1
|
Cao S, Ren X, Zhang G, Wang H, Wei B, Niu C. Gut microbiota metagenomics and mediation of phenol degradation in Bactrocera minax (Diptera, Tephritidae). PEST MANAGEMENT SCIENCE 2024; 80:3935-3944. [PMID: 38520323 DOI: 10.1002/ps.8096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Gut microbiota mediating insect-plant interactions have many manifestations, either by provisioning missing nutrients, or by overcoming plant defensive reactions. However, the mechanism by which gut microbiota empower insects to survive by overcoming a variety of plant secondary metabolites remains largely unknown. Bactrocera minax larvae develop in immature citrus fruits, which present numerous phenolic compounds that challenge the larvae. To explore the role of gut microbes in host use and adaptability, we uncovered the mechanisms of phenol degradation by gut microbes using metagenomic and metatranscriptomic analyses, and verified the degradation ability of isolated and cultured bacteria. Research on this subject can help develop potential strain for the environmental friendly pest management operations. RESULTS We demonstrated the ability of gut microbes in B. minax larvae to degrade phenols in unripe citrus. After antibiotic treatment, coniferyl alcohol and coumaric aldehyde significantly reduced the survival rate, body length and body weight of the larvae. The metagenomic and metatranscriptomic analyses in B. minax provided evidence for the presence of genes in bacteria and the related pathway involved in phenol degradation. Among them, Enterococcus faecalis and Serratia marcescens, isolated from the gut of B. minax larvae, played critical roles in phenol degradation. Furthermore, supplementation of E. faecalis and S. marcescens in artificial diets containing coniferyl alcohol and coumaric aldehyde increased the survival rate of larvae. CONCLUSION In summary, our results provided the first comprehensive analysis of gut bacterial communities by high-throughput sequencing and elucidated the role of bacteria in phenol degradation in B. minax, which shed light on the mechanism underlying specialist insect adaption to host secondary metabolites via gut bacteria. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuai Cao
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueming Ren
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Guijian Zhang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Bingbing Wei
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Erkoc P, Schiffmann S, Ulshöfer T, Henke M, Marner M, Krämer J, Predel R, Schäberle TF, Hurka S, Dersch L, Vilcinskas A, Fürst R, Lüddecke T. Determining the pharmacological potential and biological role of linear pseudoscorpion toxins via functional profiling. iScience 2024; 27:110209. [PMID: 39021791 PMCID: PMC11253529 DOI: 10.1016/j.isci.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/24/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Arthropod venoms contain bioactive molecules attractive for biomedical applications. However, few of these have been isolated, and only a tiny number has been characterized. Pseudoscorpions are small arachnids whose venom has been largely overlooked. Here, we present the first structural and functional assessment of the checacin toxin family, discovered in the venom of the house pseudoscorpion (Chelifer cancroides). We combined in silico and in vitro analyses to establish their bioactivity profile against microbes and various cell lines. This revealed inhibitory effects against bacteria and fungi. We observed cytotoxicity against specific cell types and effects involving second messengers. Our work provides insight into the biomedical potential and evolution of pseudoscorpion venoms. We propose that plesiotypic checacins evolved to defend the venom gland against infection, whereas apotypic descendants evolved additional functions. Our work highlights the importance of considering small and neglected species in biodiscovery programs.
Collapse
Affiliation(s)
- Pelin Erkoc
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, 60438 Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Susanne Schiffmann
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt, Germany
| | - Thomas Ulshöfer
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt, Germany
| | - Marina Henke
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), 60596 Frankfurt, Germany
| | - Michael Marner
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| | - Jonas Krämer
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Reinhard Predel
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| | - Till F. Schäberle
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sabine Hurka
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| | - Ludwig Dersch
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Robert Fürst
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Pharmaceutical Biology, Department of Pharmacy – Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Tim Lüddecke
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Branch of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), 35392 Giessen, Germany
| |
Collapse
|
3
|
Wang Y, Guo S, Ventura T, Jain R, Robinson KE, Mitter N, Herzig V. Development of a soybean leaf disc assay for determining oral insecticidal activity in the lepidopteran agricultural pest Helicoverpa armigera. Toxicon 2024; 238:107588. [PMID: 38147939 DOI: 10.1016/j.toxicon.2023.107588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
Pest insects pose a heavy burden on global agricultural industries with small molecule insecticides being predominantly used for their control. Unwanted side effects and resistance development plagues most small molecule insecticides such as the neonicotinoids, which have been reported to be harmful to honeybees. Bioinsecticides like Bacillus thuringiensis (Bt) toxins can be used as environmentally-friendly alternatives. Arachnid venoms comprise another promising source of bioinsecticides, containing a multitude of selective and potent insecticidal toxins. Unfortunately, no standardised insect models are currently available to assess the suitability of insecticidal agents under laboratory conditions. Thus, we aimed to develop a laboratory model that closely mimics field conditions by employing a leaf disk assay (LDA) for oral application of insecticidal agents in a bioassay tray format. Neonate larvae of the cotton bollworm (Helicoverpa armigera) were fed with soybean (Glycine max) leaves that were treated with different insecticidal agents. We observed dose-dependent insecticidal effects for Bt toxin and the neonicotinoid insecticide imidacloprid, with imidacloprid exhibiting a faster response. Furthermore, we identified several insecticidal arachnid venoms that were active when co-applied with sub-lethal doses of Bt toxin. We propose the H. armigera LDA as a suitable tool for assessing the insecticidal effects of insecticidal agents against lepidopterans.
Collapse
Affiliation(s)
- Yachen Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Shaodong Guo
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Ritesh Jain
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Karl E Robinson
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
| |
Collapse
|
4
|
Unraveling the Role of Antimicrobial Peptides in Insects. Int J Mol Sci 2023; 24:ijms24065753. [PMID: 36982826 PMCID: PMC10059942 DOI: 10.3390/ijms24065753] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short, mainly positively charged, amphipathic molecules. AMPs are important effectors of the immune response in insects with a broad spectrum of antibacterial, antifungal, and antiparasitic activity. In addition to these well-known roles, AMPs exhibit many other, often unobvious, functions in the host. They support insects in the elimination of viral infections. AMPs participate in the regulation of brain-controlled processes, e.g., sleep and non-associative learning. By influencing neuronal health, communication, and activity, they can affect the functioning of the insect nervous system. Expansion of the AMP repertoire and loss of their specificity is connected with the aging process and lifespan of insects. Moreover, AMPs take part in maintaining gut homeostasis, regulating the number of endosymbionts as well as reducing the number of foreign microbiota. In turn, the presence of AMPs in insect venom prevents the spread of infection in social insects, where the prey may be a source of pathogens.
Collapse
|
5
|
Lüddecke T, Paas A, Harris RJ, Talmann L, Kirchhoff KN, Billion A, Hardes K, Steinbrink A, Gerlach D, Fry BG, Vilcinskas A. Venom biotechnology: casting light on nature's deadliest weapons using synthetic biology. Front Bioeng Biotechnol 2023; 11:1166601. [PMID: 37207126 PMCID: PMC10188951 DOI: 10.3389/fbioe.2023.1166601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Venoms are complex chemical arsenals that have evolved independently many times in the animal kingdom. Venoms have attracted the interest of researchers because they are an important innovation that has contributed greatly to the evolutionary success of many animals, and their medical relevance offers significant potential for drug discovery. During the last decade, venom research has been revolutionized by the application of systems biology, giving rise to a novel field known as venomics. More recently, biotechnology has also made an increasing impact in this field. Its methods provide the means to disentangle and study venom systems across all levels of biological organization and, given their tremendous impact on the life sciences, these pivotal tools greatly facilitate the coherent understanding of venom system organization, development, biochemistry, and therapeutic activity. Even so, we lack a comprehensive overview of major advances achieved by applying biotechnology to venom systems. This review therefore considers the methods, insights, and potential future developments of biotechnological applications in the field of venom research. We follow the levels of biological organization and structure, starting with the methods used to study the genomic blueprint and genetic machinery of venoms, followed gene products and their functional phenotypes. We argue that biotechnology can answer some of the most urgent questions in venom research, particularly when multiple approaches are combined together, and with other venomics technologies.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- *Correspondence: Tim Lüddecke,
| | - Anne Paas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Richard J. Harris
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Biosciences (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Lea Talmann
- Syngenta Crop Protection, Stein, Switzerland
| | - Kim N. Kirchhoff
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - André Billion
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Giessen, Germany
| | - Antje Steinbrink
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| | - Doreen Gerlach
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
6
|
Wang W, Xiao G, Du G, Chang L, Yang Y, Ye J, Chen B. Glutamicibacter halophytocola-mediated host fitness of potato tuber moth on Solanaceae crops. PEST MANAGEMENT SCIENCE 2022; 78:3920-3930. [PMID: 35484875 DOI: 10.1002/ps.6955] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The potato tuber moth (PTM), Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), is a destructive pest of Solanaceae crops worldwide. α-solanine and α-chaconine are toxic steroidal glycoalkaloids (SGAs) in Solanaceae crops and are most abundant in potatoes (Solanum tuberosum L.), accounting for more than 95% of the total SGAs. PTM grows on potatoes with a higher concentration of SGAs. Gut bacteria play an important role in the physiology and behavior of insects. To understand the role of gut bacteria of PTM in host adaptability, we isolated and identified major SGA (α-chaconine and α-solanine)-degrading gut bacteria in the gut of PTM by a selective medium and analyzed their degradability and degradation mechanism. RESULTS The gut Glutamicibacter halophytocola S2 of PTM with high degradation capacity to α-solanine and α-chaconine were detected by liquid chromatography mass spectrometry (LC-MS) and identified by morphological and 16S rRNA gene sequence analysis. A gene cluster involving α-rhamnosidases, β-glucosidases, and β-galactosidases was identified by whole-genome sequencing of G. halophytocola S2. These genes had higher expression on the α-solanine medium. PTM inoculated with the isolated G. halophytocola S2 obtained higher fitness than antibiotic-treated PTM. CONCLUSION The G. halophytocola S2 in the gut of PTM could degrade the major toxic α-solanine and α-chaconine in potatoes. This enhances the fitness of PTM feeding on potatoes with high SGA contents. The results provide a theoretical foundation for the integrated pest management of PTM and provide an effective strain for the treatment of α-solanine and α-chaconine in potato food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenqian Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guanli Xiao
- College of Agriculture & Biology Technology, Yunnan Agricultural University, Kunming, China
| | - Guangzu Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Lvshu Chang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yun Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jvhui Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Bin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
Krämer J, Lüddecke T, Marner M, Maiworm E, Eichberg J, Hardes K, Schäberle TF, Vilcinskas A, Predel R. Antimicrobial, Insecticidal and Cytotoxic Activity of Linear Venom Peptides from the Pseudoscorpion Chelifer cancroides. Toxins (Basel) 2022; 14:58. [PMID: 35051034 PMCID: PMC8778599 DOI: 10.3390/toxins14010058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Linear cationic venom peptides are antimicrobial peptides (AMPs) that exert their effects by damaging cell membranes. These peptides can be highly specific, and for some, a significant therapeutic value was proposed, in particular for treatment of bacterial infections. A prolific source of novel AMPs are arthropod venoms, especially those of hitherto neglected groups such as pseudoscorpions. In this study, we describe for the first time pharmacological effects of AMPs discovered in pseudoscorpion venom. We examined the antimicrobial, cytotoxic, and insecticidal activity of full-length Checacin1, a major component of the Chelifer cancroides venom, and three truncated forms of this peptide. The antimicrobial tests revealed a potent inhibitory activity of Checacin1 against several bacteria and fungi, including methicillin resistant Staphylococcus aureus (MRSA) and even Gram-negative pathogens. All peptides reduced survival rates of aphids, with Checacin1 and the C-terminally truncated Checacin11-21 exhibiting effects comparable to Spinosad, a commercially used pesticide. Cytotoxic effects on mammalian cells were observed mainly for the full-length Checacin1. All tested peptides might be potential candidates for developing lead structures for aphid pest treatment. However, as these peptides were not yet tested on other insects, aphid specificity has not been proven. The N- and C-terminal fragments of Checacin1 are less potent against aphids but exhibit no cytotoxicity on mammalian cells at the tested concentration of 100 µM.
Collapse
Affiliation(s)
- Jonas Krämer
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Michael Marner
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Elena Maiworm
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392 Giessen, Germany
| | - Till F Schäberle
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Reinhard Predel
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
8
|
Chung SH, Bigham M, Lappe RR, Chan B, Nagalakshmi U, Whitham SA, Dinesh‐Kumar SP, Jander G. A sugarcane mosaic virus vector for rapid in planta screening of proteins that inhibit the growth of insect herbivores. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1713-1724. [PMID: 33763921 PMCID: PMC8428830 DOI: 10.1111/pbi.13585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
Spodoptera frugiperda (fall armyworm) is a notorious pest that threatens maize production worldwide. Current control measures involve the use of chemical insecticides and transgenic maize expressing Bacillus thuringiensis (Bt) toxins. Although additional transgenes have confirmed insecticidal activity, limited research has been conducted in maize, at least partially due to the technical difficulty of maize transformation. Here, we describe implementation of a sugarcane mosaic virus (SCMV) vector for rapidly testing the efficacy of both endogenous maize genes and heterologous genes from other organisms for the control of S. frugiperda in maize. Four categories of proteins were tested using the SCMV vector: (i) maize defence signalling proteins: peptide elicitors (Pep1 and Pep3) and jasmonate acid conjugating enzymes (JAR1a and JAR1b); (ii) maize defensive proteins: the previously identified ribosome-inactivating protein (RIP2) and maize proteinase inhibitor (MPI), and two proteins with predicted but unconfirmed anti-insect activities, an antimicrobial peptide (AMP) and a lectin (JAC1); (iii) lectins from other plant species: Allium cepa agglutinin (ACA) and Galanthus nivalis agglutinin (GNA); and (iv) scorpion and spider toxins: peptides from Urodacus yaschenkoi (UyCT3 and UyCT5) and Hadronyche versuta (Hvt). In most cases, S. frugiperda larval growth was reduced by transient SCMV-mediated overexpression of genes encoding these proteins. Additionally, experiments with a subset of the SCMV-expressed genes showed effectiveness against two aphid species, Rhopalosiphum maidis (corn leaf aphid) and Myzus persicae (green peach aphid). Together, these results demonstrate that SCMV vectors are a rapid screening method for testing the efficacy and insecticidal activity of candidate genes in maize.
Collapse
Affiliation(s)
| | | | - Ryan R. Lappe
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Barry Chan
- Department of Plant Biology and The Genome CenterCollege of Biological SciencesUniversity of CaliforniaDavisCAUSA
| | - Ugrappa Nagalakshmi
- Department of Plant Biology and The Genome CenterCollege of Biological SciencesUniversity of CaliforniaDavisCAUSA
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Savithramma P. Dinesh‐Kumar
- Department of Plant Biology and The Genome CenterCollege of Biological SciencesUniversity of CaliforniaDavisCAUSA
| | - Georg Jander
- Boyce Thompson Institute for Plant ResearchIthacaNYUSA
| |
Collapse
|
9
|
Sinno M, Bézier A, Vinale F, Giron D, Laudonia S, Garonna AP, Pennacchio F. Symbiosis disruption in the olive fruit fly, Bactrocera oleae (Rossi), as a potential tool for sustainable control. PEST MANAGEMENT SCIENCE 2020; 76:3199-3207. [PMID: 32358914 DOI: 10.1002/ps.5875] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The olive fruit fly Bactrocera oleae (Rossi) (OLF) is a major agricultural pest, whose control primarily relies on the use of chemical insecticides. Therefore, development of sustainable control strategies is highly desirable. The primary endosymbiotic bacterium of OLF, 'Candidatus Erwinia dacicola', is essential for successful larval development in unripe olive fruits. Therefore, targeting this endosymbiont with antimicrobial compounds may result in OLF fitness reduction and may exert control on natural populations of OLF. RESULTS Here, we evaluate the impact of compounds with antimicrobial activity on the OLF endosymbiont. Copper oxychloride (CO) and the fungal metabolite viridiol (Vi), produced by Trichoderma spp., were used. Laboratory bioassays were carried out to assess the effect of oral administration of these compounds on OLF fitness and molecular analyses (quantitative polymerase chain reaction) were conducted to measure the load of OLF-associated microorganisms in treated flies. CO and Vi were both able to disrupt the symbiotic association between OLF and its symbiotic bacteria, determining a significant reduction in the endosymbiont and gut microbiota load as well as a decrease in OLF fitness. CO had a direct negative effect on OLF adults. Conversely, exposure to Vi significantly undermined larval development of the treated female's progeny but did not show any toxicity in OLF adults. CONCLUSIONS These results provide new insights into the symbiotic control of OLF and pave the way for the development of more sustainable strategies of pest control based on the use of natural compounds with antimicrobial activity. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Martina Sinno
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Annie Bézier
- Research Institute for the Biology of Insect (IRBI) - UMR 7261 CNRS/Université de Tours, Tours, France
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- CNR Institute for Sustainable Plant Protection, Portici (NA), Italy
| | - David Giron
- Research Institute for the Biology of Insect (IRBI) - UMR 7261 CNRS/Université de Tours, Tours, France
| | - Stefania Laudonia
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Antonio P Garonna
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| |
Collapse
|
10
|
Ahmadi S, Knerr JM, Argemi L, Bordon KCF, Pucca MB, Cerni FA, Arantes EC, Çalışkan F, Laustsen AH. Scorpion Venom: Detriments and Benefits. Biomedicines 2020; 8:biomedicines8050118. [PMID: 32408604 PMCID: PMC7277529 DOI: 10.3390/biomedicines8050118] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Scorpion venom may cause severe medical complications and untimely death if injected into the human body. Neurotoxins are the main components of scorpion venom that are known to be responsible for the pathological manifestations of envenoming. Besides neurotoxins, a wide range of other bioactive molecules can be found in scorpion venoms. Advances in separation, characterization, and biotechnological approaches have enabled not only the development of more effective treatments against scorpion envenomings, but have also led to the discovery of several scorpion venom peptides with interesting therapeutic properties. Thus, scorpion venom may not only be a medical threat to human health, but could prove to be a valuable source of bioactive molecules that may serve as leads for the development of new therapies against current and emerging diseases. This review presents both the detrimental and beneficial properties of scorpion venom toxins and discusses the newest advances within the development of novel therapies against scorpion envenoming and the therapeutic perspectives for scorpion toxins in drug discovery.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| | - Julius M. Knerr
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Lídia Argemi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Karla C. F. Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Manuela B. Pucca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Medical School, Federal University of Roraima, Boa Vista, Roraima 69310-000, Brazil
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Eliane C. Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Figen Çalışkan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| |
Collapse
|
11
|
Kirfel P, Vilcinskas A, Skaljac M. Lysine Acetyltransferase p300/CBP Plays an Important Role in Reproduction, Embryogenesis and Longevity of the Pea Aphid Acyrthosiphon pisum. INSECTS 2020; 11:E265. [PMID: 32357443 PMCID: PMC7290403 DOI: 10.3390/insects11050265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
CREB-binding protein (p300/CBP) is a universal transcriptional co-regulator with lysine acetyltransferase activity. Drosophila melanogaster p300/CBP is a well-known regulator of embryogenesis, and recent studies in beetles and cockroaches have revealed the importance of this protein during post-embryonic development and endocrine signaling. In pest insects, p300/CBP may therefore offer a useful target for control methods based on RNA interference (RNAi). We investigated the role of p300/CBP in the pea aphid (Acyrthosiphon pisum), a notorious pest insect used as a laboratory model for the analysis of complex life-history traits. The RNAi-based attenuation of A. pisum p300/CBP significantly reduced the aphid lifespan and number of offspring, as well as shortening the reproductive phase, suggesting the manipulation of this gene contributes to accelerated senescence. Furthermore, injection of p300/CBP dsRNA also reduced the number of viable offspring and increased the number of premature nymphs, which developed in abnormally structured ovaries. Our data confirm the evolutionarily conserved function of p300/CBP during insect embryogenesis and show that the protein has a critical effect on longevity, reproduction and development in A. pisum. The potent effect of p300/CBP silencing indicates that this regulatory protein is an ideal target for RNAi-based aphid control.
Collapse
Affiliation(s)
- Phillipp Kirfel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (P.K.); (A.V.)
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (P.K.); (A.V.)
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Marisa Skaljac
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; (P.K.); (A.V.)
| |
Collapse
|
12
|
Kirfel P, Skaljac M, Grotmann J, Kessel T, Seip M, Michaelis K, Vilcinskas A. Inhibition of histone acetylation and deacetylation enzymes affects longevity, development, and fecundity in the pea aphid (Acyrthosiphon pisum). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21614. [PMID: 31498475 DOI: 10.1002/arch.21614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/30/2018] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Histone acetylation is an evolutionarily conserved epigenetic mechanism of eukaryotic gene regulation which is tightly controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In insects, life-history traits such as longevity and fecundity are severely affected by the suppression of HAT/HDAC activity, which can be achieved by RNA-mediated gene silencing or the application of chemical inhibitors. We used both experimental approaches to investigate the effect of HAT/HDAC inhibition in the pea aphid (Acyrthosiphon pisum) a model insect often used to study complex life-history traits. The silencing of HAT genes (kat6b, kat7, and kat14) promoted survival or increased the number of offspring, whereas targeting rpd3 (HDAC) reduced the number of viviparous offspring but increased the number of premature nymphs, suggesting a role in embryogenesis and eclosion. Specific chemical inhibitors of HATs/HDACs showed a remarkably severe impact on life-history traits, reducing survival, delaying development, and limiting the number of offspring. The selective inhibition of HATs and HDACs also had opposing effects on aphid body weight. The suppression of HAT/HDAC activity in aphids by RNA interference or chemical inhibition revealed similarities and differences compared to the reported role of these enzymes in other insects. Our data suggest that gene expression in A. pisum is regulated by multiple HATs/HDACs, as indicated by the fitness costs triggered by inhibitors that suppress several of these enzymes simultaneously. Targeting multiple HATs or HDACs with combined effects on gene regulation could, therefore, be a promising approach to discover novel targets for the management of aphid pests.
Collapse
Affiliation(s)
- Phillipp Kirfel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Marisa Skaljac
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Jens Grotmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Tobias Kessel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Maximilian Seip
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Katja Michaelis
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, Giessen, Germany
- Department of Insect Biotechnology, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
13
|
Identification and Functional Characterization of a Novel Insecticidal Decapeptide from the Myrmicine Ant Manica rubida. Toxins (Basel) 2019; 11:toxins11100562. [PMID: 31557881 PMCID: PMC6832575 DOI: 10.3390/toxins11100562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Ant venoms contain many small, linear peptides, an untapped source of bioactive peptide toxins. The control of agricultural insect pests currently depends primarily on chemical insecticides, but their intensive use damages the environment and human health, and encourages the emergence of resistant pest populations. This has promoted interest in animal venoms as a source of alternative, environmentally-friendly bio-insecticides. We tested the crude venom of the predatory ant, Manica rubida, and observed severe fitness costs in the parthenogenetic pea aphid (Acyrthosiphon pisum), a common agricultural pest. Therefore, we explored the M. rubida venom peptidome and identified a novel decapeptide U-MYRTX-MANr1 (NH2-IDPKVLESLV-CONH2) using a combination of Edman degradation and de novo peptide sequencing. Although this myrmicitoxin was inactive against bacteria and fungi, it reduced aphid survival and reproduction. Furthermore, both crude venom and U-MYRTX-MANr1 reversibly paralyzed injected aphids and induced a loss of body fluids. Components of M. rubida venom may act on various biological targets including ion channels and hemolymph coagulation proteins, as previously shown for other ant venom toxins. The remarkable insecticidal activity of M. rubida venom suggests it may be a promising source of additional bio-insecticide leads.
Collapse
|
14
|
Dissecting Toxicity: The Venom Gland Transcriptome and the Venom Proteome of the Highly Venomous Scorpion Centruroides limpidus (Karsch, 1879). Toxins (Basel) 2019; 11:toxins11050247. [PMID: 31052267 PMCID: PMC6563264 DOI: 10.3390/toxins11050247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
Venom glands and soluble venom from the Mexican scorpion Centruroides limpidus (Karsch, 1879) were used for transcriptomic and proteomic analyses, respectively. An RNA-seq was performed by high-throughput sequencing with the Illumina platform. Approximately 80 million reads were obtained and assembled into 198,662 putative transcripts, of which 11,058 were annotated by similarity to sequences from available databases. A total of 192 venom-related sequences were identified, including Na+ and K+ channel-acting toxins, enzymes, host defense peptides, and other venom components. The most diverse transcripts were those potentially coding for ion channel-acting toxins, mainly those active on Na+ channels (NaScTx). Sequences corresponding to β- scorpion toxins active of K+ channels (KScTx) and λ-KScTx are here reported for the first time for a scorpion of the genus Centruroides. Mass fingerprint corroborated that NaScTx are the most abundant components in this venom. Liquid chromatography coupled to mass spectometry (LC-MS/MS) allowed the identification of 46 peptides matching sequences encoded in the transcriptome, confirming their expression in the venom. This study corroborates that, in the venom of toxic buthid scorpions, the more abundant and diverse components are ion channel-acting toxins, mainly NaScTx, while they lack the HDP diversity previously demonstrated for the non-buthid scorpions. The highly abundant and diverse antareases explain the pancreatitis observed after envenomation by this species.
Collapse
|
15
|
Skaljac M, Vogel H, Wielsch N, Mihajlovic S, Vilcinskas A. Transmission of a Protease-Secreting Bacterial Symbiont Among Pea Aphids via Host Plants. Front Physiol 2019; 10:438. [PMID: 31057424 PMCID: PMC6479166 DOI: 10.3389/fphys.2019.00438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/01/2019] [Indexed: 12/02/2022] Open
Abstract
Aphids are economically important pest insects that damage plants by phloem feeding and the transmission of plant viruses. Their ability to feed exclusively on nutritionally poor phloem sap is dependent on the obligatory symbiotic bacterium Buchnera aphidicola, but additional facultative symbionts may also be present, a common example of which is Serratia symbiotica. Many Serratia species secrete extracellular enzymes, so we hypothesised that S. symbiotica may produce proteases that help aphids to feed on plants. Molecular analysis, including fluorescence in situ hybridization (FISH), revealed that S. symbiotica colonises the gut, salivary glands and mouthparts (including the stylet) of the pea aphid Acyrthosiphon pisum, providing a mechanism to transfer the symbiont into host plants. S. symbiotica was also detected in plant tissues wounded by the penetrating stylet and was transferred to naïve aphids feeding on plants containing this symbiont. The maintenance of S. symbiotica by repeated transmission via plants may explain the high frequency of this symbiont in aphid populations. Proteomic analysis of the supernatant from a related but cultivable S. symbiotica strain cultured in liquid medium revealed the presence of known and novel proteases including metalloproteases. The corresponding transcripts encoding these S. symbiotica enzymes were detected in A. pisum and in plants carrying the symbiont, although the mRNA was much more abundant in the aphids. Our data suggest that enzymes from S. symbiotica may facilitate the digestion of plant proteins, thereby helping to suppress plant defense, and that the symbionts are important mediators of aphid–plant interactions.
Collapse
Affiliation(s)
- Marisa Skaljac
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Heiko Vogel
- Entomology Department, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Natalie Wielsch
- Entomology Department, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sanja Mihajlovic
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
16
|
Heep J, Klaus A, Kessel T, Seip M, Vilcinskas A, Skaljac M. Proteomic Analysis of the Venom from the Ruby Ant Myrmica rubra and the Isolation of a Novel Insecticidal Decapeptide. INSECTS 2019; 10:E42. [PMID: 30717163 PMCID: PMC6409562 DOI: 10.3390/insects10020042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 11/24/2022]
Abstract
Ants are a biodiverse group of insects that have evolved toxic venom containing many undiscovered bioactive molecules. In this study, we found that the venom of the ruby ant Myrmica rubra is a rich source of peptides. LC-MS analysis revealed the presence of 142 different peptides varying in molecular weight, sequence length, and hydrophobicity. One of the most abundant peaks was selected for further biochemical and functional characterization. Combined Edman degradation and de novo peptide sequencing revealed the presence of a novel decapeptide (myrmicitoxin) with the amino acid sequence NH₂-IDPKLLESLA-CONH₂. The decapeptide was named U-MYRTX-MRArub1 and verified against a synthetic standard. The amidated peptide was tested in a synthetic form to determine the antimicrobial activity towards the bacterial pathogens and insecticidal potential against pea aphids (Acyrthosiphon pisum). This peptide did not show antimicrobial activity but it significantly reduced the survival of aphids. It also increased the sensitivity of the aphids to two commonly used chemical insecticides (imidacloprid and methomyl). Since ant venom research is still in its infancy, the findings of this first study on venom peptides derived from M. rubra highlight these insects as an important and rich source for discovery of novel lead structures with potential application in pest control.
Collapse
Affiliation(s)
- John Heep
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Alica Klaus
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Tobias Kessel
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Maximilian Seip
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Andreas Vilcinskas
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Marisa Skaljac
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| |
Collapse
|
17
|
Skaljac M, Kirfel P, Grotmann J, Vilcinskas A. Fitness costs of infection with Serratia symbiotica are associated with greater susceptibility to insecticides in the pea aphid Acyrthosiphon pisum. PEST MANAGEMENT SCIENCE 2018; 74:1829-1836. [PMID: 29443436 DOI: 10.1002/ps.4881] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Aphids are agricultural pests that damage crops by direct feeding and by vectoring important plant viruses. Bacterial symbionts can influence aphid biology, e.g. by providing essential nutrients or facilitating adaptations to biotic and abiotic stress. RESULTS We investigated the pea aphid (Acyrthosiphon pisum Harris) and its commonly associated secondary bacterial symbiont Serratia symbiotica to study the effect of this symbiont on host fitness and susceptibility to the insecticides imidacloprid, chlorpyrifos methyl, methomyl, cyantraniliprole and spirotetramat. There is emerging evidence that members of the genus Serratia can degrade and/or detoxify diverse insecticides. Therefore, we hypothesized that S. symbiotica may promote resistance to these artificial stress agents in aphids. Our results showed that Serratia-infected aphids were more susceptible to most of the tested insecticides than non-infected aphids. This probably reflects the severe fitness costs associated with S. symbiotica, which negatively affects development, reproduction and body weight. CONCLUSION Our study demonstrates that S. symbiotica plays an important role in the ability of aphid hosts to tolerate insecticides. These results provide insight into the potential changes in tolerance to insecticides in the field because there is a continuous and dynamic process of symbiont acquisition and loss that may directly affect host biology. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marisa Skaljac
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Giessen, Germany
| | - Phillipp Kirfel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Giessen, Germany
| | - Jens Grotmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Giessen, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
18
|
Wang Y, Lu J, Beattie GA, Islam MR, Om N, Dao HT, Van Nguyen L, Zaka SM, Guo J, Tian M, Deng X, Tan S, Holford P, He Y, Cen Y. Phylogeography of Diaphorina citri (Hemiptera: Liviidae) and its primary endosymbiont, 'Candidatus Carsonella ruddii': an evolutionary approach to host-endosymbiont interaction. PEST MANAGEMENT SCIENCE 2018; 74:2185-2194. [PMID: 29575777 DOI: 10.1002/ps.4917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In insects, little is known about the co-evolution between their primary endosymbionts and hosts at the intraspecific level. This study examined co-diversification between the notorious agricultural pest Diaphorina citri and its primary endosymbionts (P-endosymbiont), 'Candidatus Carsonella ruddii' at the population level. RESULTS Maximum likelihood, haplotype network, principal components and Bayesian clustering identified three lineages for D. citri and its P-endosymbiont: a Western clade containing individuals from Pakistan, Bhutan (Phuentsholing), Vietnam (Son La), USA, Myanmar and China (Ruili, Yunnan); a Central clade, with accessions originating from Southwest China, Bhutan (Tsirang) and Bangladesh; and an Eastern clade containing individuals from Southeast Asia, and East and South China. A more diverse genetic structure was apparent in the host mitochondrial DNA than their P-endosymbionts; however, the two sets of data were strongly congruent. CONCLUSION This study provides evidence for the co-diversification of D. citri and its P-endosymbiont during the migration from South Asia to East and Southeast Asia. We also suggest that the P-endosymbiont may facilitate investigations into the genealogy and migration history of the host. The biogeography of D. citri and its P-endosymbiont indicated that D. citri colonized and underwent a secondary dispersal from South Asia to East and Southeast Asia. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanjing Wang
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Jinming Lu
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - George Ac Beattie
- School of Science and Health, Western Sydney University, Penrith, Australia
| | - Mohammad R Islam
- Laboratory of Plant Bacteriology and Biotechnology, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Namgay Om
- National Plant Protection Centre, Department of Agriculture, Ministry of Agriculture and Forests, Thimphu, Bhutan
| | - Hang T Dao
- Plant Protection Research Institute, Hanoi, Vietnam
| | | | - Syed M Zaka
- Faculty of Agricultural Science and Technology, Department of Entomology, Bahauddin Zakariya University, Multan, Pakistan
| | - Jun Guo
- Ruili Experiment Station, Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Ruili, China
| | - Mingyi Tian
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Xiaoling Deng
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Shunyun Tan
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Paul Holford
- School of Science and Health, Western Sydney University, Penrith, Australia
| | - Yurong He
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Arora AK, Douglas AE. Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:10-17. [PMID: 28974456 DOI: 10.1016/j.jinsphys.2017.09.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
All insects, including pest species, are colonized by microorganisms, variously located in the gut and within insect tissues. Manipulation of these microbial partners can reduce the pest status of insects, either by modifying insect traits (e.g. altering the host range or tolerance of abiotic conditions, reducing insect competence to vector disease agents) or by reducing fitness. Strategies utilizing heterologous microorganisms (i.e. derived from different insect species) and genetically-modified microbial symbionts are under development, particularly in relation to insect vectors of human disease agents. There is also the potential to target microorganisms absolutely required by the insect, resulting in insect mortality or suppression of insect growth or fecundity. This latter approach is particularly valuable for insect pests that depend on nutrients from symbiotic microorganisms to supplement their nutritionally-inadequate diet, e.g. insects feeding through the life cycle on vertebrate blood (cimicid bugs, anopluran lice, tsetse flies), plant sap (whiteflies, aphids, psyllids, planthoppers, leafhoppers/sharpshooters) and sound wood (various xylophagous beetles and some termites). Further research will facilitate implementation of these novel insect pest control strategies, particularly to ensure specificity of control agents to the pest insect without dissemination of bio-active compounds, novel microorganisms or their genes into the wider environment.
Collapse
Affiliation(s)
- Arinder K Arora
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|