reduviid bugs Platymeris biguttatus L. and Psytalla horrida Stål. In both species, the AMG and PMG secreted distinct protein mixtures with few interspecific differences. PMG venom consisted mostly of S1 proteases, redulysins, Ptu1-like peptides, and uncharacterized proteins, whereas AMG venom contained hemolysins and cystatins. There was a remarkable difference in biological activity between the AMG and PMG venoms, with only PMG venom conferring digestive, neurotoxic, hemolytic, antibacterial, and cytotoxic effects. Proteomic analysis of venom samples revealed the context-dependent use of AMG and PMG venom. Although both species secreted PMG venom alone to overwhelm their prey and facilitate digestion, the deployment of defensive venom was species-dependent. P. biguttatus almost exclusively used PMG venom for defense, whereas P. horrida secreted PMG venom in response to mild harassment but AMG venom in response to more intense harassment. This intriguing context-dependent use of defensive venom indicates that future research should focus on species-dependent differences in venom composition and defense strategies among predatory Heteroptera.
Collapse
Affiliation(s)
- Maike L. Fischer
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Natalie Wielsch
- Research Group Mass Spectrometry/ProteomicsMax‐Planck Institute for Chemical EcologyJenaGermany
| | - David G. Heckel
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Andreas Vilcinskas
- Institute for Insect BiotechnologyJustus Liebig UniversityGiessenGermany
| | - Heiko Vogel
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| |
Collapse
|
35
|
FORERO DIMITRI, CAMPOS LUIZALEXANDRE, CASTRO-HUERTAS VALENTINA, BIANCHI FILIPEM. Evolutionary mechanisms for camouflage in Cladomorphus phyllinus (Phasmatodea): A reflection on the role of evidence for hypotheses proposition. AN ACAD BRAS CIENC 2020; 92:e20200197. [DOI: 10.1590/0001-3765202020200197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/20/2020] [Indexed: 11/21/2022] Open
|
36
|
Abstract
Traditional medicines in the form of health food and supplements are highly popular nowadays. They are often aggressively promoted with unsubstantiated health benefit claims. Patients suffering from chronic illness, such as psychiatric disorders may be attracted to these products and use them concurrently with their prescribed drugs. The potential danger of these health supplements and traditional medicines containing products have prompted repeated warnings by the US Food and Drug Administration in recent years. A new initiative by the Food and Drug Administration in 2019 was also implemented to strengthen the oversight of these supplements. The WHO global compendium will include traditional medicines in 2019, which has generated much debate about their safety. Many practising psychiatrists are not familiar with traditional medicines, and clinically useful information is also not easily available. In this review, we examine the nature and safety of commonly encountered traditional medicine in these health food products and supplements.
Collapse
|
37
|
Walker AA, Robinson SD, Undheim EAB, Jin J, Han X, Fry BG, Vetter I, King GF. Missiles of Mass Disruption: Composition and Glandular Origin of Venom Used as a Projectile Defensive Weapon by the Assassin Bug Platymeris rhadamanthus. Toxins (Basel) 2019; 11:toxins11110673. [PMID: 31752210 PMCID: PMC6891600 DOI: 10.3390/toxins11110673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/02/2022] Open
Abstract
Assassin bugs (Reduviidae) produce venoms that are insecticidal, and which induce pain in predators, but the composition and function of their individual venom components is poorly understood. We report findings on the venom system of the red-spotted assassin bug Platymeris rhadamanthus, a large species of African origin that is unique in propelling venom as a projectile weapon when threatened. We performed RNA sequencing experiments on venom glands (separate transcriptomes of the posterior main gland, PMG, and the anterior main gland, AMG), and proteomic experiments on venom that was either defensively propelled or collected from the proboscis in response to electrostimulation. We resolved a venom proteome comprising 166 polypeptides. Both defensively propelled venom and most venom samples collected in response to electrostimulation show a protein profile similar to the predicted secretory products of the PMG, with a smaller contribution from the AMG. Pooled venom samples induce calcium influx via membrane lysis when applied to mammalian neuronal cells, consistent with their ability to cause pain when propelled into the eyes or mucus membranes of potential predators. The same venom induces rapid paralysis and death when injected into fruit flies. These data suggest that the cytolytic, insecticidal venom used by reduviids to capture prey is also a highly effective defensive weapon when propelled at predators.
Collapse
Affiliation(s)
- Andrew A. Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
- Correspondence: (A.A.W.); (G.F.K.)
| | - Samuel D. Robinson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
| | - Eivind A. B. Undheim
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jiayi Jin
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
| | - Xiao Han
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia or or (E.A.B.U.); (J.J.); (X.H.)
- Correspondence: (A.A.W.); (G.F.K.)
| |
Collapse
|
38
|
Valenzuela-Rojas JC, González-Gómez JC, van der Meijden A, Cortés JN, Guevara G, Franco LM, Pekár S, García LF. Prey and Venom Efficacy of Male and Female Wandering Spider, Phoneutria boliviensis (Araneae: Ctenidae). Toxins (Basel) 2019; 11:E622. [PMID: 31717836 PMCID: PMC6891708 DOI: 10.3390/toxins11110622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
Spiders rely on venom to catch prey and few species are even capable of capturing vertebrates. The majority of spiders are generalist predators, possessing complex venom, in which different toxins seem to target different types of prey. In this study, we focused on the trophic ecology and venom toxicity of Phoneutria boliviensis F. O. Pickard-Cambridge, 1897, a Central American spider of medical importance. We tested the hypothesis that its venom is adapted to catch vertebrate prey by studying its trophic ecology and venom toxicity against selected vertebrate and invertebrate prey. We compared both trophic ecology (based on acceptance experiments) and toxicity (based on bioassays) among sexes of this species. We found that P. boliviensis accepted geckos, spiders, and cockroaches as prey, but rejected frogs. There was no difference in acceptance between males and females. The venom of P. boliviensis was far more efficient against vertebrate (geckos) than invertebrate (spiders) prey in both immobilization time and LD50. Surprisingly, venom of males was more efficient than that of females. Our results suggest that P. boliviensis has adapted its venom to catch vertebrates, which may explain its toxicity to humans.
Collapse
Affiliation(s)
- Juan Carlos Valenzuela-Rojas
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
| | - Julio César González-Gómez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
| | - Arie van der Meijden
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas 7, 4485-661 Vairão, Vila do Conde, Portugal
| | - Juan Nicolás Cortés
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730001, Colombia; (J.N.C.); (L.M.F.)
| | - Giovany Guevara
- Grupo de Investigación en Zoología, Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia;
| | - Lida Marcela Franco
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 calle 67, Ibagué 730001, Colombia; (J.N.C.); (L.M.F.)
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic;
| | - Luis Fernando García
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur y Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué 730001, Colombia; (J.C.V.-R.); (J.C.G.-G.); (A.v.d.M.)
- Grupo Multidisciplinario en Ecología para la Agricultura, Centro Universitario Regional del Este, Treinta y Tres 33000, Uruguay
| |
Collapse
|
39
|
Liu S, Bonning BC. The Principal Salivary Gland Is the Primary Source of Digestive Enzymes in the Saliva of the Brown Marmorated Stink Bug, Halyomorpha halys. Front Physiol 2019; 10:1255. [PMID: 31680993 PMCID: PMC6797616 DOI: 10.3389/fphys.2019.01255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
The brown marmorated stink bug, Halyomorpha halys, is an invasive, phytophagous stink bug of global importance for agriculture. Tissue-specific transcriptomic analysis of the accessory salivary gland, principal salivary gland (PSG) and gut resulted in identification of 234 putative protease and 166 putative nuclease sequences. By mapping the previously reported proteomes of H. halys watery saliva (WS) and sheath saliva to protein sequences translated from the assembled transcripts, 22 proteases and two nucleases in the saliva were identified. Of these, 19 proteases and both nucleases were present in the WS. The majority of proteases and nucleases found in WS were derived from the PSG, in line with ultrastructural observations, which suggest active protein synthesis and secretion by this tissue. The highly transcribed digestive proteases and nucleases of H. halys were similar to those of the southern green stink bug, Nezara viridula, indicating that these pentatomid stink bugs utilize a similar suite of proteases and nucleases for digestion of plant material. The comprehensive data set for the H. halys salivary glands and gut generated by this study provides an additional resource for further understanding of the biology of this pestiferous species.
Collapse
Affiliation(s)
- Sijun Liu
- Department of Entomology, Iowa State University, Ames, IA, United States
| | - Bryony C. Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Santos-Junior VCD, Martínez LC, Plata-Rueda A, Bozdoğan H, Zanuncio JC, Serrão JE. Exposure to spinosad induces histopathological and cytotoxic effects on the salivary complex of the non-target predator Podisus nigrispinus. CHEMOSPHERE 2019; 225:688-695. [PMID: 30903844 DOI: 10.1016/j.chemosphere.2019.03.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
In integrated pest management systems, biological and chemical controls must be compatible. The insecticide spinosad affects some non-target insects and might compromise their fitness. The objective of this study was to evaluate the histopathological and cytotoxic effects of spinosad on the salivary complex of the predatory bug Podisus nigrispinus (Heteroptera: Pentatomidae). Spinosad toxicity and insect survival were determined using six concentrations of insecticide. Ultrastructural changes and cell death of salivary glands were analyzed after P. nigrispinus exposure to spinosad LC50 (3.15 μg L-1). The insecticide caused toxicity to P. nigrispinus; survival was 32% after 48 h of exposure to LC50. The main histological changes in the salivary complex were disorganization of the epithelium, cytoplasmic vacuolization, and apocrine secretion into the gland lumen. Cytotoxic effects, such as release of granules and vacuoles into the lumen, presence of autophagosomes, enlargement of basal plasma membrane infoldings, and apoptosis, were observed. Spinosad causes toxicity, decreases survival, and changes the histology and cytology of the P. nigrispinus salivary complex. The results suggest that the cellular stress induced by the insecticide affects extra-oral digestion, compromising the potential of P. nigrispinus as a biological pest control agent.
Collapse
Affiliation(s)
| | - Luis Carlos Martínez
- Instituto de Ciências Agrárias, Universidade Federal de Viçosa, 38810-000, Rio Paranaíba, Minas Gerais, Brazil.
| | - Angelica Plata-Rueda
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - Hakan Bozdoğan
- Kırsehir Ahi Evran University, Vocational School of Technical Sciences, Department of Plant and Animal Production, 40100, Kırsehir, Turkey.
| | - José Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| | - José Eduardo Serrão
- Instituto de Ciências Agrárias, Universidade Federal de Viçosa, 38810-000, Rio Paranaíba, Minas Gerais, Brazil.
| |
Collapse
|
41
|
Masonick P, Hernandez M, Weirauch C. No guts, no glory: Gut content metabarcoding unveils the diet of a flower‐associated coastal sage scrub predator. Ecosphere 2019. [DOI: 10.1002/ecs2.2712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Paul Masonick
- Department of Entomology University of California, Riverside 900 University Avenue Riverside California 92521 USA
| | - Madison Hernandez
- Department of Entomology University of California, Riverside 900 University Avenue Riverside California 92521 USA
| | - Christiane Weirauch
- Department of Entomology University of California, Riverside 900 University Avenue Riverside California 92521 USA
| |
Collapse
|
42
|
Arthropod venoms: Biochemistry, ecology and evolution. Toxicon 2018; 158:84-103. [PMID: 30529476 DOI: 10.1016/j.toxicon.2018.11.433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Comprising of over a million described species of highly diverse invertebrates, Arthropoda is amongst the most successful animal lineages to have colonized aerial, terrestrial, and aquatic domains. Venom, one of the many fascinating traits to have evolved in various members of this phylum, has underpinned their adaptation to diverse habitats. Over millions of years of evolution, arthropods have evolved ingenious ways of delivering venom in their targets for self-defence and predation. The morphological diversity of venom delivery apparatus in arthropods is astounding, and includes extensively modified pedipalps, tail (telson), mouth parts (hypostome), fangs, appendages (maxillulae), proboscis, ovipositor (stinger), and hair (urticating bristles). Recent investigations have also unravelled an astonishing venom biocomplexity with molecular scaffolds being recruited from a multitude of protein families. Venoms are a remarkable bioresource for discovering lead compounds in targeted therapeutics. Several components with prospective applications in the development of advanced lifesaving drugs and environment friendly bio-insecticides have been discovered from arthropod venoms. Despite these fascinating features, the composition, bioactivity, and molecular evolution of venom in several arthropod lineages remains largely understudied. This review highlights the prevalence of venom, its mode of toxic action, and the evolutionary dynamics of venom in Arthropoda, the most speciose phylum in the animal kingdom.
Collapse
|
43
|
Abstract
The millions of extant arthropod species are testament to their evolutionary success that can at least partially be attributed to venom usage, which evolved independently in at least 19 arthropod lineages. While some arthropods primarily use venom for predation (e.g., spiders and centipedes) or defense (e.g., bees and caterpillars), it can also have more specialised functions (e.g. in parasitoid wasps to paralyse arthropods for their brood to feed on) or even a combination of functions (e.g. the scorpion Parabuthus transvaalicus can deliver a prevenom for predator deterrence and a venom for predation). Most arthropod venoms are complex cocktails of water, salts, small bioactive molecules, peptides, enzymes and larger proteins, with peptides usually comprising the majority of toxins. Some spider venoms have been reported to contain >1000 peptide toxins, which function as combinatorial libraries to provide an evolutionary advantage. The astounding diversity of venomous arthropods multiplied by their enormous toxin arsenals results in an almost infinite resource for novel bioactive molecules. The main challenge for exploiting this resource is the small size of most arthropods, which can be a limitation for current venom extraction techniques. Fortunately, recent decades have seen an incredible improvement in transcriptomic and proteomic techniques that have provided increasing sensitivity while reducing sample requirements. In turn, this has provided a much larger variety of arthropod venom compounds for potential applications such as therapeutics, molecular probes for basic research, bioinsecticides or anti-parasitic drugs. This special issue of Toxicon aims to cover the breadth of arthropod venom research, including toxin evolution, pharmacology, toxin discovery and characterisation, toxin structures, clinical aspects, and potential applications.
Collapse
Affiliation(s)
- Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
44
|
Walker AA, Robinson SD, Yeates DK, Jin J, Baumann K, Dobson J, Fry BG, King GF. Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon 2018; 154:15-27. [DOI: 10.1016/j.toxicon.2018.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022]
|
45
|
Walker AA, Hernández-Vargas MJ, Corzo G, Fry BG, King GF. Giant fish-killing water bug reveals ancient and dynamic venom evolution in Heteroptera. Cell Mol Life Sci 2018; 75:3215-3229. [PMID: 29427076 PMCID: PMC11105384 DOI: 10.1007/s00018-018-2768-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 01/19/2023]
Abstract
True Bugs (Insecta: Heteroptera) produce venom or saliva with diverse bioactivities depending on their feeding strategies. However, little is known about the molecular evolution of the venom toxins underlying these biological activities. We examined venom of the giant fish-killing water bug Lethocerus distinctifemur (Insecta: Belostomatidae) using infrared spectroscopy, transcriptomics, and proteomics. We report 132 venom proteins including putative enzymes, cytolytic toxins, and antimicrobial peptides. Over 73% (96 proteins) showed homology to venom proteins from assassin bugs (Reduviidae), including 21% (28 proteins from seven families) not known from other sources. These data suggest that numerous protein families were recruited into venom and diversified rapidly following the switch from phytophagy to predation by ancestral heteropterans, and then were retained over > 200 my of evolution. In contrast, trophic switches to blood-feeding (e.g. in Triatominae and Cimicidae) or reversions to plant-feeding (e.g., in Pentatomomorpha) were accompanied by rapid changes in the composition of venom/saliva, including the loss of many protein families.
Collapse
Affiliation(s)
- Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | | | - Gerardo Corzo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 61500, Cuernavaca, Morelos, Mexico
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
46
|
Structural diversity of arthropod venom toxins. Toxicon 2018; 152:46-56. [DOI: 10.1016/j.toxicon.2018.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/29/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022]
|
47
|
Klupczynska A, Pawlak M, Kokot ZJ, Matysiak J. Application of Metabolomic Tools for Studying Low Molecular-Weight Fraction of Animal Venoms and Poisons. Toxins (Basel) 2018; 10:toxins10080306. [PMID: 30042318 PMCID: PMC6116190 DOI: 10.3390/toxins10080306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/29/2018] [Accepted: 07/23/2018] [Indexed: 01/11/2023] Open
Abstract
Both venoms and poisonous secretions are complex mixtures that assist in defense, predation, communication, and competition in the animal world. They consist of variable bioactive molecules, such as proteins, peptides, salts and also metabolites. Metabolomics opens up new perspectives for the study of venoms and poisons as it gives an opportunity to investigate their previously unexplored low molecular-weight components. The aim of this article is to summarize the available literature where metabolomic technologies were used for examining the composition of animal venoms and poisons. The paper discusses only the low molecular-weight components of venoms and poisons collected from snakes, spiders, scorpions, toads, frogs, and ants. An overview is given of the analytical strategies used in the analysis of the metabolic content of the samples. We paid special attention to the classes of compounds identified in various venoms and poisons and potential applications of the small molecules (especially bufadienolides) discovered. The issues that should be more effectively addressed in the studies of animal venoms and poisons include challenges related to sample collection and preparation, species-related chemical diversity of compounds building the metabolome and a need of an online database that would enhance identification of small molecule components of these secretions.
Collapse
Affiliation(s)
- Agnieszka Klupczynska
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland.
| | - Magdalena Pawlak
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland.
| | - Zenon J Kokot
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland.
| | - Jan Matysiak
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland.
| |
Collapse
|
48
|
Forthman M, Weirauch C. Phylogenetic comparative analysis supports aposematic colouration-body size association in millipede assassins (Hemiptera: Reduviidae: Ectrichodiinae). J Evol Biol 2018; 31:1071-1078. [PMID: 29742313 DOI: 10.1111/jeb.13288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 01/08/2023]
Abstract
The diversity of colour patterns and its importance in interactions with the environment make colouration in animals an intriguing research focus. Aposematic colouration is positively correlated with body size in certain groups of animals, suggesting that warning colours are more effective or that crypsis is harder to achieve in larger animals. Surprisingly, this relationship has not been recovered in studies investigating insects, which may have been confounded by a focus on aposematic taxa that are also gregarious. Millipede assassin bugs (Hemiptera: Reduviidae: Ectrichodiinae) comprise species with cryptic and aposematic colour patterns across a range of body sizes, are typically solitary as adults and are thus an excellent model for investigating a possible association between colouration and body size. Here, we use a comprehensive phylogeny for Ectrichodiinae, ancestral state reconstruction of colouration, and phylogenetic comparative methods to test for a colouration-body size association. The ancestor of Ectrichodiinae is reconstructed as cryptically coloured, with multiple subsequent transitions between aposematic and cryptic colouration. Aposematic colouration is positively associated with male body length and supports the hypothesis that selection on Ectrichodiinae body size may influence evolutionary transitions between aposematic and cryptic colouration or alternatively that selection for aposematic colouration influences body size evolution.
Collapse
Affiliation(s)
- Michael Forthman
- Department of Entomology, University of California, Riverside, CA, USA.,Department of Entomology & Nematology, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
49
|
Pienaar R, Neitz AWH, Mans BJ. Tick Paralysis: Solving an Enigma. Vet Sci 2018; 5:E53. [PMID: 29757990 PMCID: PMC6024606 DOI: 10.3390/vetsci5020053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022] Open
Abstract
In comparison to other arachnids, ticks are major vectors of disease, but less than 8% of the known species are capable of inducing paralysis, as compared to the ~99⁻100% arachnids that belong to venomous classes. When considering the potential monophyly of venomous Arachnida, this review reflects on the implications regarding the classification of ticks as venomous animals and the possible origin of toxins. The origin of tick toxins is compared with scorpion and spider toxins and venoms based on their significance, functionality, and structure in the search to find homologous venomous characters. Phenotypic evaluation of paralysis, as caused by different ticks, demonstrated the need for expansion on existing molecular data of pure isolated tick toxins because of differences and discrepancies in available data. The use of in-vivo, in-vitro, and in-silico assays for the purification and characterization of paralysis toxins were critically considered, in view of what may be considered to be a paralysis toxin. Purified toxins should exhibit physiologically relevant activity to distinguish them from other tick-derived proteins. A reductionist approach to identify defined tick proteins will remain as paramount in the search for defined anti-paralysis vaccines.
Collapse
Affiliation(s)
- Ronel Pienaar
- Epidemiology, Parasites and Vectors, Agricultural Research Council⁻Onderstepoort Veterinary Research, Onderstepoort, Pretoria 0110, South Africa.
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa.
| | - Albert W H Neitz
- Division of Biochemistry, University of Pretoria, Hatfield, Pretoria 0028, South Africa.
| | - Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council⁻Onderstepoort Veterinary Research, Onderstepoort, Pretoria 0110, South Africa.
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa.
- Department of Life and Consumer Sciences, University of South Africa, Florida, Johannesburg 1710, South Africa.
| |
Collapse
|
50
|
Walker AA, Rosenthal M, Undheim EEA, King GF. Harvesting Venom Toxins from Assassin Bugs and Other Heteropteran Insects. J Vis Exp 2018. [PMID: 29733320 DOI: 10.3791/57729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Heteropteran insects such as assassin bugs (Reduviidae) and giant water bugs (Belostomatidae) descended from a common predaceous and venomous ancestor, and the majority of extant heteropterans retain this trophic strategy. Some heteropterans have transitioned to feeding on vertebrate blood (such as the kissing bugs, Triatominae; and bed bugs, Cimicidae) while others have reverted to feeding on plants (most Pentatomomorpha). However, with the exception of saliva used by kissing bugs to facilitate blood-feeding, little is known about heteropteran venoms compared to the venoms of spiders, scorpions and snakes. One obstacle to the characterization of heteropteran venom toxins is the structure and function of the venom/labial glands, which are both morphologically complex and perform multiple biological roles (defense, prey capture, and extra-oral digestion). In this article, we describe three methods we have successfully used to collect heteropteran venoms. First, we present electrostimulation as a convenient way to collect venom that is often lethal when injected into prey animals, and which obviates contamination by glandular tissue. Second, we show that gentle harassment of animals is sufficient to produce venom extrusion from the proboscis and/or venom spitting in some groups of heteropterans. Third, we describe methods to harvest venom toxins by dissection of anaesthetized animals to obtain the venom glands. This method is complementary to other methods, as it may allow harvesting of toxins from taxa in which electrostimulation and harassment are ineffective. These protocols will enable researchers to harvest toxins from heteropteran insects for structure-function characterization and possible applications in medicine and agriculture.
Collapse
Affiliation(s)
| | - Max Rosenthal
- Institute for Molecular Bioscience, The University of Queensland
| | | | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland
| |
Collapse
|