1
|
Agnusdei A, González-García A, Gerin D, Pollastro S, Faretra F, González-Candelas L, Ballester AR. Histone Methyltransferases AcDot1 and AcRmtA Are Involved in Growth Regulation, Secondary Metabolism, and Stress Response in Aspergillus carbonarius. Toxins (Basel) 2025; 17:196. [PMID: 40278694 PMCID: PMC12031602 DOI: 10.3390/toxins17040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Histone post-translational modifications (HPTMs) can affect gene expression by rearranging chromatin structure. Between these, histone methylation is one of the most studied in filamentous fungi, and different conserved domains coding for methyltransferase were found in Aspergillus spp. genomes. In this work, the role of the histone methyltransferases AcDot1 and AcRmtA in the mycotoxigenic fungus Aspergillus carbonarius was investigated, obtaining knockout or overexpression mutants through Agrobacterium tumefaciens-mediated transformation (ATMT). A. carbonarius is responsible for grape-bunch rot, representing the major source of ochratoxin A (OTA) contamination on grapes. In vivo conditions, the deletion of Acdot1 or AcrmtA resulted in upregulation of growth when the isolates were cultivated on a minimal medium. The influence of Acdot1 on the OTA biosynthesis was differently affected by culture conditions. On rich media, an increase in OTA accumulation was observed, while on minimal medium, lower OTA concentrations were reported. The deletion of AcrmtA always resulted in lower OTA accumulation. However, the expression of OTA biosynthesis genes was regulated by both histone methyltransferases. Of the six analyzed OTA genes, three of them showed altered expression in the knockout mutants, and otaB and otaR1 were common between both mutants. Furthermore, both AcDot1 and AcRmtA play a role in oxidative stress response, induced by 1 mM hydrogen peroxide, by modulating growth, conidiation and OTA biosynthesis. Neither the deletion nor the overexpression of the Acdot1 or AcrmtA affected virulence, while both the sporulation and OTA production were negatively affected in vivo by the deletion of AcrmtA.
Collapse
Affiliation(s)
- Angelo Agnusdei
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Giovanni Amendola, 165/A, 70126 Bari, Italy; (A.A.); (S.P.); (F.F.)
| | - Adrián González-García
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (A.G.-G.); (L.G.-C.)
| | - Donato Gerin
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Giovanni Amendola, 165/A, 70126 Bari, Italy; (A.A.); (S.P.); (F.F.)
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Giovanni Amendola, 165/A, 70126 Bari, Italy; (A.A.); (S.P.); (F.F.)
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Giovanni Amendola, 165/A, 70126 Bari, Italy; (A.A.); (S.P.); (F.F.)
| | - Luis González-Candelas
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (A.G.-G.); (L.G.-C.)
| | - Ana-Rosa Ballester
- Institute of Agrochemistry and Food Technology, Spanish Council for Scientific Research (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (A.G.-G.); (L.G.-C.)
| |
Collapse
|
2
|
Cuamatzi-Flores J, Colón-González M, Requena-Romo F, Quiñones-Galeana S, Cervantes-Chávez JA, Morales L. Enhanced oxidative stress resistance in Ustilago maydis and its implications on the virulence. Int Microbiol 2024; 27:1501-1511. [PMID: 38401003 PMCID: PMC11452521 DOI: 10.1007/s10123-024-00489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
The phytopathogenic fungus Ustilago maydis causes corn smut by suppressing host plant defenses, including the oxidative burst response. While many studies have investigated how U. maydis responds to oxidative stress during infection, the consequences of heightened resistance to oxidative stress on virulence remain understudied. This study aimed to identify the effects on virulence in U. maydis strains exhibiting enhanced resistance to hydrogen peroxide (H2O2).To achieve this, we exposed U. maydis SG200 to 20 escalating H2O2 shocks, resulting in an adapted strain resistant to concentrations as high as 60 mM of H2O2, a lethal dose for the initial strain. Genetic analysis of the adapted strain revealed five nucleotide substitutions, two minor copy number variants, and a large amplification event on chromosome nine (1-149 kb) encompassing the sole catalase gene. Overexpressing catalase increased resistance to H2O2; however, this resistance was lower than that observed in the adapted strain. Additionally, virulence was reduced in both strains with enhanced H2O2 resistance.In summary, enhanced H2O2 resistance, achieved through either continuous exposure to the oxidative agent or through catalase overexpression, decreased virulence. This suggests that the response to the oxidative stress burst in U. maydis is optimal and that increasing the resistance to H2O2 does not translate into increased virulence. These findings illuminate the intricate relationship between oxidative stress resistance and virulence in U. maydis, offering insights into its infection mechanisms.
Collapse
Affiliation(s)
- Jorge Cuamatzi-Flores
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, 76230, Querétaro, México.
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, México.
| | - Maritrini Colón-González
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | - Fernanda Requena-Romo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, México
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | - Samuel Quiñones-Galeana
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, México
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, Universidad Nacional Autónoma de México, 76230, Querétaro, México
| | - José Antonio Cervantes-Chávez
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, 76230, Querétaro, México.
| | - Lucia Morales
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, México.
| |
Collapse
|
3
|
Geng Q, Hu J, Xu P, Sun T, Qiu H, Wang S, Song F, Shen L, Li Y, Liu M, Peng X, Tian J, Yang K. The Autophagy-Related Protein ATG8 Orchestrates Asexual Development and AFB1 Biosynthesis in Aspergillus flavus. J Fungi (Basel) 2024; 10:349. [PMID: 38786704 PMCID: PMC11122632 DOI: 10.3390/jof10050349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy, a conserved cellular recycling process, plays a crucial role in maintaining homeostasis under stress conditions. It also regulates the development and virulence of numerous filamentous fungi. In this study, we investigated the specific function of ATG8, a reliable autophagic marker, in the opportunistic pathogen Aspergillus flavus. To investigate the role of atg8 in A. flavus, the deletion and complemented mutants of atg8 were generated according to the homologous recombination principle. Deletion of atg8 showed a significant decrease in conidiation, spore germination, and sclerotia formation compared to the WT and atg8C strains. Additionally, aflatoxin production was found severely impaired in the ∆atg8 mutant. The stress assays demonstrated that ATG8 was important for A. flavus response to oxidative stress. The fluorescence microscopy showed increased levels of reactive oxygen species in the ∆atg8 mutant cells, and the transcriptional result also indicated that genes related to the antioxidant system were significantly reduced in the ∆atg8 mutant. We further found that ATG8 participated in regulating the pathogenicity of A. flavus on crop seeds. These results revealed the biological role of ATG8 in A. flavus, which might provide a potential target for the control of A. flavus and AFB1 biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xue Peng
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (Q.G.); (J.H.); (P.X.); (T.S.); (H.Q.); (S.W.); (F.S.); (L.S.); (Y.L.); (M.L.)
| | - Jun Tian
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (Q.G.); (J.H.); (P.X.); (T.S.); (H.Q.); (S.W.); (F.S.); (L.S.); (Y.L.); (M.L.)
| | - Kunlong Yang
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (Q.G.); (J.H.); (P.X.); (T.S.); (H.Q.); (S.W.); (F.S.); (L.S.); (Y.L.); (M.L.)
| |
Collapse
|
4
|
Gong Y, Li S, Liu Q, Chen F, Shao Y. CRISPR/Cas9 system is a suitable gene targeting editing tool to filamentous fungus Monascus pilosus. Appl Microbiol Biotechnol 2024; 108:154. [PMID: 38240803 PMCID: PMC10799099 DOI: 10.1007/s00253-023-12865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 01/22/2024]
Abstract
Monascus pilosus has been used to produce lipid-lowering drugs rich in monacolin K (MK) for a long period. Genome mining reveals there are still many potential genes worth to be explored in this fungus. Thereby, efficient genetic manipulation tools will greatly accelerate this progress. In this study, we firstly developed the protocol to prepare protoplasts for recipient of CRISPR/Cas9 system. Subsequently, the vector and donor DNA were co-transformed into recipients (106 protoplasts/mL) to produce 60-80 transformants for one test. Three genes (mpclr4, mpdot1, and mplig4) related to DNA damage response (DDR) were selected to compare the gene replacement frequencies (GRFs) of Agrobacterium tumefaciens-mediated transformation (ATMT) and CRISPR/Cas9 gene editing system (CGES) in M. pilosus MS-1. The results revealed that GRF of CGES was approximately five times greater than that of ATMT, suggesting that CGES was superior to ATMT as a targeting gene editing tool in M. pilosus MS-1. The inactivation of mpclr4 promoted DDR via the non-homologous end-joining (NHEJ) and increased the tolerances to DNA damaging agents. The inactivation of mpdot1 blocked DDR and led to the reduced tolerances to DNA damaging agents. The inactivation of mplig4 mainly blocked the NHEJ pathway and led to obviously reduced tolerances to DNA damaging agents. The submerged fermentation showed that the ability to produce MK in strain Δmpclr4 was improved by 52.6% compared to the wild type. This study provides an idea for more effective exploration of gene functions in Monascus strains. KEY POINTS: • A protocol of high-quality protoplasts for CGES has been developed in M. pilosus. • The GRF of CGES was about five times that of ATMT in M. pilosus. • The yield of MK for Δmpclr4 was enhanced by 52.6% compared with the wild type.
Collapse
Affiliation(s)
- Yunxia Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengfa Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianrui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Gong Y, Li S, Zhou Y, Chen F, Shao Y. Histone lysine methyltransferases MpDot1 and MpSet9 are involved in the production of lovastatin and MonAzPs by histone crosstalk modification. Int J Biol Macromol 2024; 255:128208. [PMID: 37979745 DOI: 10.1016/j.ijbiomac.2023.128208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Increasing data suggested that histone methylation modification plays an important role in regulating biosynthesis of secondary metabolites (SMs). Monascus spp. have been applied to produce hypolipidemic drug lovastatin (also called monacolin K, MK) and edible Monascus-type azaphilone pigments (MonAzPs). However, little is known about how histone methylation regulates MK and MonAzPs. In this study, we constructed H3K9 methyltransferase deletion strain ΔMpDot1 and H4K20 methyltransferase deletion strain ΔMpSet9 using Monascus pilosus MS-1 as the parent. The result showed that deletion of MpDot1 reduced the production of MK and MonAzPs, and deletion of MpSet9 increased MonAzPs production. Real-time quantitative PCR (RT-qPCR) showed inactivation of mpdot1 and mpset9 disturbed the expression of genes responsible for the biosynthesis of MK and MonAzPs. Western blot suggested that deletion of MpDot1 reduced H3K79me and H4K16ac, and deletion of MpSet9 decreased H4K20me3 and increased H4pan acetylation. Chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) showed ΔMpDot1 strain and ΔMpSet9 strain reduced the enrichment of H3K79me2 and H4K20me3 in the promoter regions of key genes for MK and MonAzPs biosynthesis, respectively. These results suggested that MpDot1 and MpSet9 affected the synthesis of SMs by regulating gene transcription and histone crosstalk, providing alternative approach for regulation of lovastatin and MonAzPs.
Collapse
Affiliation(s)
- Yunxia Gong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengfa Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youxiang Zhou
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Yu W, Pei R, Zhou J, Zeng B, Tu Y, He B. Molecular regulation of fungal secondary metabolism. World J Microbiol Biotechnol 2023; 39:204. [PMID: 37209190 DOI: 10.1007/s11274-023-03649-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Many bioactive secondary metabolites synthesized by fungi have important applications in many fields, such as agriculture, food, medical and others. The biosynthesis of secondary metabolites is a complex process involving a variety of enzymes and transcription factors, which are regulated at different levels. In this review, we describe our current understanding on molecular regulation of fungal secondary metabolite biosynthesis, such as environmental signal regulation, transcriptional regulation and epigenetic regulation. The effects of transcription factors on the secondary metabolites produced by fungi were mainly introduced. It was also discussed that new secondary metabolites could be found in fungi and the production of secondary metabolites could be improved. We also highlight the importance of understanding the molecular regulation mechanisms to activate silent secondary metabolites and uncover their physiological and ecological functions. By comprehensively understanding the regulatory mechanisms involved in secondary metabolite biosynthesis, we can develop strategies to improve the production of these compounds and maximize their potential benefits.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Jingyi Zhou
- Zhanjiang Preschool Education College, Zhanjiang, 524084, Guangdong, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518000, Guangdong, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
7
|
Unraveling the Gene Regulatory Networks of the Global Regulators VeA and LaeA in Aspergillus nidulans. Microbiol Spectr 2023:e0016623. [PMID: 36920196 PMCID: PMC10101098 DOI: 10.1128/spectrum.00166-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
In the filamentous fungus Aspergillus nidulans, the velvet family protein VeA and the global regulator of secondary metabolism LaeA govern development and secondary metabolism mostly by acting as the VelB/VeA/LaeA heterotrimeric complex. While functions of these highly conserved controllers have been well studied, the genome-wide regulatory networks governing cellular and chemical development remain to be uncovered. Here, by integrating transcriptomic analyses, protein-DNA interactions, and the known A. nidulans gene/protein interaction data, we have unraveled the gene regulatory networks governed by VeA and LaeA. Within the networks, VeA and LaeA directly control the expression of numerous genes involved in asexual/sexual development and primary/secondary metabolism in A. nidulans. Totals of 3,190 and 1,834 potential direct target genes of VeA and LaeA were identified, respectively, including several important developmental and metabolic regulators such as flbA·B·C, velB·C, areA, mpkB, and hogA. Moreover, by analyzing over 8,800 ChIP-seq peaks, we have revealed the predicted common consensus sequences 5'-TGATTGGCTG-3' and 5'-TCACGTGAC-3' that VeA and LaeA might bind to interchangeably. These findings further expand the biochemical and genomic studies of the VelB/VeA/LaeA complex functionality in the gene regulation. In summary, this study unveils genes that are under the regulation of VeA and LaeA, proposes the VeA- and LaeA-mediated gene regulatory networks, and demonstrates their genome-wide developmental and metabolic regulations in A. nidulans. IMPORTANCE Fungal development and metabolism are genetically programmed events involving specialized cellular differentiation, cellular communication, and temporal and spatial regulation of gene expression. In genus Aspergillus, the global regulators VeA and LaeA govern developmental and metabolic processes by affecting the expression of downstream genes, including multiple transcription factors and signaling elements. Due to their vital roles in overall biology, functions of VeA and LaeA have been extensively studied, but there still has been a lack of knowledge about their genome-wide regulatory networks. In this study, employing the model fungus A. nidulans, we have identified direct targets of VeA and LaeA and their gene regulatory networks by integrating transcriptome, protein-DNA interaction, and protein-protein interaction analyses. Our results demonstrate the genome-wide regulatory mechanisms of these global regulators, thereby advancing the knowledge of fungal biology and genetics.
Collapse
|
8
|
Li Y, Song Z, Wang E, Dong L, Bai J, Wang D, Zhu J, Zhang C. Potential antifungal targets based on histones post-translational modifications against invasive aspergillosis. Front Microbiol 2022; 13:980615. [PMID: 36016791 PMCID: PMC9395700 DOI: 10.3389/fmicb.2022.980615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
As a primary cause of death in patients with hematological malignancies and transplant recipients, invasive aspergillosis (IA) is a condition that warrants attention. IA infections have been increasing, which remains a significant cause of morbidity and mortality in immunocompromised patients. During the past decade, antifungal drug resistance has emerged, which is especially concerning for management given the limited options for treating azole-resistant infections and the possibility of failure of prophylaxis in those high-risk patients. Histone posttranslational modifications (HPTMs), mainly including acetylation, methylation, ubiquitination and phosphorylation, are crucial epigenetic mechanisms regulating various biological events, which could modify the conformation of histone and influence chromatin-associated nuclear processes to regulate development, cellular responsiveness, and biological phenotype without affecting the underlying genetic sequence. In recent years, fungi have become important model organisms for studying epigenetic regulation. HPTMs involves in growth and development, secondary metabolite biosynthesis and virulence in Aspergillus. This review mainly aims at summarizing the acetylation, deacetylation, methylation, demethylation, and sumoylation of histones in IA and connect this knowledge to possible HPTMs-based antifungal drugs. We hope this research could provide a reference for exploring new drug targets and developing low-toxic and high-efficiency antifungal strategies.
Collapse
Affiliation(s)
- Yiman Li
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhihui Song
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ente Wang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liming Dong
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jie Bai
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dong Wang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jinyan Zhu
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chao Zhang,
| |
Collapse
|
9
|
Yang K, Tian J, Keller NP. Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review. Environ Microbiol 2022; 24:2857-2881. [PMID: 35645150 PMCID: PMC9545273 DOI: 10.1111/1462-2920.16034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022]
Abstract
Post‐translational modifications (PTMs) are important for protein function and regulate multiple cellular processes and secondary metabolites (SMs) in fungi. Aspergillus species belong to a genus renown for an abundance of bioactive secondary metabolites, many important as toxins, pharmaceuticals and in industrial production. The genes required for secondary metabolites are typically co‐localized in biosynthetic gene clusters (BGCs), which often localize in heterochromatic regions of genome and are ‘turned off’ under laboratory condition. Efforts have been made to ‘turn on’ these BGCs by genetic manipulation of histone modifications, which could convert the heterochromatic structure to euchromatin. Additionally, non‐histone PTMs also play critical roles in the regulation of secondary metabolism. In this review, we collate the known roles of epigenetic and PTMs on Aspergillus SM production. We also summarize the proteomics approaches and bioinformatics tools for PTM identification and prediction and provide future perspectives on the emerging roles of PTM on regulation of SM biosynthesis in Aspergillus and other fungi.
Collapse
Affiliation(s)
- Kunlong Yang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53705, USA
| |
Collapse
|
10
|
Lai Y, Wang L, Zheng W, Wang S. Regulatory Roles of Histone Modifications in Filamentous Fungal Pathogens. J Fungi (Basel) 2022; 8:565. [PMID: 35736048 PMCID: PMC9224773 DOI: 10.3390/jof8060565] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungal pathogens have evolved diverse strategies to infect a variety of hosts including plants and insects. The dynamic infection process requires rapid and fine-tuning regulation of fungal gene expression programs in response to the changing host environment and defenses. Therefore, transcriptional reprogramming of fungal pathogens is critical for fungal development and pathogenicity. Histone post-translational modification, one of the main mechanisms of epigenetic regulation, has been shown to play an important role in the regulation of gene expressions, and is involved in, e.g., fungal development, infection-related morphogenesis, environmental stress responses, biosynthesis of secondary metabolites, and pathogenicity. This review highlights recent findings and insights into regulatory mechanisms of histone methylation and acetylation in fungal development and pathogenicity, as well as their roles in modulating pathogenic fungi-host interactions.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilu Zheng
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Bind S, Bind S, Sharma AK, Chaturvedi P. Epigenetic Modification: A Key Tool for Secondary Metabolite Production in Microorganisms. Front Microbiol 2022; 13:784109. [PMID: 35495688 PMCID: PMC9043899 DOI: 10.3389/fmicb.2022.784109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are stupendous source of secondary metabolites, having significant pharmaceutical and industrial importance. Genome mining has led to the detection of several cryptic metabolic pathways in the natural producer of secondary metabolites (SMs) such as actinobacteria and fungi. Production of these bioactive compounds in considerable amount is, however, somewhat challenging. This led to the search of using epigenetics as a key mechanism to alter the expression of genes that encode the SMs toward higher production in microorganisms. Epigenetics is defined as any heritable change without involving the changes in the underlying DNA sequences. Epigenetic modifications include chromatin remodeling by histone posttranslational modifications, DNA methylation, and RNA interference. Biosynthetic gene cluster for SMs remains in heterochromatin state in which the transcription of constitutive gene is regulated by epigenetic modification. Therefore, small-molecule epigenetic modifiers, which promote changes in the structure of chromatin, could control the expression of silent genes and may be rationally employed for discovery of novel bioactive compounds. This review article focuses on the types of epigenetic modifications and their impact on gene expression for enhancement of SM production in microorganisms.
Collapse
Affiliation(s)
- Sudha Bind
- Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Sandhya Bind
- Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - A K Sharma
- Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Preeti Chaturvedi
- Department of Biological Sciences, CBSH, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| |
Collapse
|
12
|
Jia K, Yan L, Jia Y, Xu S, Yan Z, Wang S. aflN Is Involved in the Biosynthesis of Aflatoxin and Conidiation in Aspergillus flavus. Toxins (Basel) 2021; 13:toxins13110831. [PMID: 34822615 PMCID: PMC8617700 DOI: 10.3390/toxins13110831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aspergillus flavus poses a threat to society economy and public health due to aflatoxin production. aflN is a gene located in the aflatoxin gene cluster, but the function of AflN is undefined in Aspergillus flavus. In this study, aflN is knocked out and overexpressed to study the function of AflN. The results indicated that the loss of AflN leads to the defect of aflatoxin biosynthesis. AflN is also found to play a role in conidiation but not hyphal growth and sclerotia development. Moreover, AlfN is related to the response to environmental oxidative stress and intracellular levels of reactive oxygen species. At last, AflN is involved in the pathogenicity of Aspergillus flavus to host. These results suggested that AflN played important roles in aflatoxin biosynthesis, conidiation and reactive oxygen species generation in Aspergillus flavus, which will be helpful for the understanding of aflN function, and will be beneficial to the prevention and control of Aspergillus flavus and aflatoxins contamination.
Collapse
|
13
|
Updates on the Functions and Molecular Mechanisms of the Genes Involved in Aspergillus flavus Development and Biosynthesis of Aflatoxins. J Fungi (Basel) 2021; 7:jof7080666. [PMID: 34436205 PMCID: PMC8401812 DOI: 10.3390/jof7080666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Aspergillus flavus (A. flavus) is a ubiquitous and opportunistic fungal pathogen that causes invasive and non-invasive aspergillosis in humans and animals. This fungus is also capable of infecting a large number of agriculture crops (e.g., peanuts, maze, cotton seeds, rice, etc.), causing economic losses and posing serious food-safety concerns when these crops are contaminated with aflatoxins, the most potent naturally occurring carcinogens. In particular, A. flavus and aflatoxins are intensely studied, and they continue to receive considerable attention due to their detrimental effects on humans, animals, and crops. Although several studies have been published focusing on the biosynthesis of the aforementioned secondary metabolites, some of the molecular mechanisms (e.g., posttranslational modifications, transcription factors, transcriptome, proteomics, metabolomics and transcriptome, etc.) involved in the fungal development and aflatoxin biosynthesis in A. flavus are still not fully understood. In this study, a review of the recently published studies on the function of the genes and the molecular mechanisms involved in development of A. flavus and the production of its secondary metabolites is presented. It is hoped that the information provided in this review will help readers to develop effective strategies to reduce A. flavus infection and aflatoxin production.
Collapse
|
14
|
Ssu72 Regulates Fungal Development, Aflatoxin Biosynthesis and Pathogenicity in Aspergillus flavus. Toxins (Basel) 2020; 12:toxins12110717. [PMID: 33202955 PMCID: PMC7696088 DOI: 10.3390/toxins12110717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
The RNA polymerase II (Pol II) transcription process is coordinated by the reversible phosphorylation of its largest subunit-carboxy terminal domain (CTD). Ssu72 is identified as a CTD phosphatase with specificity for phosphorylation of Ser5 and Ser7 and plays critical roles in regulation of transcription cycle in eukaryotes. However, the biofunction of Ssu72 is still unknown in Aspergillus flavus, which is a plant pathogenic fungus and produces one of the most toxic mycotoxins-aflatoxin. Here, we identified a putative phosphatase Ssu72 and investigated the function of Ssu72 in A. flavus. Deletion of ssu72 resulted in severe defects in vegetative growth, conidiation and sclerotia formation. Additionally, we found that phosphatase Ssu72 positively regulates aflatoxin production through regulating expression of aflatoxin biosynthesis cluster genes. Notably, seeds infection assays indicated that phosphatase Ssu72 is crucial for pathogenicity of A. flavus. Furthermore, the Δssu72 mutant exhibited more sensitivity to osmotic and oxidative stresses. Taken together, our study suggests that the putative phosphatase Ssu72 is involved in fungal development, aflatoxin production and pathogenicity in A. flavus, and may provide a novel strategy to prevent the contamination of this pathogenic fungus.
Collapse
|
15
|
Zhu Z, Yang M, Bai Y, Ge F, Wang S. Antioxidant-related catalase CTA1 regulates development, aflatoxin biosynthesis, and virulence in pathogenic fungus Aspergillus flavus. Environ Microbiol 2020; 22:2792-2810. [PMID: 32250030 DOI: 10.1111/1462-2920.15011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) induce the synthesis of a myriad of secondary metabolites, including aflatoxins. It raises significant concern as it is a potent environmental contaminant. In Aspergillus flavus., antioxidant enzymes link ROS stress response with coordinated gene regulation of aflatoxin biosynthesis. In this study, we characterized the function of a core component of the antioxidant enzyme catalase (CTA1) of A. flavus. Firstly, we verified the presence of cta1 corresponding protein (CTA1) by Western blot analysis and mass-spectrometry based analysis. Then, the functional study revealed that the growth, sporulation and sclerotia formation significantly increased, while aflatoxins production and virulence were decreased in the cta1 deletion mutant as compared with the WT and complementary strains. Furthermore, the absence of the cta1 gene resulted in a significant rise in the intracellular ROS level, which in turn added to the oxidative stress level of cells. A further quantitative proteomics investigation hinted that in vivo, CTA1 might maintain the ROS level to facilitate the aflatoxin synthesis. All in all, the pleiotropic phenotype of A. flavus CTA1 deletion mutant revealed that the antioxidant system plays a crucial role in fungal development, aflatoxins biosynthesis and virulence.
Collapse
Affiliation(s)
- Zhuo Zhu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingkun Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Youhuang Bai
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
16
|
Epigenetic manipulation of filamentous fungi for biotechnological applications: a systematic review. Biotechnol Lett 2020; 42:885-904. [PMID: 32246346 DOI: 10.1007/s10529-020-02871-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/21/2020] [Indexed: 01/11/2023]
Abstract
The study of the epigenetic regulation of gene function has reached pivotal importance in life sciences in the last decades. The mechanisms and effects of processes such as DNA methylation, histone posttranslational modifications and non-coding RNAs, as well as their impact on chromatin structure and dynamics, are clearly involved in physiology homeostasis in plants, animals and microorganisms. In the fungal kingdom, studies on the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe contributed enormously to the elucidation of the eukaryote epigenetic landscape. Epigenetic regulation plays a central role in the expression of virulence attributes of human pathogens such as Candida albicans. In this article, we review the most recent studies on the effects of drugs capable of altering epigenetic states and on the impact of chromatin structure-related genes deletion in filamentous fungi. Emphasis is given on plant and insect pathogens, endophytes, secondary metabolites and cellulases/xylanases producing species.
Collapse
|
17
|
Li Y, Hu Y, Zhao K, Pan Y, Qu Y, Zhao J, Qin Y. The Indispensable Role of Histone Methyltransferase PoDot1 in Extracellular Glycoside Hydrolase Biosynthesis of Penicillium oxalicum. Front Microbiol 2019; 10:2566. [PMID: 31787956 PMCID: PMC6853848 DOI: 10.3389/fmicb.2019.02566] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Histone methylation is associated with transcription regulation, but its role for glycoside hydrolase (GH) biosynthesis is still poorly understood. We identified the histone H3 lysine 79 (H3K79)-specific methyltransferase PoDot1 in Penicillium oxalicum. PoDot1 affects conidiation by regulating the transcription of key regulators (BrlA, FlbC, and StuA) of asexual development and is required in normal hyphae septum and branch formation by regulating the transcription of five septin-encoding genes, namely, aspA, aspB, aspC, aspD, and aspE. Tandem affinity purification/mass spectrometry showed that PoDot1 has no direct interaction with transcription machinery, but it affects the expressions of extracellular GH genes extensively. The expression of genes (amy15A, amy13A, cel7A/cbh1, cel61A, chi18A, cel3A/bgl1, xyn10A, cel7B/eg1, cel5B/eg2, and cel6A/cbh2) that encode the top 10 GHs was remarkably downregulated by Podot1 deletion (ΔPodot1). Consistent with the decrease in gene transcription level, the activities of amylases and cellulases were significantly decreased in ΔPodot1 mutants in agar (solid) and fermentation (liquid) media. The repression of GH gene expressions caused by PoDot1 deletion was not mediated by key transcription factors, such as AmyR, ClrB, CreA, and XlnR, but was accompanied by defects in global demethylated H3K79 (H3K79me2) and trimethylated H3K79 (H3K79me3). The impairment of H3K79me2 on specific GH gene loci was observed due to PoDot1 deletion. The results implies that defects of H3K79 methylation is the key reason of the downregulated transcription level of GH-encoding genes and reveals the indispensable role of PoDot1 in extracellular GH biosynthesis.
Collapse
Affiliation(s)
- Yanan Li
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,College of Life Sciences, Henan Agricultural University, Zhengzhou, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yueyan Hu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Kaili Zhao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yunjun Pan
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yinbo Qu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Jian Zhao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
18
|
Yang G, Yue Y, Ren S, Yang M, Zhang Y, Cao X, Wang Y, Zhang J, Ge F, Wang S. Lysine acetylation contributes to development, aflatoxin biosynthesis and pathogenicity in
Aspergillus flavus. Environ Microbiol 2019; 21:4792-4807. [DOI: 10.1111/1462-2920.14825] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Guang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| | - Yuewei Yue
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| | - Silin Ren
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| | - Mingkun Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Biopesticide and Chemical Biology of Education MinistrySchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
| | - Yi Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Biopesticide and Chemical Biology of Education MinistrySchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| | - Xiaohong Cao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Biopesticide and Chemical Biology of Education MinistrySchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| | - Yinchun Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Biopesticide and Chemical Biology of Education MinistrySchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| | - Jia Zhang
- Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of HydrobiologyChinese Academy of Sciences Wuhan China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian ProvinceSchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Biopesticide and Chemical Biology of Education MinistrySchool of Life Sciences, Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
19
|
Ning M, Zhang S, Xie Y, Wang W, Gao Y. Aflatoxin B
1
removal by three bacterial strains and optimization of fermentation process parameters. Biotechnol Appl Biochem 2019; 66:930-938. [DOI: 10.1002/bab.1807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Mengge Ning
- School of Food Science and TechnologyHenan Key Laboratory of Cereal and Oil Food Safety Inspection and ControlHenan University of Technology Zhengzhou Henan People ’s Republic of China
| | - Shujie Zhang
- College of Life SciencesHenan Normal University Xinxiang Henan People ’s Republic of China
| | - Yanli Xie
- School of Food Science and TechnologyHenan Key Laboratory of Cereal and Oil Food Safety Inspection and ControlHenan University of Technology Zhengzhou Henan People ’s Republic of China
| | - Wei Wang
- School of Food Science and TechnologyHenan Key Laboratory of Cereal and Oil Food Safety Inspection and ControlHenan University of Technology Zhengzhou Henan People ’s Republic of China
| | - Yajun Gao
- School of Food Science and TechnologyHenan Key Laboratory of Cereal and Oil Food Safety Inspection and ControlHenan University of Technology Zhengzhou Henan People ’s Republic of China
| |
Collapse
|
20
|
Elías-Villalobos A, Barrales RR, Ibeas JI. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genet Biol 2019; 129:52-64. [PMID: 30980908 DOI: 10.1016/j.fgb.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Adaptation to the environment is a requirement for the survival of every organism. For pathogenic fungi this also implies coping with the different conditions that occur during the infection cycle. After detecting changes to external media, organisms must modify their gene expression patterns in order to accommodate the new circumstances. Control of gene expression is a complex process that involves the coordinated action of multiple regulatory elements. Chromatin modification is a well-known mechanism for controlling gene expression in response to environmental changes in all eukaryotes. In pathogenic fungi, chromatin modifications are known to play crucial roles in controlling host interactions and their virulence capacity, yet little is known about the specific genes they directly target and to which signals they respond. The smut fungus Ustilago maydis is an excellent model system in which multiple molecular and cellular approaches are available to study biotrophic interactions. Many target genes regulated during the infection process have been well studied, however, how they are controlled and specifically how chromatin modifications affect gene regulation in the context of infection is not well known in this organism. Here, we analyse the presence of chromatin modifying enzymes and complexes in U. maydis and discuss their putative roles in this plant pathogen in the context of findings from other organisms, including other plant pathogens such as Magnaporthe oryzae and Fusarium graminearum. We propose U. maydis as a remarkable organism with interesting chromatin features, which would allow finding new functions of chromatin modifications during plant pathogenesis.
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237-Centre National de la Recherche Scientifique-Université de Montpellier, Montpellier, France.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain.
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
| |
Collapse
|
21
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
22
|
Bai W, Feng T, Lan F, Lin G, Li Y, Fasoyin OE, Liu Y, Jia K. Study on the bio-function of lipA gene in Aspergillus flavus. Genes Genomics 2018; 41:107-111. [PMID: 30264213 DOI: 10.1007/s13258-018-0744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
Lipoic acid synthase (LipA) plays a role in lipoic acid synthesis and potentially affects the levels of acetyl-CoA, the critical precursor of tricarboxylic acid (TCA) cycle. Considering the potential effect of LipA on TCA cycle, whether the enzyme is involved in the growth and aflatoxin B1 (AFB1) biosynthesis, the significant events in Aspergillus flavus is yet known. The study was designed to explore the role of lipA gene in A. flavus, including growth rate, conidiation, sclerotia formation, and biosynthesis of AFB1. LipA coding lipoic acid synthetase was knocked out using homologous recombination. The role of lipA gene in A. flavus morphogenesis (including colony size, conidiation, and sclerotia formation) was explored on various media, and the bio-function of lipA gene in the biosynthesis of AFB1 was analyzed by thin layer chromatography analysis. The growth was suppressed in △lipA. The formation of conidia and sclerotia was also reduced when lipA gene was deleted. Moreover, AFB1 was down-regulated in ΔlipA compared with WT controls. LipA plays a role in the development of A. flavus and AFB1 biosynthesis, contributing to the full understanding of the lipA bio-function in A. flavus.
Collapse
Affiliation(s)
- Wenzhao Bai
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Tiejun Feng
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Faxiu Lan
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guanglan Lin
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Li
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Opemipo Esther Fasoyin
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaju Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kunzhi Jia
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|